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Abstract. The aim of the paper is to show the stability of the finite element
solution for the Stokes system in 𝑊 1

∞ norm on general convex polyhedral

domain. In contrast to previously known results, 𝑊 2
𝑟 regularity for 𝑟 > 3,

which does not hold for general convex polyhedral domains, is not required.
The argument uses recently available sharp Hölder pointwise estimates of the

corresponding Green’s matrix together with novel local energy error estimates,

which do not involve an error of the pressure in a weaker norm.

1. Introduction

Consider the following Stokes problem on a convex polyhedral domain Ω ⊂ R3,

−∆𝑢⃗+∇𝑝 = 𝑓 in Ω,(1.1a)

∇ · 𝑢⃗ = 0 in Ω,(1.1b)

𝑢⃗ = 0⃗ on 𝜕Ω.(1.1c)

Here 𝑢⃗ = (𝑢1, 𝑢2, 𝑢3) represents the velocity of the fluid, 𝑝 ∈ 𝐿2(Ω) the pressure, and
𝑓 = (𝑓1, 𝑓2, 𝑓3) is a smooth external force vector function. The solution 𝑝 ∈ 𝐿2(Ω)
is unique up to a constant. Our work is motivated by [13], where the stability of
the finite element solution, namely

(1.2) ‖∇𝑢⃗ℎ‖𝐿∞(Ω) + ‖𝑝ℎ‖𝐿∞(Ω) ≤ 𝐶(‖∇𝑢⃗‖𝐿∞(Ω) + ‖𝑝‖𝐿∞(Ω)),

was derived under the regularity assumptions 𝑢⃗ ∈ 𝑊 2
𝑟 (Ω)3 and 𝑝 ∈ 𝑊 1

𝑟 (Ω), for
some 𝑟 > 3. This result was an important improvement over previous results where
the constant 𝐶 depended on | log ℎ| (cf. [9]).

However, the drawback of the result in [13] is the assumption of 𝑊 2
𝑟 (Ω)3 regu-

larity for some 𝑟 > 3. The standard regularity results (cf. [4]) for general convex
polyhedral domains only give 𝑢⃗ ∈ 𝐻2(Ω)3 and 𝑝 ∈ 𝐻1(Ω), and in order to guaran-
tee 𝑢⃗ ∈ 𝑊 2

𝑟 (Ω)3 and 𝑝 ∈ 𝑊 1
𝑟 (Ω), for some 𝑟 > 3, one needs additional geometrical

restrictions on Ω. More precisely, the dihedral angles must be less than 3𝜋/4 (cf.
[21, sec. 5.5]). In [13], the authors argued that such condition on Ω is essentially
consistent with (𝑢⃗, 𝑝) ∈ 𝑊 1

∞(Ω)3 × 𝐿∞(Ω). The condition 𝑢⃗ ∈ 𝑊 2
𝑟 (Ω)3, for some

𝑟 > 3 does imply by Sobolev embedding theorem 𝑢⃗ ∈𝑊 1
∞(Ω)3. However, for a gen-

eral convex polyhedral domain (𝑢⃗, 𝑝) might not belong to 𝑊 2
𝑟 (Ω)3×𝑊 1

𝑟 (Ω) for any
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𝑟 > 3, but nevertheless Maz’ya and Rossmann [25] showed that (𝑢⃗, 𝑝) will always
belong to 𝐶1+𝜎(Ω)3 ×𝐶𝜎(Ω), where the Hölder exponent 𝜎 depends on Ω. We use
this important result to establish (1.2) for general convex polyhedral domains Ω.

A standard argument applied to the above stability result gives the best approx-
imation property:
(1.3)
‖∇(𝑢⃗−𝑢⃗ℎ)‖𝐿∞(Ω)+‖𝑝−𝑝ℎ‖𝐿∞(Ω) ≤ 𝐶 min

(𝜒⃗,𝑤)∈𝑉ℎ×𝑀ℎ

(‖∇(𝑢⃗−𝜒⃗)‖𝐿∞(Ω)+‖𝑝−𝑤‖𝐿∞(Ω)).

Such estimates have many applications. Besides the ones mentioned in [13], we
would like to mention state constrained optimal control problems [5]. In such
problems the Lagrange multipliers are just measures and the pointwise stability
estimates are essential.

Our proof is based on the technique developed in the series of papers by Schatz
and Wahlbin (e.g. [31, 32, 33]) and is different from the global weighted tech-
nique used in [9, 13]. Our argument uses dyadic decomposition of Ω and requires
local energy estimates together with sharp pointwise estimates for the correspond-
ing components of the Green’s matrix. For smooth domains such a technique
was successfully used in [3] for mixed methods and [16] for discontinuous Galerkin
(DG) methods, where higher-order regularity results were used. In the present
paper we only assume 𝐶1+𝜎(Ω)3 × 𝐶𝜎(Ω) regularity. In order to prove (1.2) for
(𝑢⃗, 𝑝) ∈ 𝐶1+𝜎(Ω)3 × 𝐶𝜎(Ω) we need to develop several new tools. The first nec-
essary ingredient is the new local energy estimates. Such estimates are important
and have independent interest. They show how the error depends locally on the
solution. Arnold and Liu [1] proved such estimates for subdomains away from the
boundary. Later, those estimates were used in [3] to show (1.3) on smooth domains.
In [16] such local energy estimates were extended up to the boundary for DG meth-
ods. The common feature of those estimates is the presence of the discrete pressure
error term in some negative-order norm. Then by a duality argument the pressure
term in weaker norm can be handled separately. However, such duality arguments
require additional smoothness of the solution which for general convex polyhedral
domains do not hold. As a result, we can not use those results directly. One of
the main contributions of this paper is deriving new local energy estimates that do
not involve the pressure error term (cf. Sec. 3). The second necessary ingredient is
applying, in a careful way, sharp Hölder pointwise estimates for the components of
the Green’s matrix which were recently derived by Rossmann [28], (see also [18, 25]
for similar results).

We would like to mention that similar Hölder type Green’s function estimates
were obtained in [17] for the Laplace equation and allowed the authors to obtain
uniform stability of the Ritz projection for the Laplace equation on a general convex
polyhedral domain. This paper can be considered as an extension of [17] to the
Stokes problem (1.1). However, the Stokes problem is technically more challenging
and involved. The main difficulty comes from the presence of the pressure term
and the new local energy estimates for the Stokes problem will play a key role to
overcome this difficulty.

The rest of the paper is organized as follows. In Section 2 we list the finite element
assumptions and state the main result. Important analytical tools, local energy
estimates and the pointwise estimates for the Green’s matrix of the continuous
problem are given in Sections 3 and 4, respectively. In Section 5, we provide a
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proof of the main result. For technical reasons we first establish the stability for
the velocity and then for the pressure. Finally, in Section 6 we comment on possible
extensions and open problems.

2. Assumptions and the Main Result

Before stating the main result we list our assumptions on the finite element
spaces.

2.1. Finite Element Approximation. For the finite element approximation of
the problem, let 𝒯ℎ, 0 < ℎ < 1, be a sequence of partitions of Ω, Ω =

⋃︀
𝑇∈𝒯ℎ

𝑇 ,
with the elements 𝑇 mutually disjoint. Let ℎ𝑇 denote the diameter of 𝑇 and
ℎ = max𝑇 ℎ𝑇 . The partitions are face-to-face so that simplices meet only in full
lower-dimensional faces or not at all. The simplices are assumed to be quasi-
uniform, i.e. (if necessary after a renormalization of ℎ), there exists a constant 𝐶
independent of ℎ, such that

𝑑𝑖𝑎𝑚 𝑇 ≤ ℎ𝑇 ≤ 𝐶(𝑚𝑒𝑎𝑠 𝑇 )1/3, ∀𝑇 ∈ 𝒯ℎ.

The finite element velocity space is denoted by 𝑉⃗ℎ ⊂ 𝐻1
0 (Ω)3 and the pressure space

is denoted by 𝑀ℎ ⊂ 𝐿2(Ω). We assume that 𝑉⃗ℎ contains the space of piecewise
polynomials of degree 𝑘 and is contained in the space of piecewise polynomials of
degree 𝑙. We assume that 𝑀ℎ contains the space of polynomials of degree 𝑘 − 1.

The finite element approximation (𝑢⃗ℎ, 𝑝ℎ) ∈ (𝑉⃗ℎ ×𝑀ℎ) solves

(∇𝑢⃗ℎ,∇𝑣⃗)− (𝑝ℎ,∇ · 𝑣⃗) = (𝑓, 𝑣⃗), ∀𝑣⃗ ∈ 𝑉⃗ℎ(2.1a)

(𝑞,∇ · 𝑢⃗ℎ) = 0, ∀𝑞 ∈𝑀ℎ,(2.1b)

where (·, ·) denotes the usual 𝐿2(Ω) inner product. The approximation to the
pressure 𝑝ℎ is unique up to a constant. We can for example require 𝑝, 𝑝ℎ ∈ 𝐿2

0, i.e.∫︀
Ω
𝑝(𝑥) 𝑑𝑥 =

∫︀
Ω
𝑝ℎ(𝑥) 𝑑𝑥 = 0. Instead, we will require

(2.2)
∫︁

Ω

𝑝(𝑥)𝜑(𝑥) 𝑑𝑥 =
∫︁

Ω

𝑝ℎ(𝑥)𝜑(𝑥) 𝑑𝑥 = 0,

where 𝜑(𝑥) is an infinitely differentiable function on Ω that vanishes in a neighbor-
hood of the edges and satisfies

(2.3)
∫︁

Ω

𝜑(𝑥)𝑑𝑥 = 1.

Without loss of generality, we fix 𝜑 as above and assume 𝑝, 𝑝ℎ satisfy (2.2). In other
words, we let 𝑝 and 𝑝ℎ belong to the space

𝐿2
𝜑(Ω) := {𝑣 ∈ 𝐿2(Ω) :

∫︁
Ω

𝑣(𝑥)𝜑(𝑥) 𝑑𝑥 = 0}.

2.2. Assumptions. In the analysis below in order to establish the main result,
we assume the existence of two projection operators P : 𝐻1

0 (Ω)3 → 𝑉⃗ℎ and R :
𝐿2(Ω) →𝑀ℎ with the following properties:

Assumption 1 (Stability). There exists a constant 𝐶 independent of ℎ such that

‖P𝑣⃗‖𝐻1(Ω) ≤ 𝐶‖𝑣⃗‖𝐻1(Ω), ∀𝑣⃗ ∈ 𝐻1
0 (Ω)3.

Assumption 2 (Preservation of divergence).

(2.4) (∇ · (𝑣⃗ −P𝑣⃗), 𝑞ℎ) = 0, ∀𝑞ℎ ∈𝑀ℎ, ∀𝑣⃗ ∈ 𝐻1
0 (Ω)3.
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Assumption 3 (Approximation). Let 𝑄 ⊂ 𝑄𝑑 ⊂ Ω, with 𝑑 ≥ 𝜅ℎ, for some fixed
𝜅 sufficiently large and 𝑄𝑑 = {𝑥 ∈ Ω : 𝑑𝑖𝑠𝑡(𝑥,𝑄) ≤ 𝑑}. For any 𝑣⃗ ∈ 𝐻ℓ(𝑄𝑑)3 there
exists 𝐶 independent of ℎ and 𝑣⃗ such that

(2.5a) ‖𝑣⃗ −P𝑣⃗‖𝐿2(𝑄) + ℎ‖𝑣⃗ −P𝑣⃗‖𝐻1(𝑄) ≤ 𝐶ℎℓ‖𝑣⃗‖𝐻ℓ(𝑄𝑑) for ℓ = 1, 2.

For any 𝑣⃗ ∈ 𝐶1+𝜎(𝑄𝑑)3 there exists 𝐶 independent of ℎ such that

(2.5b) ‖𝑣⃗ −P𝑣⃗‖𝑊 𝑡
∞(𝑄) ≤ 𝐶ℎ1+𝜎−𝑡‖𝑣⃗‖𝐶1+𝜎(𝑄𝑑), 𝑡 = 0, 1,

where

(2.5c) ‖𝑣⃗‖𝐶1+𝜎(𝑄) = ‖𝑣⃗‖𝐶1(𝑄) + sup
𝑥,𝑦∈𝑄

𝑖∈{1,2,3}

|𝑒𝑖 · (∇𝑣⃗(𝑥)−∇𝑣⃗(𝑦))|
|𝑥− 𝑦|𝜎

.

Similar approximation properties we need for R. For any 𝑞 ∈ 𝐻1(𝑄𝑑) there exists
𝐶 independent of ℎ and 𝑞 such that

(2.5d) ‖𝑞 −R𝑞‖𝐿2(𝑄) ≤ 𝐶ℎ‖𝑞‖𝐻1(𝑄𝑑).

For any 𝑞 ∈ 𝐶𝜎(𝑄𝑑) there exists 𝐶 independent of ℎ such that

(2.5e) ‖𝑞 −R𝑞‖𝐿∞(𝑄) ≤ 𝐶ℎ𝜎‖𝑞‖𝐶𝜎(𝑄𝑑).

Assumption 4 (Superapproximation). Let 𝜔 ∈ 𝐶∞0 (𝑄𝑑) be a smooth cut-off func-
tion such that 𝜔 ≡ 1 on 𝑄 and

(2.6a) |𝐷𝑠𝜔| ≤ 𝐶𝑑−𝑠, 𝑠 = 0, 1.

We assume,

(2.6b) ‖∇(𝜔2𝑣⃗ −P(𝜔2𝑣⃗))‖𝐿2(𝑄) ≤ 𝐶𝑑−1‖𝑣⃗‖𝐿2(𝑄𝑑), ∀𝑣⃗ ∈ 𝑉⃗ℎ,

and

(2.6c) ‖𝜔2𝑞 −R(𝜔2𝑞)‖𝐿2(𝑄) ≤ 𝐶ℎ𝑑−1‖𝑞‖𝐿2(𝑄𝑑), ∀𝑞 ∈𝑀ℎ.

Assumption 5 (Inverse inequality). There is a constant 𝐶 independent of ℎ such
that

(2.7a) ‖𝑣⃗‖𝐻1(𝑄) ≤ 𝐶ℎ−1‖𝑣⃗‖𝐿2(𝑄𝑑), ∀𝑣⃗ ∈ 𝑉⃗ℎ,

In the proof of our pointwise estimates we will use the following energy error
estimates.

Proposition 2.1. Let (𝑢⃗, 𝑝) solve (1.1) and (𝑢⃗ℎ, 𝑝ℎ) solve (2.1). Assume the above
assumptions are satisfied, then there exists a constant 𝐶 independent of ℎ such that,

‖𝑢⃗− 𝑢⃗ℎ‖𝐻1(Ω) + ‖𝑝− 𝑝ℎ‖𝐿2(Ω) ≤ 𝐶 min
(𝜒⃗,𝑤)∈𝑉ℎ×𝑀ℎ

(‖𝑢⃗− 𝜒⃗‖𝐻1(Ω) + ‖𝑝− 𝑤‖𝐿2(Ω)).

Remark 1. In some textbooks, (cf. [10, Prop. 4.14]), the proof assumes that 𝑝 ∈ 𝐿2
0,

however essentially the same proof holds for 𝑝 ∈ 𝐿2
𝜑.

2.3. Examples of the subspaces. Several common finite element spaces for the
Stokes problem are known to satisfy the above assumptions. For example, MINI and
Taylor-Hood elements of degree greater or equal than three do satisfy. Operators
satisfying Assumptions 2-5 were constructed in [13] and [14]. For low order MINI
elements one can verify the assumptions by following the ideas in [1, Sec. 3].
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2.4. Main Result. The main result establishes the stability of the gradient of the
finite element velocity solution and the pressure in 𝐿∞ norm.

Theorem 1. Let (𝑢⃗, 𝑝) and (𝑢⃗ℎ, 𝑝ℎ) satisfy (1.1) and (2.1), respectively. If the
assumptions of section 2.2 are met, then there exists a constant 𝐶 independent of
ℎ such that

‖∇𝑢⃗ℎ‖𝐿∞(Ω) + ‖𝑝ℎ‖𝐿∞(Ω) ≤ 𝐶(‖∇𝑢⃗‖𝐿∞(Ω) + ‖𝑝‖𝐿∞(Ω)).

By a standard argument we have the following best approximation property.

Corollary 1. Under the assumptions of Theorem 1, there exists a constant 𝐶
independent of ℎ such that

‖∇(𝑢⃗−𝑢⃗ℎ)‖𝐿∞(Ω)+‖𝑝−𝑝ℎ‖𝐿∞(Ω) ≤ 𝐶 inf
(𝜒⃗,𝑤)∈𝑉ℎ×𝑀ℎ

(‖∇(𝑢⃗−𝜒⃗)‖𝐿∞(Ω)+‖𝑝−𝑤‖𝐿∞(Ω)).

Proof. The proof of the corollary follows easily by taking 𝑢⃗ − 𝜒⃗ and 𝑝 − 𝑤 with
arbitrary 𝜒⃗ ∈ 𝑉⃗ℎ and 𝑤 ∈𝑀ℎ instead of 𝑢⃗ and 𝑝 in the stability estimate of Theorem
1 and using that the Stokes projection (𝑢⃗ℎ, 𝑝ℎ) is invariant on 𝑉⃗ℎ ×𝑀ℎ. �

3. Local Energy Estimates

Local energy estimates are essential to our proof. These estimates are impor-
tant, although technical, and show how the error depends locally on the solution.
Such estimates take their origin from the Caccioppoli inequality for the continuous
problem. Consider two concentric balls 𝐵1 and 𝐵2 of radii 𝑑 and 2𝑑, respectively,
such that 𝐵1 b 𝐵2 b Ω. In the interior of the domain, the Caccioppoli inequality
says that if 𝑣⃗ is the solution of (1.1) with 𝑓 ≡ 0⃗ on 𝐵2, then for any there exists a
constant 𝐶 independent of 𝑣⃗ and 𝑑 such that (cf. [12, Thm. 1.1])

‖∇𝑣⃗‖𝐿2(𝐵1) ≤
𝐶

𝑑
‖𝑣⃗‖𝐿2(𝐵2).

In the finite element setting such estimates are not known and the pressure term
usually in a weaker norm enters the estimates. First such interior local error esti-
mates were derived in [1, Lem. 5.1] on subdomains away from the boundary. More
precisely, they state that for any functions 𝑣⃗ℎ ∈ 𝑉⃗ℎ and 𝑞ℎ ∈𝑀ℎ satisfying

(∇𝑣⃗ℎ,∇𝜒⃗) + (𝑞ℎ,∇ · 𝜒⃗) = (𝑓, 𝜒⃗), ∀𝜒⃗ ∈ 𝑉⃗ℎ,(3.1a)

(∇ · 𝑣⃗ℎ, 𝑤) = 0, ∀𝑤 ∈𝑀ℎ,(3.1b)

with 𝑓 ≡ 0⃗ on 𝐵2 and concentric balls 𝐵1 and 𝐵2 as above, and any nonnegative
integer 𝑡

‖∇𝑣⃗ℎ‖𝐿2(𝐵1) + ‖𝑞ℎ‖𝐿2(𝐵1) ≤ 𝐶ℎ𝑑−1
(︀
‖∇𝑣⃗ℎ‖𝐿2(𝐵2) + ‖𝑞ℎ‖𝐿2(𝐵2)

)︀
(3.2)

+ 𝐶𝑑−𝑡−1
(︀
‖𝑣⃗ℎ‖𝐻−𝑡(𝐵2) + ‖𝑞ℎ‖𝐻−𝑡−1(𝐵2)

)︀
.

By a covering argument (cf. [27, Thm. 5.1]) the above estimate can be extended
to any subdomains 𝐴1 b 𝐴2 b Ω, with 𝑑 = 𝑑𝑖𝑠𝑡(𝐴1, 𝜕𝐴2) ≥ 𝜅ℎ for some fixed
sufficiently large constant 𝜅, with the assumption 𝑓 ≡ 0⃗ on 𝐴2. Using (3.2) the
authors in [1] derived that the error satisfies,

‖∇(𝑣⃗ − 𝑣⃗ℎ)‖𝐿2(𝐴1) + ‖𝑞 − 𝑞ℎ‖𝐿2(𝐴1) ≤ 𝐶
(︀
ℎ𝑟−1(‖𝑣⃗‖𝐻𝑟(𝐴2) + ℎ‖𝑞‖𝐻𝑟(𝐴2))

+ 𝑑−𝑡−1‖𝑣⃗ − 𝑣⃗ℎ‖𝐻−𝑡(𝐴2) + 𝑑−𝑡−1‖𝑞 − 𝑞ℎ‖𝐻−𝑡−1(𝐴2)

)︀
.
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For details we refer to [1]. Similar local energy estimates were derived in [16] for
discontinuous Galerkin methods for the Stokes problem on smooth domains.

The main common feature of the local error estimates in [1] and [16] is that they
contain the pressure term in some negative norm on the right hand side even if only
the velocity error is to be estimated. Such results are not sufficient in our setting
since handling such terms requires additional smoothness of the exact solution which
for general polyhedral domains we do not have. One significant contribution of our
local energy estimates is that we avoid the pressure term in the negative norm at
the expense of adding the original term on slightly bigger subdomain multiplied by
an arbitrary small number.

In order to state our result we consider (𝑣⃗, 𝑞) ∈ 𝐻1
0 (Ω)3 × 𝐿2(Ω) and (𝑣⃗ℎ, 𝑞ℎ) ∈

𝑉⃗ℎ ×𝑀ℎ that satisfy the following orthogonality relation

(∇(𝑣⃗ − 𝑣⃗ℎ),∇𝜒⃗) + (𝑞 − 𝑞ℎ,∇ · 𝜒⃗) = 0, ∀𝜒⃗ ∈ 𝑉⃗ℎ,(3.3a)

(∇ · (𝑣⃗ − 𝑣⃗ℎ), 𝑤) = 0, ∀𝑤 ∈𝑀ℎ.(3.3b)

Theorem 2. Suppose (𝑣⃗, 𝑞) ∈ 𝐻1
0 (Ω)3 × 𝐿2(Ω) and (𝑣⃗ℎ, 𝑞ℎ) ∈ 𝑉⃗ℎ × 𝑀ℎ satisfy

(3.3). Then, there exists a constant 𝐶 such that for every pair of sets 𝐴1 ⊂ 𝐴2 ⊂ Ω
such that 𝑑𝑖𝑠𝑡(𝐴1, 𝜕𝐴2∖𝜕Ω) ≥ 𝑑 ≥ 𝜅ℎ (for some fixed constant 𝜅 sufficiently large)
the following bound holds

‖∇(𝑣⃗ − 𝑣⃗ℎ)‖𝐿2(𝐴1) ≤𝐶(‖∇(𝑣⃗ −P𝑣⃗)‖𝐿2(𝐴2) + ‖𝑞 −R𝑞‖𝐿2(𝐴2) +
1
𝜀𝑑
‖𝑣⃗ −P𝑣⃗‖𝐿2(𝐴2))

+ 𝜀‖∇(𝑣⃗ − 𝑣⃗ℎ)‖𝐿2(𝐴2) +
𝐶

𝜀𝑑
‖𝑣⃗ − 𝑣⃗ℎ‖𝐿2(𝐴2).

The first three terms are usually referred as approximation terms and the last
two are the pollution terms. Notice, that there is no pollution of the pressure term
in our estimates.

By a covering argument we will reduce the above result to the case 𝐴𝑠 = 𝐵𝑠 ∩Ω
for 𝑠 > 0, where 𝐵𝑠 = 𝐵𝑠𝑑(𝑥0), is a ball of radius 𝑠𝑑 centered at 𝑥0 ∈ Ω. In the
following analysis we will always assume 𝑑 ≥ 𝜅ℎ, for some 𝜅 sufficiently large to
allow several mesh layers. Before proving Theorem 2, first we establish the following
lemma.

Lemma 3.1. Assume that there exists a ball 𝐵 ⊂ 𝐴1, such that diam(𝐴1) ≤ 𝑑 <
𝜌 diam(𝐵), where 𝜌 is a fixed constant that only depends on Ω. Then, there exists
a constant 𝐶 independent of 𝐴1, 𝐴2, 𝑑, and ℎ such that for any 0 < 𝜀 < 1,

‖∇(𝑣⃗ − 𝑣⃗ℎ)‖𝐿2(𝐴1) ≤𝐶(‖∇(𝑣⃗ −P𝑣⃗)‖𝐿2(𝐴2) + ‖𝑞 −R𝑞‖𝐿2(𝐴2) +
𝐶

𝜀𝑑
‖𝑣⃗ −P𝑣⃗‖𝐿2(𝐴2))

+ 𝜀‖∇(𝑣⃗ − 𝑣⃗ℎ)‖𝐿2(𝐴2) +
𝐶

𝜀𝑑
‖𝑣⃗ − 𝑣⃗ℎ‖𝐿2(𝐴2).

Proof. Let 𝜔 ∈ 𝐶∞0 (𝐴3/2), be the cut-off function from Assumption 4 such that
𝜔 ≡ 1 on 𝐴1. Using the product rule

‖∇(𝑣⃗ − 𝑣⃗ℎ)‖2𝐿2(𝐴1)
≤ ‖𝜔∇(𝑣⃗ − 𝑣⃗ℎ)‖2𝐿2(Ω) = (∇(𝑣⃗ − 𝑣⃗ℎ), 𝜔2∇(𝑣⃗ − 𝑣⃗ℎ))

(3.4)

= (∇(𝑣⃗ − 𝑣⃗ℎ),∇(𝜔2(𝑣⃗ − 𝑣⃗ℎ)))− (∇(𝑣⃗ − 𝑣⃗ℎ),∇(𝜔2)⊗ (𝑣⃗ − 𝑣⃗ℎ)),

where 𝑢⃗⊗ 𝑣⃗ denotes a matrix with components 𝑢𝑖𝑣𝑗 for 𝑖, 𝑗 = 1, 2, 3.
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By the Cauchy-Schwarz inequality and the property (2.6a), we get

−(∇(𝑣⃗ − 𝑣⃗ℎ),∇(𝜔2)⊗ (𝑣⃗ − 𝑣⃗ℎ)) ≤ 𝐶

𝑑
‖𝜔∇(𝑣⃗ − 𝑣⃗ℎ)‖𝐿2(Ω)‖𝑣⃗ − 𝑣⃗ℎ‖𝐿2(𝐴3/2).

By the arithmetic-geometric mean inequality and (3.4), we obtain

(3.5)
1
2
‖𝜔∇(𝑣⃗ − 𝑣⃗ℎ)‖2𝐿2(Ω) ≤ (∇(𝑣⃗ − 𝑣⃗ℎ),∇(𝜔2(𝑣⃗ − 𝑣⃗ℎ))) +

𝐶

𝑑2
‖𝑣⃗ − 𝑣⃗ℎ‖2𝐿2(𝐴3/2)

.

Adding and subtracting P𝑣⃗ we obtain,

(∇(𝑣⃗ − 𝑣⃗ℎ),∇(𝜔2(𝑣⃗ − 𝑣⃗ℎ))) =(∇(𝑣⃗ − 𝑣⃗ℎ),∇(𝜔2(P𝑣⃗ − 𝑣⃗ℎ)))

+ (∇(𝑣⃗ − 𝑣⃗ℎ),∇(𝜔2(𝑣⃗ −P𝑣⃗))).

The second term on the right hand side can be estimated as follows

(∇(𝑣⃗ − 𝑣⃗ℎ),∇(𝜔2(𝑣⃗ −P𝑣⃗))) ≤ 𝐶‖𝜔∇(𝑣⃗ − 𝑣⃗ℎ)‖𝐿2(Ω)(‖∇(𝑣⃗ −P𝑣⃗)‖𝐿2(𝐴3/2)

+
1
𝑑
‖𝑣⃗ −P𝑣⃗‖𝐿2(𝐴3/2)),

where we used (2.6a). Therefore by (3.5),

1
4
‖𝜔∇(𝑣⃗ − 𝑣⃗ℎ)‖2𝐿2(Ω) ≤ (∇(𝑣⃗ − 𝑣⃗ℎ),∇(𝜔2(P𝑣⃗ − 𝑣⃗ℎ))) + 𝐶‖∇(𝑣⃗ −P𝑣⃗)‖2𝐿2(𝐴3/2)

(3.6)

+
𝐶

𝑑2
‖𝑣⃗ −P𝑣⃗‖2𝐿2(𝐴3/2)

+
𝐶

𝑑2
‖𝑣⃗ − 𝑣⃗ℎ‖2𝐿2(𝐴3/2)

.

Put

(3.7) Ψ⃗ := 𝜔2(P𝑣⃗ − 𝑣⃗ℎ).

Adding and subtracting ∇PΨ⃗, we have

(∇(𝑣⃗ − 𝑣⃗ℎ),∇(𝜔2(P𝑣⃗ − 𝑣⃗ℎ))) = (∇(𝑣⃗ − 𝑣⃗ℎ),∇Ψ⃗)

=(∇(𝑣⃗ − 𝑣⃗ℎ),∇PΨ⃗) + (∇(𝑣⃗ − 𝑣⃗ℎ),∇(Ψ⃗−PΨ⃗)) := 𝐼1 + 𝐼2.

Hence in view of (3.6),

1
4
‖𝜔∇(𝑣⃗ − 𝑣⃗ℎ)‖2𝐿2(Ω) ≤ 𝐼1 + 𝐼2 + 𝐶‖∇(𝑣⃗ −P𝑣⃗)‖2𝐿2(𝐴3/2)

+
𝐶

𝑑2
‖𝑣⃗ −P𝑣⃗‖2𝐿2(𝐴3/2)

+
𝐶

𝑑2
‖𝑣⃗ − 𝑣⃗ℎ‖2𝐿2(𝐴3/2)

.

To estimate 𝐼2 we apply the Cauchy-Schwarz inequality and the superapproximation
Assumption 4, and the arithmetic-geometric mean inequality to obtain,

𝐼2 ≤‖∇(𝑣⃗ − 𝑣⃗ℎ)‖𝐿2(𝐴3/2)‖∇(Ψ⃗−PΨ⃗)‖𝐿2(𝐴3/2)

≤‖∇(𝑣⃗ − 𝑣⃗ℎ)‖𝐿2(𝐴3/2)
𝐶

𝑑
‖P𝑣⃗ − 𝑣⃗ℎ‖𝐿2(𝐴2)

≤𝜀‖∇(𝑣⃗ − 𝑣⃗ℎ)‖2𝐿2(𝐴3/2)
+

𝐶

𝜀𝑑2
(‖P𝑣⃗ − 𝑣⃗‖2𝐿2(𝐴2)

+ ‖𝑣⃗ − 𝑣⃗ℎ‖2𝐿2(𝐴2)
),

for any 0 < 𝜀 < 1. To estimate 𝐼1 we use (3.3a), then add and subtract ∇ · Ψ⃗ and
use the property of P from Assumption 2, to obtain

𝐼1 = −(𝑞 − 𝑞ℎ,∇ ·PΨ⃗) = −(𝑞 − 𝑞ℎ,∇ · Ψ⃗)− (𝑞 −R𝑞,∇ · (PΨ⃗− Ψ⃗)) := 𝐼3 + 𝐼4.
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Next we estimate 𝐼4. Similar to the estimate for 𝐼2 we use the superapproximation
property (2.6b) and the arithmetic-geometric mean inequality to obtain,

𝐼4 ≤‖𝑞 −R𝑞‖𝐿2(𝐴3/2)‖∇ · (PΨ⃗− Ψ⃗)‖𝐿2(𝐴3/2)

≤‖𝑞 −R𝑞‖𝐿2(𝐴3/2)
𝐶

𝑑
‖P𝑣 − 𝑣ℎ‖𝐿2(𝐴2)

≤‖𝑞 −R𝑞‖2𝐿2(𝐴3/2)
+
𝐶

𝑑2

(︁
‖𝑣⃗ − 𝑣⃗ℎ‖2𝐿2(𝐴2)

+ ‖𝑣⃗ −P𝑣⃗‖2𝐿2(𝐴2)

)︁
.

Hence, combining these estimates we have
1
4
‖𝜔∇(𝑣⃗ − 𝑣⃗ℎ)‖2𝐿2(Ω) ≤ 𝐼3 + 𝜀‖∇(𝑣⃗ − 𝑣⃗ℎ)‖2𝐿2(𝐴3/2)

+ ‖𝑞 −R𝑞‖2𝐿2(𝐴3/2)

+ 𝐶‖∇(𝑣⃗ −P𝑣⃗)‖2𝐿2(𝐴2)
+

𝐶

𝜀𝑑2
‖𝑣⃗ −P𝑣⃗‖2𝐿2(𝐴2)

+
𝐶

𝜀𝑑2
‖𝑣⃗ − 𝑣⃗ℎ‖2𝐿2(𝐴2)

.

It remains to estimate 𝐼3. Adding and subtracting R𝑞, we have

𝐼3 = −(𝑞 − 𝑞ℎ,∇ · Ψ⃗) = −(R𝑞 − 𝑞ℎ,∇ · Ψ⃗)− (𝑞 −R𝑞,∇ · Ψ⃗) := 𝐼5 + 𝐼6.

We can estimate 𝐼6 by using the Cauchy-Schwarz inequality, property (2.6a), and
the arithmetic-geometric mean and triangle inequalities to obtain,

𝐼6 ≤𝐶‖𝑞 −R𝑞‖2𝐿2(𝐴3/2)
+

1
8
‖𝜔∇(𝑣⃗ − 𝑣⃗ℎ)‖2𝐿2(𝐴3/2)

+ 𝐶‖∇(𝑣⃗ −P𝑣⃗)‖2𝐿2(𝐴3/2)
+
𝐶

𝑑2
‖𝑣⃗ −P𝑣⃗‖2𝐿2(𝐴3/2)

+
𝐶

𝑑2
‖𝑣⃗ − 𝑣⃗ℎ‖2𝐿2(𝐴3/2)

,

and hence,
1
8
‖𝜔∇(𝑣⃗ − 𝑣⃗ℎ)‖2𝐿2(Ω) ≤ 𝐼5 + 𝜀‖∇(𝑣⃗ − 𝑣⃗ℎ)‖2𝐿2(𝐴3/2)

+ ‖𝑞 −R𝑞‖2𝐿2(𝐴3/2)

+ 𝐶‖∇(𝑣⃗ −P𝑣⃗)‖2𝐿2(𝐴2)
+

𝐶

𝜀𝑑2
‖𝑣⃗ −P𝑣⃗‖2𝐿2(𝐴2)

+
𝐶

𝜀𝑑2
‖𝑣⃗ − 𝑣⃗ℎ‖2𝐿2(𝐴2)

.

To estimate 𝐼5 we note that Ψ⃗ vanishes on the boundary and as a result

(𝑐,∇ · Ψ⃗) = 0.

for any constant 𝑐. Hence, for an arbitrary constant 𝑐 we have

𝐼5 =− (R𝑞 − 𝑞ℎ − 𝑐,∇ · Ψ⃗) = −(R𝑞 − 𝑞ℎ − 𝑐,∇ · 𝜔2(P𝑣⃗ − 𝑣⃗ℎ))

=− (R𝑞 − 𝑞ℎ − 𝑐, (∇𝜔2) · (P𝑣⃗ − 𝑣⃗ℎ))− (R𝑞 − 𝑞ℎ − 𝑐, 𝜔2∇ · (P𝑣⃗ − 𝑣⃗ℎ)).

Setting
𝜓 := R𝑞 − 𝑞ℎ − 𝑐

and using that (∇ · (P𝑣⃗ − 𝑣⃗ℎ), 𝜒) = 0 for any 𝜒 ∈ 𝑀ℎ, which follows from (3.3b)
and (2.4), we have

𝐼5 = −(𝜓, (∇𝜔2) · (P𝑣⃗ − 𝑣⃗ℎ))− (𝜔2𝜓,∇ · (P𝑣⃗ − 𝑣⃗ℎ))

= −(𝜓, (∇𝜔2) · (P𝑣⃗ − 𝑣⃗ℎ))− (𝜔2𝜓 −R(𝜔2𝜓),∇ · (P𝑣⃗ − 𝑣⃗ℎ)).

Using the superapproximation estimate (2.6c) and the inverse estimate (2.7a) we
can bound the second term as follows

(𝜔2𝜓 −R(𝜔2𝜓),∇ · (P𝑣⃗ − 𝑣⃗ℎ)) ≤ 𝐶ℎ

𝑑
‖𝜓‖𝐿2(𝐴3/2)‖∇(P𝑣⃗ − 𝑣⃗ℎ)‖𝐿2(𝐴3/2)

≤ 𝐶

𝑑
‖𝜓‖𝐿2(𝐴3/2)‖P𝑣⃗ − 𝑣⃗ℎ‖𝐿2(𝐴2).
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The first term is also bounded by the right hand side above and a result

𝐼5 ≤
𝐶

𝑑
‖𝜓‖𝐿2(𝐴3/2)‖P𝑣⃗ − 𝑣⃗ℎ‖𝐿2(𝐴2)

≤ 𝜀‖𝜓‖2𝐿2(𝐴2)
+

𝐶

𝜀𝑑2

(︁
‖P𝑣⃗ − 𝑣⃗‖2𝐿2(𝐴2)

+ ‖𝑣⃗ − 𝑣⃗ℎ‖2𝐿2(𝐴2)

)︁
.

Combining, we get
1
8
‖𝜔∇(𝑣⃗ − 𝑣⃗ℎ)‖2𝐿2(Ω) ≤𝜀‖𝜓‖

2
𝐿2(𝐴3/2)

+ 𝜀‖∇(𝑣⃗ − 𝑣⃗ℎ)‖2𝐿2(𝐴2)

+ 𝐶‖𝑞 −R𝑞‖2𝐿2(𝐴2)
+ 𝐶‖∇(𝑣⃗ −P𝑣⃗)‖2𝐿2(𝐴2)

+
𝐶

𝜀𝑑2
‖𝑣⃗ −P𝑣⃗‖2𝐿2(𝐴2)

+
𝐶

𝜀𝑑2
‖𝑣⃗ − 𝑣⃗ℎ‖2𝐿2(𝐴2)

.

We choose constant 𝑐 such that 𝜓 has zero mean on 𝐴3/2. To estimate ‖𝜓‖𝐿2(𝐴3/2)

we require the following lemma.

Lemma 3.2. Assume the hypothesis of Lemma 3.1 hold. Suppose the constant 𝑐
is such that 𝜓 = R𝑞− 𝑞ℎ − 𝑐 has mean zero on 𝐴3/2. Then, there exists a constant
𝐶 independent of 𝐴3/2 and 𝜓, but that depends on 𝜌 (see Lemma 3.1) such that

‖𝜓‖𝐿2(𝐴3/2) ≤ 𝐶(‖∇(𝑣⃗ − 𝑣⃗ℎ)‖𝐿2(𝐴2) + ‖𝑞 −R𝑞‖𝐿2(𝐴2)).

We postpone the proof of this result until the end of this section and finish the
proof of Lemma 3.1. Using the above lemma we obtain,

1
8
‖𝜔∇(𝑣⃗ − 𝑣⃗ℎ)‖2𝐿2(Ω) ≤ 𝐶 𝜀 ‖∇(𝑣⃗ − 𝑣⃗ℎ)‖2𝐿2(𝐴2)

+ 𝐶‖𝑞 −R𝑞‖2𝐿2(𝐴2)

+ 𝐶‖∇(𝑣⃗ −P𝑣⃗)‖2𝐿2(𝐴2)
+

𝐶

𝜀𝑑2
‖𝑣⃗ −P𝑣⃗‖2𝐿2(𝐴2)

+
𝐶

𝜀𝑑2
‖𝑣⃗ − 𝑣⃗ℎ‖2𝐿2(𝐴2)

.

This completes the proof after re-defining 𝜀. �

3.1. Proof of Lemma 3.2.

Proof. Define 𝑤⃗ ∈ 𝐻1
0 (𝐴3/2) by

∇ · 𝑤⃗ = 𝜓 in 𝐴3/2

𝑤⃗ = 0 on 𝜕𝐴3/2.

We can choose 𝑤⃗ so that the following bound exists

‖𝑤⃗‖𝐻1(𝐴3/2) ≤ 𝐶‖𝜓‖𝐿2(𝐴3/2).

By Lemma 3.1 of Chapter III.3 in [11], the constant 𝐶 is independent of 𝜓 and
depends only on the ratio of the diameter 𝐴3/2 and the radius of the largest ball
that can be inscribed into 𝐴3/2 and hence by our hypothesis only depends on 𝜌.
Let us extend 𝑤⃗ on all of Ω by zero outside of 𝐴3/2. We note then that this implies
that P𝑤⃗ vanishes outside of 𝐴2 by (2.5a).

We have,

‖𝜓‖2𝐿2(𝐴3/2)
=(𝜓,𝜓)𝐴3/2 = (𝜓,∇ · 𝑤⃗)𝐴3/2 = (𝜓,∇ · 𝑤⃗)

=(R𝑞 − 𝑞ℎ − 𝑐,∇ · 𝑤⃗)

=(R𝑞 − 𝑞ℎ,∇ · 𝑤⃗)

=(𝑞 − 𝑞ℎ,∇ · 𝑤⃗) + (R𝑞 − 𝑞,∇ · 𝑤⃗).
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Using (3.3a), (2.4), the Cauchy-Schwarz inequality and the stability of P, we have

(𝑞 − 𝑞ℎ,∇ · 𝑤⃗) = (𝑞 − 𝑞ℎ,∇ ·P𝑤⃗) + (𝑞 − 𝑞ℎ,∇ · (𝑤⃗ −P𝑤⃗))

= (∇(𝑣⃗ − 𝑣⃗ℎ),∇P𝑤⃗) + (𝑞 −R𝑞,∇ · (𝑤⃗ −P𝑤⃗))

≤ ‖∇(𝑣⃗ − 𝑣⃗ℎ)‖𝐿2(𝐴2)‖∇P𝑤⃗‖𝐿2(𝐴2) + ‖𝑞 −R𝑞‖𝐿2(𝐴2)‖∇ · (𝑤⃗ −P𝑤⃗)‖𝐿2(𝐴2)

≤ 𝐶(‖∇(𝑣⃗ − 𝑣⃗ℎ)‖𝐿2(𝐴2) + ‖𝑞 −R𝑞‖𝐿2(𝐴2))‖𝑤⃗‖𝐻1(𝐴3/2),

Hence, we get

‖𝜓‖2𝐿2(𝐴3/2)
≤𝐶(‖∇(𝑣⃗ − 𝑣⃗ℎ)‖𝐿2(𝐴2) + ‖R𝑞 − 𝑞‖𝐿2(𝐴2))‖𝑤⃗‖𝐻1(𝐴3/2)

≤𝐶(‖∇(𝑣⃗ − 𝑣⃗ℎ)‖𝐿2(𝐴2) + ‖R𝑞 − 𝑞‖𝐿2(𝐴2))‖𝜓‖𝐿2(𝐴3/2).

Therefore, dividing both sides by ‖𝜓‖𝐿2(𝐴3/2) we obtain the lemma. �

3.2. Proof of Theorem 2.

Proof. Let 𝐴1 ⊂ 𝐴2 ⊂ Ω, be such that 𝑑𝑖𝑠𝑡(𝐴1, 𝜕𝐴2∖𝜕Ω) ≥ 𝑑 ≥ 𝜅ℎ. It is not
difficult to construct a covering {𝐺𝑖}𝑀

𝑖=1 of 𝐴1, where 𝐺𝑖 = 𝐵 𝑑
2
(𝑥𝑖) ∩ Ω with the

following properties.
(1) 𝐴1 ⊂ ∪𝑀

𝑖=1𝐺𝑖.
(2) 𝑥𝑖 ∈ 𝐴1 for each 1 ≤ 𝑖 ≤𝑀 .
(3) Let 𝐻𝑖 = 𝐵𝑑(𝑥𝑖) ∩ Ω. There exists a fixed number 𝐿 such that each point

𝑥 ∈ ∪𝑀
𝑖=1𝐻𝑖 is contained in at most 𝐿 sets from {𝐻𝑗}𝑀

𝑗=1.
(4) There exists a 𝜌 > 0 such that for each 1 ≤ 𝑖 ≤ 𝑀 there exists a ball

𝐵 ⊂ 𝐺𝑖 such that diam(𝐺𝑖) ≤ 𝜌 diam(𝐵).
Since 𝑑𝑖𝑠𝑡(𝐴1, 𝜕𝐴2∖𝜕Ω) ≥ 𝑑, using (2) we have that ∪𝑀

𝑖=1𝐻𝑖 ⊂ 𝐴2.
Applying Lemma 3.1 and using (1) and (4) we have

‖∇(𝑣⃗ − 𝑣⃗ℎ)‖2𝐿2(𝐴1)
≤

𝑀∑︁
𝑖=1

‖∇(𝑣⃗ − 𝑣⃗ℎ)‖2𝐿2(𝐺𝑖)

≤
𝑀∑︁
𝑖=1

𝐶
(︀
‖∇(𝑣⃗ −P𝑣⃗)‖2𝐿2(𝐻𝑖)

+ ‖𝑞 −R𝑞‖2𝐿2(𝐻𝑖)
+ (

1
𝜀𝑑

)2‖𝑣⃗ −P𝑣⃗‖2𝐿2(𝐻𝑖)

+ (
1
𝜀𝑑

)2‖𝑣⃗ − 𝑣⃗ℎ‖2𝐿2(𝐻𝑖)

)︀
+ 𝜀2‖∇(𝑣⃗ − 𝑣⃗ℎ)‖2𝐿2(𝐻𝑖)

.

Using (3) we have

‖∇(𝑣⃗ − 𝑣⃗ℎ)‖2𝐿2(𝐴1)
≤ 𝐶𝐿

(︀
‖∇(𝑣⃗ −P𝑣⃗)‖2𝐿2(𝐴2)

+ ‖𝑞 −R𝑞‖2𝐿2(𝐴2)

+ (
1
𝜀𝑑

)2‖𝑣⃗ −P𝑣⃗‖2𝐿2(𝐴2)
+ (

1
𝜀𝑑

)2‖𝑣⃗ − 𝑣⃗ℎ‖2𝐿2(𝐴2)

)︀
+ 𝐿𝜀2‖∇(𝑣⃗ − 𝑣⃗ℎ)‖2𝐿2(𝐴2)

.

This completes the proof after redefining 𝜀. �

4. Maximum modulus estimates for the Green’s matrix on polyhedral
type domains

The second important ingredient of our proof is the sharp pointwise Green’s
matrix estimates for the continuous problem, which we will introduce next.

Let 𝜑(𝑥) be an infinitely differentiable function in Ω which vanishes in a neigh-
borhood of the edges such that

(4.1)
∫︁

Ω

𝜑(𝑥)𝑑𝑥 = 1.
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The matrix

(4.2) 𝐺(𝑥, 𝜉) =
(︀
𝐺𝑖,𝑗(𝑥, 𝜉)

)︀4

𝑖,𝑗=1
,

is called Green’s matrix for the problem (4.5) if the vector functions

𝐺⃗𝑗 = (𝐺1,𝑗 , 𝐺2,𝑗 , 𝐺3,𝑗)𝑇

and the functions 𝐺4,𝑗 for 𝑗 = 1, 2, 3, 4 are solutions of the problem

−∆𝑥𝐺⃗𝑗(𝑥, 𝜉) +∇𝑥𝐺4,𝑗(𝑥, 𝜉) =𝛿(𝑥− 𝜉)(𝛿1,𝑗 , 𝛿2,𝑗 , 𝛿3,𝑗)𝑇 , for 𝑥, 𝜉 ∈ Ω,
(4.3a)

−∇𝑥 · 𝐺⃗𝑗(𝑥, 𝜉) =(𝛿(𝑥− 𝜉)− 𝜑(𝑥))𝛿4,𝑗 , for 𝑥, 𝜉 ∈ Ω,(4.3b)

𝐺⃗𝑗(𝑥, 𝜉) =0⃗, for 𝑥 ∈ 𝜕Ω, 𝜉 ∈ Ω(4.3c)

and 𝐺4,𝑗 satisfies the condition

(4.4)
∫︁

Ω

𝐺4,𝑗(𝑥, 𝜉)𝜑(𝑥)𝑑𝑥 = 0, for 𝜉 ∈ Ω, 𝑗 = 1, 2, 3, 4.

Here, 𝛿(𝑥) is the delta function, and 𝛿𝑖,𝑗 is the Kronecker delta symbol. In addition,

𝐺𝑖,𝑗(𝑥, 𝜉) = 𝐺𝑗,𝑖(𝜉, 𝑥) for 𝑥, 𝜉 ∈ Ω, 𝑖, 𝑗 = 1, 2, 3, 4.

The following theorem, (cf. [23, 24] and [20, Thm. 4.5]) give us the existence and
uniqueness of such matrix.

Theorem 3. There exists a uniquely determined Green’s matrix 𝐺(𝑥, 𝜉) such that
the vector functions

𝑥→ 𝜁(𝑥, 𝜉)
(︀
𝐺⃗𝑗(𝑥, 𝜉), 𝐺4,𝑗(𝑥, 𝜉)

)︀
belong to the space 𝐻1

0 (Ω)3 × 𝐿2(Ω) for each 𝜉 ∈ Ω and for every infinitely differ-
entiable function 𝜁(·, 𝜉) equal to zero in a neighborhood of the point 𝑥 = 𝜉.

We will also need to consider the Stokes problem with non-zero divergence. Let
(𝑢⃗, 𝑝) ∈ 𝐻1

0 (Ω)× 𝐿2
𝜑(Ω) solve

−∆𝑢⃗+∇𝑝 = 𝑓 in Ω,

−∇ · 𝑢⃗ = 𝑞 in Ω,

𝑢⃗ = 0⃗ on 𝜕Ω,

(4.5)

for arbitrary 𝑓 ∈ 𝐻−1(Ω)3 and 𝑞 ∈ 𝐿2
0(Ω) with 𝑞 vanishing on the singular points

of Ω; see [4]. If 𝑞 ∈ 𝐻1(Ω)∩𝐿2
0(Ω) and vanishes on the edges of Ω and 𝑓 ∈ 𝐿2(Ω)3

we have the following elliptic regularity result [4, 21],

(4.6) ‖𝑢⃗‖𝐻2(Ω) + ‖𝑝‖𝐻1(Ω) ≤ 𝐶(‖𝑓‖𝐿2(Ω) + ‖𝑞‖𝐻1(Ω)).

Furthermore, the components of (𝑢⃗, 𝑝) admit the following representation (cf. [29])
in terms of the Green’s matrix

𝑢𝑖(𝑥) =
3∑︁

𝑗=1

∫︁
Ω

𝐺𝑖,𝑗(𝑥, 𝜉)𝑓𝑗(𝜉) 𝑑𝜉 +
∫︁

Ω

𝐺𝑖,4(𝑥, 𝜉)𝑞(𝜉) 𝑑𝜉, 𝑖 = 1, 2, 3,(4.7a)

𝑝(𝑥) =
3∑︁

𝑗=1

∫︁
Ω

𝐺4,𝑗(𝑥, 𝜉)𝑓𝑗(𝜉) 𝑑𝜉 +
∫︁

Ω

𝐺4,4(𝑥, 𝜉)𝑞(𝜉) 𝑑𝜉.(4.7b)
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Next we state maximum modulus estimates for the Green’s function in polyhedral
domains. The first estimate was established in papers of [20, 23, 24] (see also [22,
Sec. 11.5]). The second sharper estimate was established recently in [28].

Theorem 4. Let Ω ⊂ R3 be a convex domain of polyhedral type. Then there exists
a constant 𝐶 such that
(4.8a)⃒⃒
𝜕𝛼

𝑥 𝜕
𝛽
𝜉 𝐺𝑖,𝑗(𝑥, 𝜉)

⃒⃒
≤ 𝐶|𝑥− 𝜉|−1−|𝛼|−|𝛽|−𝛿𝑖,4−𝛿𝑗,4 , for |𝛼| ≤ 1− 𝛿𝑖,4, |𝛽| ≤ 1− 𝛿𝑗,4,

for 𝑥, 𝜉 ∈ Ω, 𝑥 ̸= 𝜉, and multi-indices 0 ≤ |𝛼|, |𝛽| ≤ 1.
Moreover, for polyhedral domain the Green’s matrix satisfy Hölder type estimate,

|𝜕𝛼
𝑥 𝜕

𝛽
𝜉 𝐺𝑖,𝑗(𝑥, 𝜉)− 𝜕𝛼

𝑦 𝜕
𝛽
𝜉 𝐺𝑖,𝑗(𝑦, 𝜉)|

|𝑥− 𝑦|𝜎
≤ 𝐶

(︀
|𝑥− 𝜉|−1−𝜎−𝛿𝑗,4−𝛿𝑖,4−|𝛽|−|𝛼|(4.8b)

+ |𝑦 − 𝜉|−1−𝜎−𝛿𝑗,4−𝛿𝑖,4−|𝛽|−|𝛼|
)︀
,

for |𝛼| ≤ 1− 𝛿𝑖,4 and |𝛽| ≤ 1− 𝛿𝑗,4. Here 𝜎 is a sufficiently small positive number
which depends on the geometry of the domain.

Here and in the rest of the paper we adopt the standard multi-index notation.
Thus, for a multi-index 𝛼 = (𝛼1, 𝛼2, 𝛼3), we denote |𝛼| = 𝛼1 + 𝛼2 + 𝛼3 and 𝜕𝛼

𝑥 =
𝜕|𝛼|

𝜕𝑥
𝛼1
1 𝜕𝑥

𝛼2
2 𝜕𝑥

𝛼3
3

.

5. Proof of the main result.

For the technical reasons we split the proof of our main result, Theorem 1, into
two parts: stability of the gradient of the velocity and the stability of the pressure.
First we will deal with the velocity.

5.1. Part 1, Velocity. Let 𝑧 be an arbitrary point of Ω and let 𝑇𝑧 ∈ 𝒯ℎ contain
𝑧. We will estimate |𝜕𝑥𝑗 (𝑢⃗ℎ)𝑖(𝑧)|, where 1 ≤ 𝑖, 𝑗 ≤ 3 are arbitrary. The idea of the
proof is to represent the discrete solution in terms of the smooth Green’s function.
Then after some manipulations the problem is reduced to estimating the error of
the Green’s function in 𝐿1(Ω) norm. To start we define a smooth delta function.
Let 𝛿𝑧

ℎ(𝑥) = 𝛿ℎ ∈ 𝐶1
0 (𝑇𝑧) be a smooth function such that

(5.1) 𝑟(𝑧) = (𝑟, 𝛿ℎ)𝑇𝑧 , ∀𝑟 ∈ 𝑃 𝑙(𝑇𝑧),

where 𝑃 𝑙(𝑇𝑧) is the space of polynomials of degree at most 𝑙 defined on 𝑇𝑧, with
the properties

(5.2) ‖𝛿ℎ‖𝑊 𝑘
𝑞 (𝑇𝑧) ≤ 𝐶ℎ−𝑘−3(1−1/𝑞), 1 ≤ 𝑞 ≤ ∞, 𝑘 = 0, 1.

Thus in particular ‖𝛿ℎ‖𝐿1(𝑇𝑧) ≤ 𝐶 and ‖𝛿ℎ‖𝐿2(𝑇𝑧) ≤ 𝐶ℎ−3/2. The explicit con-
struction of a such function is given in [33, Appendix].

Next, we define the approximate Green’s function (𝑔⃗, 𝜆) ∈ 𝐻1
0 (Ω)3 × 𝐿2

𝜑(Ω) to
be the solution of the following equation,

−△𝑔⃗ +∇𝜆 = (𝜕𝑥𝑗
𝛿ℎ)𝑒𝑖 in Ω,(5.3a)

∇ · 𝑔⃗ = 0 in Ω,(5.3b)

𝑔⃗ = 0⃗ on 𝜕Ω.(5.3c)

Here 𝑒𝑖 is the 𝑖-th standard basis vector in R3 and will be fixed throughout the
paper. Again, 𝜆 is unique up to a constant.



MAXIMUM NORM ESTIMATES FOR THE STOKES 13

In the course of the proof we will need to estimate 𝑔⃗ and 𝜆 in certain Hölder
norms on subdomains away from the singular point 𝑧.

Lemma 5.1. Let 𝐷 ⊂ Ω be such that 𝑑𝑖𝑠𝑡(𝐷, 𝑧) ≥ 𝑑 ≥ 2ℎ. Then there exists a
constant 𝐶 independent of 𝑑 and 𝐷 such that

‖𝑔⃗‖𝐶1+𝜎(𝐷) + ‖𝜆‖𝐶𝜎(𝐷) ≤ 𝐶𝑑−3−𝜎.

Proof. Using the Green’s function representation (4.7a) with 𝑞 = 0 and recalling
that index 𝑖 in the definition of regularized Green’s function (𝑔⃗, 𝜆) in (5.3) is fixed,
we have,

𝜕𝑥𝑔𝑘(𝑥)− 𝜕𝑦𝑔𝑘(𝑦) =
∫︁

Ω

(𝜕𝑥𝐺𝑘,𝑖(𝑥, 𝜉)− 𝜕𝑦𝐺𝑘,𝑖(𝑦, 𝜉))𝜕𝜉(𝛿ℎ(𝜉)) 𝑑𝜉

= −
∫︁

𝑇𝑧

(𝜕𝜉𝜕𝑥𝐺𝑘,𝑖(𝑥, 𝜉)− 𝜕𝜉𝜕𝑦𝐺𝑘,𝑖(𝑦, 𝜉))𝛿ℎ(𝜉) 𝑑𝜉, 𝑘 = 1, 2, 3.

Let 𝑥, 𝑦 ∈ 𝐷, 𝑥 ̸= 𝑦, then using that 1 ≤ 𝑖 ≤ 3 by (4.8b),

|𝜕𝑥𝑔𝑘(𝑥)− 𝜕𝑦𝑔𝑘(𝑦)|
|𝑥− 𝑦|𝜎

≤ max
𝜉∈𝑇𝑧

|𝜕𝜉𝜕𝑥𝐺𝑘,𝑖(𝑥, 𝜉)− 𝜕𝜉𝜕𝑦𝐺𝑘,𝑖(𝑦, 𝜉)|
|𝑥− 𝑦|𝜎

‖𝛿ℎ‖𝐿1(𝑇𝑧)

≤ 𝐶 max
𝜉∈𝑇𝑧

(|𝑥− 𝜉|−3−𝜎 + |𝑦 − 𝜉|−3−𝜎) ≤ 𝐶𝑑−3−𝜎, 𝑘 = 1, 2, 3.

In the last inequality we used that for any 𝜉 ∈ 𝑇𝑧, |𝑥 − 𝜉|, |𝑦 − 𝜉| ≥ /.2, and
‖𝛿ℎ‖𝐿1(𝑇𝑧) ≤ 𝐶. Therefore, taking the supremum over 𝑘 we can conclude,

sup
𝑥,𝑦∈𝐷

|∇𝑔⃗(𝑥)−∇𝑔⃗(𝑦)|
|𝑥− 𝑦|𝜎

≤ 𝐶𝑑−3−𝜎.

The proof for ‖𝜆‖𝐶𝜎(𝐷) is very similar. �

Let (𝑔⃗ℎ, 𝜆ℎ) ∈ 𝑉⃗ℎ ×𝑀ℎ be the corresponding finite element solution, i.e. the
unique solution that satisfies

(∇𝑔⃗ℎ,∇𝜒⃗) + (∇𝜆ℎ, 𝜒⃗) = (∇𝑔⃗,∇𝜒⃗) + (∇𝜆, 𝜒⃗), ∀𝜒⃗ ∈ 𝑉⃗ℎ,(5.4a)

(∇ · 𝑔⃗ℎ, 𝑤) = 0, ∀𝑤 ∈𝑀ℎ,(5.4b)

and 𝜆ℎ ∈ 𝐿2
𝜑(Ω).

We have,

−𝜕𝑥𝑗
(𝑢⃗ℎ)𝑖(𝑧) = (𝑢⃗ℎ, (𝜕𝑥𝑗

𝛿ℎ)𝑒𝑖) (by (5.1))

= (𝑢⃗ℎ,−∆𝑔⃗ +∇𝜆) (by (5.3a))

= (∇𝑢⃗ℎ,∇𝑔⃗) + (𝑢⃗ℎ,∇𝜆) ( integration by parts)

= (∇𝑢⃗ℎ,∇𝑔⃗) + (𝑢⃗ℎ,∇𝜆ℎ) + (∇𝑢⃗ℎ,∇(𝑔⃗ℎ − 𝑔⃗)) (by (5.4a))

= (∇𝑢⃗ℎ,∇𝑔⃗ℎ) (by (5.4b))

= (∇𝑢⃗,∇𝑔⃗ℎ) + (∇(𝑝− 𝑝ℎ), 𝑔⃗ℎ) (by (2.1))

= (∇𝑢⃗,∇𝑔⃗ℎ) + (∇𝑝, 𝑔⃗ℎ) (by (5.4b))

= (∇𝑢⃗,∇(𝑔⃗ℎ − 𝑔⃗)) + (∇𝑢⃗,∇𝑔⃗) + (∇𝑝, 𝑔⃗ℎ − 𝑔⃗) + (𝑢⃗,∇𝜆) (by (1.1b), (5.3b))

= (∇𝑢⃗,∇(𝑔⃗ℎ − 𝑔⃗)) + (𝑢⃗,−∆𝑔⃗ +∇𝜆) + (𝑔⃗ − 𝑔⃗ℎ,∇𝑝) (integration by parts)

= (∇𝑢⃗,∇(𝑔⃗ℎ − 𝑔⃗))− (
𝜕(𝑢⃗)𝑖

𝜕𝑥𝑗
, 𝛿ℎ)− (∇ · (𝑔⃗ − 𝑔⃗ℎ), 𝑝). (by (5.3a))
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Taking supremum over all partial derivatives and using that ‖𝛿ℎ‖𝐿1(Ω) ≤ 𝐶, we
obtain

‖∇𝑢⃗ℎ‖𝐿∞(Ω) ≤
(︀
‖∇𝑢⃗‖𝐿∞(Ω) + ‖𝑝‖𝐿∞(Ω)

)︀
(𝐶 + ‖∇(𝑔⃗ℎ − 𝑔⃗)‖𝐿1(Ω)).

Thus, we in order to show the stability for the velocity, we only need establish the
following result.

Lemma 5.2. There exists a constant 𝐶 independent of ℎ and 𝑔⃗ such that

‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿1(Ω) ≤ 𝐶.

Proof. The proof is based on the ideas developed in papers by Schatz and Wahlbin,
e.g. [31, 32, 33]. We will break it down into four steps.

Step 1: Dyadic decomposition Without loss of generality we assume that
the diameter of Ω is less than 1. Put 𝑑𝑗 = 2−𝑗 and consider a dyadic decomposition
of Ω,

(5.5a) Ω = Ω* ∪
𝐽⋃︁

𝑗=0

Ω𝑗 ,

where

Ω* = {𝑥 ∈ Ω : |𝑥− 𝑧| ≤ 𝐾ℎ},(5.5b)

Ω𝑗 = {𝑥 ∈ Ω : 𝑑𝑗+1 ≤ |𝑥− 𝑧| ≤ 𝑑𝑗},(5.5c)

where 𝐾 is a sufficiently large constant to be chosen later and 𝐽 is an integer such
that 2−(𝐽+1) ≤ 𝐾ℎ ≤ 2−𝐽 . In the analysis below the generic constants will be
denoted by 𝐶, but we will keep track on the explicit dependence of the constants
on 𝐾.

Using the dyadic decomposition and the Cauchy-Schwarz inequality, we have

‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿1(Ω) ≤ 𝐶𝐾3/2ℎ3/2‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿2(Ω*) + 𝐶

𝐽∑︁
𝑗=0

𝑑
3/2
𝑗 ‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿2(Ω𝑗).

We start with the first term on the right-hand side. Using the global a priori
error estimates Proposition 2.1, approximation properties of P and R (2.5d), (2.5a),
𝐻2- regularity (4.6), and (5.2), we have

ℎ3/2‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿2(Ω*) ≤ ℎ3/2‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿2(Ω)

≤ 𝐶ℎ3/2+1(‖𝑔⃗‖𝐻2(Ω) + ‖𝜆‖𝐻1(Ω))

≤ 𝐶ℎ5/2‖∇𝛿ℎ‖𝐿2(𝑇 ) ≤ 𝐶.

Thus, we have

(5.6) ‖∇(𝑔⃗− 𝑔⃗ℎ)‖𝐿1(Ω) ≤ 𝐶𝐾3/2 +
𝐽∑︁

𝑗=0

𝑀𝑗 , with 𝑀𝑗 := 𝑑
3/2
𝑗 ‖∇(𝑔⃗− 𝑔⃗ℎ)‖𝐿2(Ω𝑗).

Step 2: Initial Estimate for 𝑀𝑗. Define the following sets:

Ω′𝑗 = {𝑥 ∈ Ω : 𝑑𝑗+2 ≤ |𝑥− 𝑧| ≤ 𝑑𝑗−1},
Ω′′𝑗 = {𝑥 ∈ Ω : 𝑑𝑗+3 ≤ |𝑥− 𝑧| ≤ 𝑑𝑗−2},
Ω′′′𝑗 = {𝑥 ∈ Ω : 𝑑𝑗+4 ≤ |𝑥− 𝑧| ≤ 𝑑𝑗−3}.
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Notice that Theorem 2 holds for 𝐴1 = Ω𝑗 and 𝐴2 = Ω′𝑗 with 𝑑 = 𝑑𝑗 , 𝑗 = 1, 2, . . . , 𝐽 .
Thus, by the local energy estimate, Theorem 2, and any 0 < 𝜀 < 1,

‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿2(Ω𝑗) ≤𝐶(‖∇(𝑔⃗ −P𝑔⃗)‖𝐿2(Ω′𝑗)
+

1
𝜀𝑑𝑗

‖𝑔⃗ −P𝑔⃗‖𝐿2(Ω′𝑗)
+ ‖𝜆−R𝜆‖𝐿2(Ω′𝑗)

)

+ 𝜀‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿2(Ω′𝑗)
+

𝐶

𝜀𝑑𝑗
‖𝑔⃗ − 𝑔⃗ℎ‖𝐿2(Ω′𝑗)

.

First we will treat the first two terms on the right hand side. By the Cauchy-
Schwarz inequality and the approximation result (2.5b), we have,

‖∇(𝑔⃗ −P𝑔⃗)‖𝐿2(Ω′𝑗)
+ 𝑑−1

𝑗 𝜀−1‖𝑔⃗ −P𝑔⃗‖𝐿2(Ω′𝑗)

≤ 𝐶𝑑
3/2
𝑗

(︁
‖∇(𝑔⃗ −P𝑔⃗)‖𝐿∞(Ω′𝑗)

+ 𝑑−1
𝑗 𝜀−1‖𝑔⃗ −P𝑔⃗‖𝐿∞(Ω′𝑗)

)︁
≤ 𝐶𝑑

3/2
𝑗 ℎ𝜎(1 + ℎ𝑑−1

𝑗 𝜀−1)‖𝑔⃗‖𝐶1+𝜎(Ω′′𝑗 ).

Applying Lemma 5.1 with 𝐷 = Ω′′𝑗 , we obtain

(5.7) ‖𝑔⃗‖𝐶1+𝜎(Ω′′𝑗 ) ≤ 𝐶𝑑−3−𝜎
𝑗 .

Thus, we have shown that

‖∇(𝑔⃗ −P𝑔⃗)‖𝐿2(Ω′𝑗)
+ 𝑑−1

𝑗 𝜀−1‖𝑔⃗ −P𝑔⃗‖𝐿2(Ω′𝑗)
≤ 𝐶(1 + ℎ𝑑−1

𝑗 𝜀−1)𝑑−3/2−𝜎
𝑗 ℎ𝜎.

Similarly, using the Cauchy-Schwarz inequality and the approximation estimate
(2.5e), we have

‖𝜆−R𝜆‖𝐿2(Ω′𝑗)
≤ 𝐶𝑑

3/2
𝑗 ‖𝜆−R𝜆‖𝐿∞(Ω′𝑗)

≤ 𝐶𝑑
3/2
𝑗 ℎ𝜎‖𝜆‖𝐶𝜎(Ω′′𝑗 ).

Again applying Lemma 5.1 with 𝐷 = Ω′′𝑗 , we have

(5.8) ‖𝜆‖𝐶𝜎(Ω′′𝑗 ) ≤ 𝐶𝑑−3−𝜎
𝑗

and as a result

(5.9) ‖𝜆−R𝜆‖𝐿2(Ω′𝑗)
≤ 𝐶𝑑

−3/2−𝜎
𝑗 ℎ𝜎.

To summarize,

𝑀𝑗 ≤ 𝐶
(︁

(1 + ℎ𝑑−1
𝑗 𝜀−1)(ℎ/𝑑𝑗)𝜎 + 𝑑

1/2
𝑗 𝜀−1‖𝑔⃗ − 𝑔⃗ℎ‖𝐿2(Ω′𝑗)

+ 𝜀𝑑
3/2
𝑗 ‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿2(Ω′𝑗)

)︁
.

Next, we will use a duality argument to estimate ‖𝑔⃗ − 𝑔⃗ℎ‖𝐿2(Ω′𝑗)
.

Step 3: Duality argument. We have the following representation

‖𝑔⃗ − 𝑔⃗ℎ‖𝐿2(Ω′𝑗)
= sup

𝑣⃗∈𝐶∞𝑐 (Ω′𝑗)

‖𝑣⃗‖𝐿2(Ω′
𝑗
)≤1

(𝑔⃗ − 𝑔⃗ℎ, 𝑣⃗).

For each such 𝑣⃗, let 𝑤⃗, 𝜙 be the solution of the following problem

−∆𝑤⃗ +∇𝜙 = 𝑣⃗ in Ω,(5.10a)

∇ · 𝑤⃗ = 0 in Ω,(5.10b)

𝑤⃗ = 0⃗ on 𝜕Ω.(5.10c)
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Thus, using that (∇ · P𝑤⃗, 𝜒) = 0 and (∇ · (𝑔⃗ − 𝑔⃗ℎ), 𝜒) = 0 for any 𝜒 ∈ 𝑀ℎ and
∇ · 𝑤⃗ = 0, we have

(𝑔⃗−𝑔⃗ℎ, 𝑣⃗) = (∇(𝑔⃗ − 𝑔⃗ℎ),∇𝑤⃗)− (𝜙,∇ · (𝑔⃗ − 𝑔⃗ℎ))

= (∇(𝑔⃗ − 𝑔⃗ℎ),∇(𝑤⃗ −P𝑤⃗)) + (∇(𝑔⃗ − 𝑔⃗ℎ),∇P𝑤⃗)− (𝜙−R𝜙,∇ · (𝑔⃗ − 𝑔⃗ℎ))

= (∇(𝑔⃗ − 𝑔⃗ℎ),∇(𝑤⃗ −P𝑤⃗))− (𝜆− 𝜆ℎ,∇ ·P𝑤⃗)− (𝜙−R𝜙,∇ · (𝑔⃗ − 𝑔⃗ℎ))

= (∇(𝑔⃗ − 𝑔⃗ℎ),∇(𝑤⃗ −P𝑤⃗))− (𝜆−R𝜆,∇ · (P𝑤⃗ − 𝑤⃗))− (𝜙−R𝜙,∇ · (𝑔⃗ − 𝑔⃗ℎ))
:= 𝐽1 + 𝐽2 + 𝐽3.

We split 𝐽1 into two terms as follows

𝐽1 = (∇(𝑔⃗ − 𝑔⃗ℎ),∇(𝑤⃗ −P𝑤⃗))Ω′′′𝑗
+ (∇(𝑔⃗ − 𝑔⃗ℎ),∇(𝑤⃗ −P𝑤⃗))Ω∖Ω′′′𝑗

.

First we estimate (∇(𝑔⃗ − 𝑔⃗ℎ),∇(𝑤⃗ −P𝑤⃗))Ω′′′𝑗
. By the Cauchy-Schwarz inequality,

the global a priori error estimate, and 𝐻2-regularity we have

(∇(𝑔⃗ − 𝑔⃗ℎ),∇(𝑤⃗ −P𝑤⃗))Ω′′′𝑗
≤ ‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿2(Ω′′′𝑗 )‖∇(𝑤⃗ −P𝑤⃗)‖𝐿2(Ω)

≤ ‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿2(Ω′′′𝑗 )𝐶ℎ‖𝑤⃗‖𝐻2(Ω)

≤ 𝐶ℎ‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿2(Ω′′′𝑗 ).

Next we estimate the second term of 𝐽1. By the Hölder inequality and (2.5b),

(∇(𝑔⃗ − 𝑔⃗ℎ),∇(𝑤⃗ −P𝑤⃗))Ω∖Ω′′′𝑗
≤ ‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿1(Ω)‖∇(𝑤⃗ −P𝑤⃗)‖𝐿∞(Ω∖Ω′′′𝑗 )

≤ ‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿1(Ω)𝐶ℎ
𝜎‖𝑤⃗‖𝐶1+𝜎(Ω∖Ω′′𝑗 ).

Since Ω∖Ω′′𝑗 is separated from Ω′𝑗 by at least 𝑑𝑗 , for 𝑥, 𝑦 ∈ Ω∖Ω′′𝑗 , using (4.8b), we
have

|𝜕𝑥𝑤𝑘(𝑥)− 𝜕𝑦𝑤𝑘(𝑦)|
|𝑥− 𝑦|𝜎

≤
3∑︁

𝑖=1

∫︁
Ω′𝑗

|𝜕𝑥𝐺𝑘,𝑖(𝑥, 𝜉)− 𝜕𝑦𝐺𝑘,𝑖(𝑦, 𝜉)|
|𝑥− 𝑦|𝜎

|𝑣⃗(𝜉)|𝑑𝜉

≤ 𝐶 max
𝜉∈Ω′𝑗

(|𝑥− 𝜉|+ |𝑦 − 𝜉|)−2−𝜎

∫︁
Ω′𝑗

|𝑣⃗(𝜉)|𝑑𝜉(5.11)

≤ 𝐶𝑑−2−𝜎
𝑗 𝑑

3/2
𝑗 ‖𝑣⃗‖𝐿2(Ω′𝑗)

≤ 𝐶𝑑
−1/2−𝜎
𝑗 , for 𝑘 = 1, 2, 3.

Hence,

‖𝑤⃗‖𝐶1+𝜎(Ω∖Ω′′𝑗 ) ≤ 𝐶𝑑
−1/2−𝜎
𝑗 ,

which implies

(∇(𝑔⃗ − 𝑔⃗ℎ),∇(𝑤⃗ −P𝑤⃗))Ω∖Ω′′𝑗 ≤ 𝐶ℎ𝜎𝑑
−1/2−𝜎
𝑗 ‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿1(Ω).

Hence,

(5.12) 𝐽1 ≤ 𝐶ℎ𝜎𝑑
−1/2−𝜎
𝑗 ‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿1(Ω) + 𝐶ℎ‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿2(Ω′′′𝑗 ).

Similarly we can split 𝐽3 into two terms

𝐽3 = −(𝜙−R𝜙,∇ · (𝑔⃗ − 𝑔⃗ℎ))Ω′′′𝑗
− (𝜙−R𝜙,∇ · (𝑔⃗ − 𝑔⃗ℎ))Ω∖Ω′′′𝑗

.
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By the Cauchy-Schwarz inequality, the global a priori error estimate, and 𝐻2 reg-
ularity (4.6) we have

(𝜙−R𝜙,∇ · (𝑔⃗ − 𝑔⃗ℎ))Ω′′′𝑗
≤ ‖𝜙−R𝜙‖𝐿2(Ω)‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿2(Ω′′′𝑗 )

≤ 𝐶ℎ‖∇𝜙‖𝐿2(Ω)‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿2(Ω′′′𝑗 )

≤ 𝐶ℎ‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿2(Ω′′′𝑗 ).

Next we estimate the second term of 𝐽3. By the Hölder inequality and (2.5e),

(𝜙−R𝜙,∇ · (𝑔⃗ − 𝑔⃗ℎ))Ω∖Ω′′′𝑗
≤ ‖𝜙−R𝜙‖𝐿∞(Ω∖Ω′′′𝑗 )‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿1(Ω)

≤ 𝐶ℎ𝜎‖𝜙‖𝐶𝜎(Ω∖Ω′′𝑗 )‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿1(Ω).

Since Ω∖Ω′′𝑗 is separated from Ω′𝑗 by at least 𝑑𝑗 , we have for 𝑥, 𝑦 ∈ Ω∖Ω′′𝑗 , using
(4.8b)

|𝜙(𝑥)− 𝜙(𝑦)|
|𝑥− 𝑦|𝜎

≤
3∑︁

𝑖=1

∫︁
Ω′𝑗

|𝐺4,𝑖(𝑥, 𝜉)−𝐺4,𝑖(𝑦, 𝜉)|
|𝑥− 𝑦|𝜎

|𝑣⃗(𝜉)|𝑑𝜉

≤ 𝐶 max
𝜉∈Ω′𝑗

(|𝑥− 𝜉|+ |𝑦 − 𝜉|)−2−𝜎

∫︁
Ω′𝑗

|𝑣⃗(𝜉)|𝑑𝜉

≤ 𝐶𝑑−2−𝜎
𝑗 𝑑

3/2
𝑗 ‖𝑣⃗‖𝐿2(Ω′𝑗)

≤ 𝐶𝑑
−1/2−𝜎
𝑗 .

Hence,
‖𝜙‖𝐶𝜎(Ω∖Ω′′𝑗 ) ≤ 𝐶𝑑

−1/2−𝜎
𝑗 ,

which implies that

(𝜙−R𝜙,∇ · (𝑔⃗ − 𝑔⃗ℎ))Ω∖Ω′′′𝑗
≤ 𝐶ℎ𝜎𝑑

−1/2−𝜎
𝑗 ‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿1(Ω).

Hence,

(5.13) 𝐽3 ≤ 𝐶ℎ𝜎𝑑
−1/2−𝜎
𝑗 ‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿1(Ω) + 𝐶ℎ‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿2(Ω′′′𝑗 ).

Thus, it remains to estimate 𝐽2. Similar to above we split it into two terms,

𝐽2 = −(𝜆−R𝜆,∇ · (𝑤⃗ −P𝑤⃗))Ω′′′𝑗
− (𝜆−R𝜆,∇ · (𝑤⃗ −P𝑤⃗))Ω∖Ω′′′𝑗

.

By the Cauchy-Schwarz inequality, the global a priori error estimate, and 𝐻2 reg-
ularity (4.6) we have

(𝜆−R𝜆,∇ · (𝑤⃗ −P𝑤⃗))Ω′′′𝑗
≤ ‖𝜆−R𝜆‖𝐿2(Ω′′′𝑗 )‖∇(𝑤⃗ −P𝑤⃗)‖𝐿2(Ω)(5.14)

≤ ‖𝜆‖𝐿2(Ω′′′𝑗 )𝐶ℎ‖𝑤⃗‖𝐻2(Ω) ≤ 𝐶ℎ‖𝜆‖𝐿2(Ω′′′𝑗 ).

Using (4.8a) and that 𝑑𝑖𝑠𝑡(Ω′′′𝑗 , 𝑇𝑧) = 𝑂(𝑑𝑗) we have

𝜆(𝑥) =
3∑︁

𝑘=1

∫︁
𝑇𝑧

𝐺4,𝑘(𝑥, 𝜉)(𝜕𝜉𝛿ℎ(𝜉))𝛿𝑖,𝑘 𝑑𝜉(5.15)

= −
∫︁

𝑇𝑧

𝜕𝜉𝐺4,𝑖(𝑥, 𝜉)𝛿ℎ(𝜉) 𝑑𝜉 ≤ 𝐶𝑑−3
𝑗 ‖𝛿ℎ‖𝐿1(𝑇𝑧) ≤ 𝐶𝑑−3

𝑗 .

Thus,
‖𝜆‖𝐿2(Ω′′′𝑗 ) ≤ 𝐶𝑑

−3/2
𝑗

and
(𝜆−R𝜆,∇ · (𝑤⃗ −P𝑤⃗))Ω′′′𝑗

≤ 𝐶ℎ𝑑
−3/2
𝑗 .
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The second term in 𝐽2 by the Hölder inequality and (2.5e), we can estimate as

(𝜆−R𝜆,∇(𝑤⃗ −P𝑤⃗))Ω∖Ω′′′𝑗
≤ ‖𝜆−R𝜆‖𝐿1(Ω)‖∇(𝑤⃗ −P𝑤⃗)‖𝐿∞(Ω∖Ω′′′𝑗 )

≤ 𝐶ℎ𝜎‖𝑤⃗‖𝐶1+𝜎(Ω∖Ω′′𝑗 ).

In the last step we used ‖𝜆 − R𝜆‖𝐿1(Ω) ≤ 𝐶, which we will establish in Section
5.1.1. Since

‖𝑤⃗‖𝐶1+𝜎(Ω∖Ω′′𝑗 ) ≤ 𝐶𝑑
−1/2−𝜎
𝑗 ,

we have
(𝜆−R𝜆,∇ · (𝑤⃗ −P𝑤⃗))Ω∖Ω′′′𝑗

≤ 𝐶ℎ𝜎𝑑
−1/2−𝜎
𝑗 ,

and as a result,

(5.16) 𝐽2 ≤ 𝐶ℎ𝑑
−3/2
𝑗 + 𝐶ℎ𝜎𝑑

−1/2−𝜎
𝑗 .

Therefore, estimates for 𝐽1, 𝐽2, and 𝐽3, (5.12), (5.16) and (5.13), respectively, give

𝑑
1/2
𝑗 𝜀−1‖𝑔⃗ − 𝑔⃗ℎ‖𝐿2(Ω′𝑗)

≤ 𝐶ℎ𝑑−1
𝑗 𝜀−1 + 𝐶ℎ𝜎𝑑−𝜎

𝑗 𝜀−1 + 𝐶ℎ𝜎𝑑−𝜎
𝑗 𝜀−1‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿1(Ω)

+ 𝐶ℎ𝑑
1/2
𝑗 𝜀−1‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿2(Ω′′′𝑗 ).

To summarize,

𝑀𝑗 ≤ 𝐶
(︀
(1 + 𝜀−1)(ℎ/𝑑𝑗)𝜎 + (ℎ/𝑑𝑗)𝜀−1 + (ℎ/𝑑𝑗)𝜎𝜀−1‖∇(𝑔 − 𝑔ℎ)‖𝐿1(Ω)

+ (ℎ𝑑1/2
𝑗 𝜀−1 + 𝜀)‖∇(𝑔 − 𝑔ℎ)‖𝐿2(Ω′′′𝑗 )

)︀
.

Step 4: Double kick-back argument. Summing over 𝑗 we obtain
𝐽∑︁

𝑗=0

𝑀𝑗 ≤
𝐶(1 + 𝜀−1)

𝐾𝜎
+
𝐶𝜀−1

𝐾
+
𝐶𝜀−1

𝐾𝜎
‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿1(Ω)

+ 𝐶

(︂
ℎ

𝑑𝐽
𝜀−1 + 𝜀

)︂ 𝐽∑︁
𝑗=0

𝑑
3/2
𝑗 ‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿2(Ω′′′𝑗 ),

where we have used that
𝐽∑︁

𝑗=0

(ℎ𝑑−1
𝑗 )𝜎 ≤ ℎ𝜎

𝐽∑︁
𝑗=0

2𝑗𝜎 ≤ 𝐶ℎ𝜎2𝜎𝐽 ≤ 𝐶𝐾−𝜎 and 𝑑−1
𝑗 ≤ 𝑑−1

𝐽 .

Clearly,
𝐽∑︁

𝑗=0

𝑑
3/2
𝑗 ‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿2(Ω′′′𝑗 ) ≤ 𝐶

𝐽∑︁
𝑗=0

𝑀𝑗 + 𝐶(𝐾ℎ)3/2‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿2(Ω*)

≤ 𝐶

𝐽∑︁
𝑗=0

𝑀𝑗 + 𝐶𝐾3/2.

Thus, using that ℎ/𝑑𝐽 ≤ 𝐾−1, and taking 𝐾 large enough and 𝜀 small enough, we
have

𝐽∑︁
𝑗=0

𝑀𝑗 ≤ 𝐶𝐾,𝜀 +
𝐶𝜀−1

𝐾𝜎
‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿1(Ω).

Therefore, if we plug this result into (5.6) we get

‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿1(Ω) ≤ 𝐶𝐾,𝜀 +
𝐶𝜀−1

𝐾𝜎
‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿1(Ω).
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Again by choosing 𝐾 large enough we can conclude

‖∇(𝑔⃗ − 𝑔⃗ℎ)‖𝐿1(Ω) ≤ 𝐶𝐾,𝜀.

Thus the proof of Lemma (5.2) is complete. �

5.1.1. Estimate of ‖𝜆−R𝜆‖𝐿1(Ω). In this section we prove the following result.

Lemma 5.3. There exists a constant 𝐶 independent of ℎ and 𝜆 such that

‖𝜆−R𝜆‖𝐿1(Ω) ≤ 𝐶.

Proof. Using the dyadic decomposition defined in (5.5) and the Cauchy-Schwarz
inequality, we have

‖𝜆−R𝜆‖𝐿1(Ω) ≤ 𝐶𝐾3/2ℎ3/2‖𝜆−R𝜆‖𝐿2(Ω*) + 𝐶

𝐽∑︁
𝑗=0

𝑑
3/2
𝑗 ‖𝜆−R𝜆‖𝐿2(Ω𝑗).

Using the approximation property of R (2.5d), 𝐻2-regularity (4.6), and (5.2), we
have

ℎ3/2‖𝜆−R𝜆‖𝐿2(Ω*) ≤ 𝐶ℎ3/2+1‖∇𝜆‖𝐿2(Ω) ≤ 𝐶ℎ5/2‖∇𝛿ℎ‖𝐿2(𝑇 ) ≤ 𝐶.

In (5.9) we already established that

‖𝜆−R𝜆‖𝐿2(Ω𝑗) ≤ 𝐶𝑑
−3/2−𝜎
𝑗 ℎ𝜎,

hence,

‖𝜆−R𝜆‖𝐿1(Ω) ≤ 𝐶𝐾3/2 + 𝐶

𝐽∑︁
𝑗=0

𝑑−𝜎
𝑗 ℎ𝜎 ≤ 𝐶𝐾 .

�

5.2. Part 2, Stability for Pressure. Our goal is to show that there exists a
constant 𝐶 independent of 𝑝 and ℎ such that

(5.17) ‖𝑝ℎ‖𝐿∞(Ω) ≤ 𝐶
(︀
‖𝑝‖𝐿∞(Ω) + ‖∇𝑢⃗‖𝐿∞(Ω)

)︀
.

Let 𝑧 ∈ 𝑇𝑧 be such that ‖𝑝ℎ‖𝐿∞(Ω) = |𝑝ℎ(𝑧)|. Let 𝛿ℎ be a smooth delta function
defined in (5.1). Define a pair (Θ⃗,Σ) ∈ 𝐻1

0 (Ω)3 × 𝐿2
𝜑(Ω) by the equation

(5.18)

−∆Θ⃗ +∇Σ = 0 in Ω,

∇ · Θ⃗ = 𝛿ℎ − 𝜑 in Ω,

Θ⃗ = 0 on 𝜕Ω.

Note that (2.3) implies that
∫︀
Ω

(𝛿ℎ(𝑥)− 𝜑(𝑥)) 𝑑𝑥 = 0. Then,

(5.19) 𝑝ℎ(𝑧) = (𝑝ℎ, 𝛿ℎ) = (𝑝ℎ, 𝛿ℎ − 𝜑) + (𝑝ℎ, 𝜑).

The second term on the right hand side of (5.19) can be estimated by using the
Cauchy-Schwarz inequality and the a priori error estimate from Proposition 2.1 as

(𝑝ℎ, 𝜑) =(𝑝ℎ − 𝑝, 𝜑) + (𝑝, 𝜑)

≤𝐶(‖𝑝− 𝑝ℎ‖𝐿2(Ω) + ‖𝑝‖𝐿2(Ω))‖𝜑‖𝐿2(Ω)

≤𝐶(‖∇𝑢⃗‖𝐿2(Ω) + ‖𝑝‖𝐿2(Ω))

≤𝐶(‖∇𝑢⃗‖𝐿∞(Ω) + ‖𝑝‖𝐿∞(Ω)).
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To estimate the first term on the right hand side of (5.19) we use (5.18), property
of P, namely (2.4), to obtain

(𝑝ℎ, 𝛿ℎ − 𝜑) = (𝑝ℎ,∇ · Θ⃗) = (𝑝ℎ,∇ ·PΘ⃗)

= (𝑝,∇ ·PΘ⃗) + (𝑝ℎ − 𝑝,∇ ·PΘ⃗) := 𝐼1 + 𝐼2.

Using (5.18), the Hölder inequality, and the properties of 𝜑 and 𝛿ℎ we have,

𝐼1 = (𝑝,∇ · (PΘ⃗− Θ⃗)) + (𝑝,∇ · Θ⃗)

= (𝑝,∇ · (PΘ⃗− Θ⃗)) + (𝑝, 𝛿ℎ − 𝜑)

≤ ‖𝑝‖𝐿∞(Ω)

(︁
‖∇(PΘ⃗− Θ⃗)‖𝐿1(Ω) + ‖𝜑‖𝐿1(Ω) + ‖𝛿‖𝐿1(Ω)

)︁
≤ ‖𝑝‖𝐿∞(Ω)

(︁
‖∇(PΘ⃗− Θ⃗)‖𝐿1(Ω) + 𝐶

)︁
.

To estimates 𝐼2 we use orthogonality of 𝑢⃗− 𝑢⃗ℎ and (5.18) to obtain,

𝐼2 = (∇(𝑢⃗− 𝑢⃗ℎ),∇PΘ⃗) = (∇(𝑢⃗− 𝑢⃗ℎ),∇Θ⃗) + (∇(𝑢⃗− 𝑢⃗ℎ),∇(PΘ⃗− Θ⃗))

= −(Σ,∇ · (𝑢⃗− 𝑢⃗ℎ)) + (∇(𝑢⃗− 𝑢⃗ℎ),∇(PΘ⃗− Θ⃗))

= −(Σ−RΣ,∇ · (𝑢⃗− 𝑢⃗ℎ)) + (∇(𝑢⃗− 𝑢⃗ℎ),∇(PΘ⃗− Θ⃗))

≤ ‖∇(𝑢⃗− 𝑢⃗ℎ)‖𝐿∞(Ω)

(︁
‖∇(PΘ⃗− Θ⃗)‖𝐿1(Ω) + ‖Σ−RΣ‖𝐿1(Ω)

)︁
.

Since we have already estimated ‖∇(𝑢⃗− 𝑢⃗ℎ)‖𝐿∞(Ω), to obtain the desired estimate
of the error for the pressure we need to establish

Lemma 5.4.
‖∇(PΘ⃗− Θ⃗)‖𝐿1(Ω) + ‖Σ−RΣ‖𝐿1(Ω) ≤ 𝐶.

Proof. Using the dyadic decomposition (5.5) and the triangle inequality we have

‖∇(PΘ⃗− Θ⃗)‖𝐿1(Ω) + ‖Σ−RΣ‖𝐿1(Ω) ≤ ‖∇(PΘ⃗− Θ⃗)‖𝐿1(Ω*) + ‖Σ−RΣ‖𝐿1(Ω*)

+
𝐽∑︁

𝑗=1

(︁
‖∇(PΘ⃗− Θ⃗)‖𝐿1(Ω𝑗) + ‖Σ−RΣ‖𝐿1(Ω𝑗)

)︁
.(5.20)

First we will estimate the errors over the innermost subdomain. By Cauchy-
Schwartz inequality, approximation properties (2.5d) and (2.5a), and 𝐻2-regularity
(4.6) we have

‖∇(PΘ⃗− Θ⃗)‖𝐿1(Ω*) + ‖Σ−RΣ‖𝐿1(Ω*)

≤ 𝐶𝐾3/2ℎ3/2
(︀
‖∇(PΘ⃗− Θ⃗)‖𝐿2(Ω) + ‖Σ−RΣ‖𝐿2(Ω)

)︀
≤ 𝐶𝐾3/2ℎ3/2+1

(︀
‖Θ⃗‖𝐻2(Ω) + ‖Σ‖𝐻1(Ω)

)︀
≤ 𝐶𝐾3/2ℎ3/2+1(‖𝛿ℎ‖𝐻1(Ω) + ‖𝜑‖𝐻1(Ω)) ≤ 𝐶.

To estimate the terms over Ω𝑗 we use the Hölder inequality and the approxima-
tion theory to obtain

‖∇(PΘ⃗− Θ⃗)‖𝐿1(Ω𝑗) + ‖Σ1 −RΣ1‖𝐿1(Ω𝑗)

≤ 𝐶𝑑3
𝑗

(︀
‖∇(PΘ⃗− Θ⃗)‖𝐶(Ω𝑗) + ‖Σ−RΣ‖𝐶(Ω𝑗)

)︀
≤ 𝐶ℎ𝜎𝑑3

𝑗

(︀
‖Θ⃗‖𝐶1+𝜎(Ω′𝑗)

+ ‖Σ‖𝐶𝜎(Ω′𝑗)

)︀
.
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By the Green’s matrix representation (4.7a) and (4.7b), and using (4.4), we have

(Θ⃗)𝑖(𝑥) =
∫︁

Ω

𝐺𝑖,4(𝑥, 𝜉)𝛿ℎ(𝜉)𝑑𝜉, 𝑖 = 1, 2, 3,

and

Σ(𝑥) =
∫︁

Ω

𝐺4,4(𝑥, 𝜉)𝛿ℎ(𝜉)𝑑𝜉.

Using the above representation, (4.8b), and the fact that 𝑑𝑖𝑠𝑡(𝑇𝑧,Ω′𝑗) = 𝑂(𝑑𝑗) we
obtain

𝜕𝑥(Θ⃗)𝑖(𝑥)− 𝜕𝑦(Θ⃗)𝑖(𝑦)
|𝑥− 𝑦|𝜎

=
∫︁

𝑇𝑧

𝜕𝑥𝐺𝑖,4(𝑥, 𝜉)− 𝜕𝑦𝐺𝑖,4(𝑦, 𝜉)
|𝑥− 𝑦|𝜎

𝛿ℎ(𝜉) 𝑑𝜉

≤ 𝐶 max
𝜉∈𝑇𝑧

(|𝑥− 𝜉|−3−𝜎 + |𝑦 − 𝜉|−3−𝜎) ≤ 𝐶𝑑−3−𝜎
𝑗 .

Similarly,

Σ(𝑥)− Σ(𝑦)
|𝑥− 𝑦|𝜎

=
∫︁

𝑇𝑧

𝐺4,4(𝑥, 𝜉)−𝐺4,4(𝑦, 𝜉)
|𝑥− 𝑦|𝜎

𝛿ℎ(𝜉) 𝑑𝜉

≤ 𝐶 max
𝜉∈𝑇𝑧

(|𝑥− 𝜉|−3−𝜎 + |𝑦 − 𝜉|−3−𝜎) ≤ 𝐶𝑑−3−𝜎
𝑗 .

Hence the sum in (5.20) can be bounded as
𝐽∑︁

𝑗=1

(︀
‖∇(PΘ⃗−Θ⃗)‖𝐿1(Ω𝑗) + ‖Σ−RΣ‖𝐿1(Ω𝑗)

)︀
≤ 𝐶

𝐽∑︁
𝑗=1

ℎ𝜎𝑑3
𝑗

(︁
‖Θ⃗‖𝐶1+𝜎(Ω′𝑗)

+ ‖Σ‖𝐶𝜎(Ω′𝑗)

)︁
≤ 𝐶

𝐽∑︁
𝑗=1

ℎ𝜎𝑑−𝜎
𝑗 ≤ 𝐶.

Thus we have established Lemma 5.4, (5.17), and as a result Theorem 1. �

6. Extensions and open problems.

In this section we briefly comment on possible extensions and some open prob-
lems.

6.1. Localized estimates. In [30], pointwise error estimates having a sharply lo-
cal character for scalar second order elliptic equations were proved. In the following
publications such localized estimates were established for mixed methods [6], discon-
tinuous Galerkin methods [2, 15], parabolic problems [19], and the Stokes problem
on smooth domains [3, 16] and for a posteriori error estimates [7]. The main result
in [3] essentially says that when 𝜕Ω is smooth and certain assumptions are satisfied,
then for any 𝑧 ∈ Ω, the following estimate holds,

|∇(𝑢⃗− 𝑢⃗ℎ)(𝑧)|+ |(𝑝− 𝑝ℎ)(𝑧)| ≤ 𝐶ℓℎ,𝑠 min
(𝜒⃗,𝑤)∈(𝑉ℎ,𝑀ℎ)

(︀
‖𝑢⃗− 𝜒⃗‖𝑊 1

∞(Ω),𝜎,𝑠(6.1)

+ ‖𝑝− 𝑤‖𝐿∞(Ω),𝜎,𝑠

)︀
,

where ‖ · ‖𝑊 1
∞(Ω),𝜎,𝑠 and ‖ · ‖𝐿∞(Ω),𝜎,𝑠 are weighted Sobolev norms with weight

function 𝜎𝑠
𝑧(𝑦) =

(︁
ℎ

ℎ+|𝑧−𝑦|

)︁𝑠

. Here 0 ≤ 𝑠 ≤ 𝑘 and ℓℎ,𝑠 is a logarithmic factor which
is needed when 𝑠 = 𝑘. In [17] it was remarked that similar localized estimates
hold for convex polyhedral domains for second-order problems as well, except that
the allowed range of 𝑠 above is restricted by the maximum interior angle of 𝜕Ω
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as well as by the polynomial degree 𝑘. It is possible to prove a similar result
here. In particular, (6.1) holds for a similar range of 𝑠. The proof of (6.1) for
convex polyhedra may be accomplished by following the current proof with factoring
the weight function from the terms in the dyadic decomposition and a careful
bookkeeping.

6.2. Graded meshes. Our result, like most results on finite element estimates
in maximum norm, assumes that the mesh is quasi-uniform. However, in [8] the
stability of the Ritz projection in 𝑊 1

∞ norm was established for more general graded
meshes, that hold in most adaptive codes. The essential part of the proof was
interior error estimates in 𝑊 1

∞ norm. Such interior error estimates were established
for the second order elliptic equations for quasi-uniform meshes away from the
boundary in [33], but for the Stokes problems such estimates are not known. The
only result in this direction is [26], which establishes maximum-norm interior error
estimates for stable finite element approximations of the Stokes equations in the
case of translation invariant meshes.

Acknowledgements: We are indebted to Jürgen Rossmann for many discus-
sions on Green’s function estimates. We would also like to thank Alan Demlow
and Hongjie Dong for valuable discussions and the anonymous referee for helping
to improve the presentation of the paper.
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