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Abstract. We derive local error estimates for the discretization of optimal control problems
governed by linear advection-diffusion partial differential equations (PDEs) using the streamline up-
wind/Petrov Galerkin (SUPG) stabilized finite element method. We show that if the SUPG method
is used to solve optimization problems governed by an advection-dominated PDE the convergence
properties of the SUPG method is substantially different from the convergence properties of the
SUPG method applied for the solution of an advection-dominated PDE. The reason is that the solu-
tion of the optimal control problem involves another advection dominated PDE, the so-called adjoint
equation, whose advection field is just the negative of the advection of the governing PDEs. For the
solution of the optimal control problem, a coupled system involving both the original governing PDE
as well as the adjoint PDE must be solved.

We show that in the presence of a boundary layer, the local error between the solution of the
SUPG discretized optimal control problem and the solution of the infinite dimensional problem is
only of first order even if the error is computed locally in a region away from the boundary layer.
In the presence of interior layers, we prove optimal convergence rates for the local error in a region
away from the layer between the solution of the SUPG discretized optimal control problems and the
solution of the infinite dimensional problem. Numerical examples are presented to illustrate some of
the theoretical results.
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1. Introduction. The streamline upwind/Petrov Galerkin (SUPG) stabilized
finite element method [6, 14] and other stabilized finite element methods are widely
used for the solution of advection-dominated partial differential equations (PDEs).
Unlike the standard Galerkin finite element method which produces strongly oscil-
latory solutions for mesh sizes that are larger than the ratio of diffusion and advec-
tion, stabilized finite elements generate ‘good’ solutions for moderately sized meshes
[17, 22, 23, 24, 25, 29, 31].

If the SUPG method is used to solve optimization problems governed by an
advection-dominated PDE, however, then the convergence properties of the SUPG
method can be substantially different from the convergence properties of the SUPG
method applied for the solution of an advection-dominated PDE. The reason is that
the solution of the optimal control problem involves another PDE, the so-called ad-
joint equation, in addition to the original governing PDE. Both PDEs are coupled
through the optimality conditions. The adjoint equation is also a linear advection-
diffusion equation, in which the advection is equal to the negative advection of the
governing PDE. The right hand side or the boundary data for the adjoint equation are
determined by the objective function of the optimal control problem. For the solution
of the optimal control problem, both PDEs, the original governing PDE as well as
the adjoint PDE must be solved. The behavior of the SUPG method applied to these
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coupled PDEs is different than that of the SUPG method applied to the governing
PDE only. The goal of this paper is to analyze the behavior of the SUPG method
applied to a simple elliptic linear quadratic optimal control problem. In particular,
we investigate the error between the solution of the optimal control problem and the
the solution of an SUPG discretization of the optimal control problem in subdomains
that do not contain interior or boundary layers.

Our model problem is given as follows.

(1.1a) Minimize
1
2

∫
Ω

(y(x)− ŷ(x))2dx+
α

2

∫
Ω

u2(x)dx

subject to

−ε∆y(x) + c(x) · ∇y(x) + r(x)y(x) = f(x) + u(x), x ∈ Ω,(1.1b)
y(x) = 0, x ∈ ∂Ω,(1.1c)

where c, f, r, ŷ are given functions and ε, α > 0 are given scalars. We refer to u as
the control, to y as the state, and to (1.1b,c) as the state equation. Under suitable
assumptions it can be shown (see Section 2 for details) that u, y solve (1.1) if and only
if there exists a function λ such that the state equation (1.1b,c), the adjoint equation

−ε∆λ(x)− c(x) · ∇λ(x) + (r(x)−∇ · c(x))λ(x) = −(y(x)− ŷ(x)), x ∈ Ω,(1.2a)
λ(x) = 0, x ∈ ∂Ω,(1.2b)

and the equation

λ(x) = αu(x), x ∈ Ω(1.3)

are satisfied. Like the original state equation (1.1b,c), the adjoint equation (1.2) is also
an advection-diffusion equation, but with advection −c instead of c. The goal of this
paper is to analyze the SUPG method applied to the coupled system (1.1b,c)–(1.3).
In particular we derive weighted error estimates for the error between the solution
y, u, λ of (1.1) and the solution yh, uh, λh of an SUPG discretization of (1.1). These
weighted estimates are used to derive error estimates on subdomains Ω0 ⊂ Ω that do
not contain interior or boundary layers of the solution.

Stabilized finite element methods for optimal control problems have been studied
in a number of papers [1, 4, 5, 8, 9, 13, 21, 30] and the research on this topic is still
very active. The paper [8] studies the SUPG method for the discretization of (1.1).
It shows that there is a difference between discretizing the optimal control problem
(1.1) using the SUPG method for the discretization of state equation (1.1b,c) (this is
the discretize-then-optimize approach) and the discretization of the optimality system
(1.1b,c), (1.2), (1.3) where the state equation (1.1b,c) and the adjoint equation (1.2)
are both discretized by applying the SUPG method to both (this the optimize-then-
discretize approach). Estimates for the global error between the solution of the original
and the discretized problems are derived for both approaches, discretize-then-optimize
and optimize-then-discretize. The paper [1] provides an analogous study for optimal
boundary control problems governed by the Oseen equations using finite element
methods with Galerkin/Least-Squares (GLS) stabilization. The paper [9] proposes
stabilizing the optimality system (1.1b,c), (1.2), (1.3), i.e., it proposes an optimize-
then-discretize approach. The stabilization used in [9], however, is different from the
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optimize-then-discretize SUPG approach discussed in [8]. In particular, the discrete
optimality system (1.1b,c), (1.2), (1.3) in [9] is symmetric, while the optimize-then-
discretize approach in [8] leads to nonsymmetric systems.

The stabilization methods applied in [1, 8, 9] are residual based. For example, the
SUPG stabilization for (1.1b,c) involves the residual −ε∆y+c ·∇y+ ry−f −u of the
state equation. This dependence on the residual is one reason why the discretize-then-
optimize approach and the optimize-then-discretize approach in [1, 8] lead to different
discrete problems. The papers [4, 5] study stabilizations based on local projection.
One advantage of these approaches is that the tasks of discretization and optimization
commute, i.e., the discretize-then-optimize approach and the optimize-then-discretize
approach lead to the same discrete problem. Like [8], the papers [4, 5, 13, 21, 30]
provide estimates for the error between the solution of the original and the discretized
optimal control problem over the entire domain Ω. As a consequence, the constants
in these estimates of the global error depend on derivatives of the solution y, u, λ of
(1.1) on all of Ω. In the presence of interior or boundary layers these derivatives are
large and can render the theoretical bounds for the global error meaningless. More
informative for this kind of problems, the residual based a posteriori error estimates
are derived in [13, 30] with some promising numerical examples.

The goal of this paper is to derive a priori bounds for the error localized in
subdomains Ω0 ⊂ Ω away from regions where layers occur. The right hand sides
of our error bounds involve derivatives of the solution y, u, λ of (1.1) restricted to
Ω0 ⊂ Ω. Since interior or boundary layers of the solution are located outside Ω0, the
right hand sides of our bounds are independent of ε and as a result these error bounds
are much more descriptive.

We show that the presence of boundary layers may pollute the numerical solution
everywhere. Specifically, we prove for 1D problems with constant coefficients that the
error between the solution of the SUPG discretized optimal control problem and the
solution of the infinite dimensional problem is only of first order even if the error is
computed locally in a region away from the boundary layer. Numerical tests indicate
that this is also true for 2D problems. This is in sharp contrast to the case of a single
equation where it has been shown analytically that the numerical layers do not pollute
the SUPG solution into domains of smoothness [17, 29]. We also show that the interior
layers do not pollute the solution away from the layers. For 2D problems with constant
coefficients we prove optimal error estimates over the regions away from the layers.
To summarize, the main message of this paper is that as a rule, the SUPG solution
to optimal control problems governed by linear advection-diffusion partial differential
behaves very differently than in the case of a single equation. Any boundary layers
in either forward or adjoint problem pollute the numerical solution everywhere in the
entire domain, even in subregions where the exact solution is smooth, but the interior
layers do not. Numerical examples in Section 5 illustrate our theoretical results.

The reason why the error between the SUPG solution and the solution of the
infinite dimensional optimal control problem is only of first order is that the boundary
layers are not sufficiently resolved. The discretization errors in the boundary layers
are transported via the adjoint and the state equation into the domain. Thus the
source of this order reduction is not due to the fact that we use a residual based
stabilization. We expect this to happen also when other stabilizations, such as the
local projection based methods studied, e.g., in [4, 5, 13, 21, 30], are used. This was
already observed in [2] who studied finite difference methods for coupled systems of
singularly perturbed ordinary differential equations.
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The rest of the paper is organized as follows. In the next section we state the
problem and the standard existence and regularity results. Section 3 is devoted to
showing optimal estimates in the case of interior layers. The main result of this section
is Theorem 3.2, with a proof in two dimensions. Section 4 studies one-dimensional
problems with boundary layers. Two cental results are Theorem 4.7, which establishes
first order convergence for piecewise linear elements, and Theorem 4.11, which shows
the optimal global L2 norm convergence. Theorem 4.11 is of interest by itself. Due
to rather technical proofs, we only treat the problems with constant coefficients. In
Section 5 we provide numerical illustrations of our theoretical findings. Finally, in the
last section we conclude our paper with the brief summary of our main results.

2. Problem Statement. For G ⊂ Ω we define 〈f, g〉G =
∫
G
f(x)g(x)dx,

‖v‖0,∞,G = ess supx∈G|v(x)| or ‖v‖0,∞,G = ess supx∈G
√∑

i vi(x)2 for vector valued
v, and

‖v‖k,G =

∑
|α|≤k

∫
G

(∂αv(x))2dx

1/2

, |v|k,G =

∑
|α|=k

∫
G

(∂αv(x))2dx

1/2

.

If G = Ω, we omit Ω and write ‖v‖k,∞ instead of ‖v‖k,∞,Ω, etc. If k = 0, we omit k
and write ‖v‖G instead of ‖v‖0,G, etc. If k = 0 and G = Ω we omit all subscripts and
write ‖v‖ instead of ‖v‖0,Ω. Furthermore, we define the bilinear form

(2.1) a(y, v) =
∫

Ω

ε∇y(x) · ∇v(x) + c(x) · ∇y(x)v(x) + r(x)y(x)v(x)dx

for y, v ∈ H1
0 (Ω). The optimal control problem (1.1) is given by

minimize
1
2
‖y − ŷ‖2 +

α

2
‖u‖2,(2.2a)

subject to a(y, v)− 〈u, v〉 = 〈f, v〉 ∀v ∈ H1
0 (Ω),(2.2b)

y ∈ H1
0 (Ω), u ∈ L2(Ω).

We assume that

(2.3a)
Ω is a bounded domain,

f, ŷ ∈ L2(Ω), c ∈
(
W 1,∞(Ω)

)n
, r ∈ L∞(Ω), α > 0, ε > 0,

and

(2.3b) r(x)− 1
2∇ · c(x) ≥ r0 ≥ 0 a.e. in Ω.

For the well-posedness of the optimal control problem it is sufficient to impose fewer
regularity requirements on the coefficient functions than those stated in (2.3a) and
(2.3b). The assumptions (2.3a) imply stronger regularity properties of the solution,
which will be stated in Theorem 2.2 below and using the exponential weighted tech-
nique (cf. [3, 16]), the assumption (2.3b) can be weakened as well.

Under the assumptions (2.3), the bilinear form a(·, ·) is continuous on H1
0 (Ω) ×

H1
0 (Ω) and H1

0 (Ω)-elliptic. In fact, a(y, y) ≥ ε‖∇y‖2 + r0‖y‖2 for all y ∈ H1
0 (Ω)

(e.g., [24, p. 165] or [22, Sec. 2.5]). Hence the theory in [20, Sec. II.1] guarantees the
existence of a unique solution (y, u) ∈ H1

0 (Ω)× L2(Ω) of (2.2).
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Theorem 2.1. If (2.3) are satisfied, the optimal control problem (2.2) has a
unique solution (y, u) ∈ H1

0 (Ω)×L2(Ω). Furthermore, (y, u) ∈ H1
0 (Ω)×L2(Ω) solves

(2.2) if and only if there exists λ ∈ H1
0 (Ω) such that (y, u, λ) solve

a(ψ, λ) = −〈y − ŷ, ψ〉 ∀ψ ∈ H1
0 (Ω),(2.4a)

−〈w, λ〉+ α〈u,w〉 = 0 ∀w ∈ L2(Ω),(2.4b)

a(y, v)− 〈u, v〉 = 〈f, v〉 ∀v ∈ H1
0 (Ω).(2.4c)

The optimality system (2.4) is the weak form of (1.1b,c)–(1.3).
For some of our error estimates we need that the state y and adjoint λ is not only

in H1
0 (Ω)×H1

0 (Ω), but even in H2(Ω)×H2(Ω). The following result gives a sufficient
condition for such a regularity result. It is derived from regularity results for single
advection diffusion equations. We present the result only for a constant advection,
which is sufficient for our purposes. Using, for example, the ideas similar to the ones
in [3], [25, L. 1.18, p 248] such restriction can be relaxed.

Theorem 2.2. Let Ω be a bounded open convex subset of Rn and let the assump-
tions (2.3) be satisfied with c being a constant vector. There exists a positive constant
C independent of ε such that the unique solution of the optimal control problem (2.2)
and the associated adjoint satisfy (y, λ) ∈ H2(Ω)×H2(Ω) and

ε3/2‖y‖2 + ε1/2‖y‖1 + ‖y‖ ≤ C, ε3/2‖λ‖2 + ε1/2‖λ‖1 + ‖λ‖ ≤ C.

Proof. We provide a proof that includes the case r0 = 0 and any ε > 0, not
necessarily very small. In the case of r0 > 0 or ε = 0(1) a simpler proof can be given
(see also [25, L. 1.18, p 248] and [28, L. 7.2]). Throughout the proof C denotes a
positive constant independent of ε. Without loss of generality we assume |c| = 1,
otherwise we can just divide every term of the state equation by |c|.

Let y0 be the solution of the state equation (2.2b) with u = 0 and let u, y, λ be
the optimal control, state, and adjoint. Since u is optimal,

1
2
‖y − ŷ‖2 +

α

2
‖u‖2 ≤ 1

2
‖y0 − ŷ‖2.

Hence

(2.5) ‖y‖ ≤ C, ‖u‖ ≤ C, ‖λ‖ ≤ C.

The latter bound comes from the identity αu = λ (cf. (2.4b)). The coercivity prop-
erties of the bilinear a and (2.2b) imply

ε‖∇y‖2 + r0‖y‖2 ≤ (‖f‖+ ‖u‖)‖y‖.

Since we allow r0 = 0, we use ideas from [3] and introduce an exponential function
ψ = e−2(x−x0)·c, where x0 is a point on ∂Ω such that ‖ψ‖L∞ = 1. Notice that

c · ∇ψ = −2ψ.

Let K be a positive number that will be specified later. Since ψy ∈ H1
0 , the equations

(2.1) and (2.4c) yield

ε(∇y,∇((ψ +K)y)) + (c · ∇y, (ψ +K)y) + (ry, (ψ +K)y) = (f + u, (ψ +K)y).
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Using that

(c · ∇y, (ψ +K)y) = −1
2

(y, c · ∇ψy) = (y, ψy),

we have

(2.6) ε(∇y, (ψ +K)∇y) + (y, (ψ + rψ + rK)y) = (f + u, (ψ +K)y)− ε(∇y, y∇ψ).

Since

ψ ≥ e−2L, |∇ψ| ≤ 2, r ≥ r0 ≥ 0, and ‖ψ‖L∞ = 1,

where L = diam(Ω), equation (2.6) implies

(2.7) ε(e−2L +K)‖∇y‖2 + e−2L‖y‖2 ≤ (1 +K)‖f + u‖‖y‖+ 2ε‖∇y‖‖y‖.

The arithmetic-geometric mean inequality ab ≤ δa2 + 1
4δ b

2 yields

(2.8) (1 +K)‖f + u‖‖y‖ ≤ e2L(1 +K)2‖f + u‖2 +
e−2L

4
‖y‖2

and

(2.9) 2ε‖∇y‖‖y‖ ≤ ε(e−2L +K)
2

‖∇y‖2 +
2ε

e−2L +K
‖y‖2.

If we insert (2.8) and (2.9) into (2.7) and choose K ≥ 4εe2L − e−2L, i.e., choose K
such that

2ε
e−2L +K

≤ e−2L

2
,

then we obtain

(2.10) ε1/2‖∇y‖+ ‖y‖ ≤ C(‖f‖+ ‖u‖),

where the constant C depends on diameter of Ω, more precisely on e2L, but not on y
or ε.

Since y solves −ε∆y = f + u− c · ∇y − ry and f + u− c · ∇y − ry ∈ L2(Ω), the
solution y is in H2(Ω) and obeys (cf. [10, 11])

ε‖y‖2 ≤ C‖f + u− c · ∇y − ry‖ ≤ C(‖f‖+ ‖u‖+ ‖∇y‖+ ‖r‖L∞‖y‖) ≤ Cε−1/2,

where we have used (2.10) and (2.5) to derive the last inequality. This implies the
desired result. The estimate for the adjoint λ can be obtained analogously.

Since α > 0, we can use (2.4b) to eliminate u from the optimality system. The
continuous optimality system can be reduced to the following coupled system of two
equations,

a(ψ, λ) + 〈y, ψ〉 = 〈ŷ, ψ〉 ∀ψ ∈ H1
0 (Ω),(2.11a)

αa(y, v)− 〈λ, v〉 = α〈f, v〉 ∀v ∈ H1
0 (Ω).(2.11b)

We apply the SUPG method to (2.11). Let {Th}h>0 be a family of quasi-uniform
triangulations of Ω [7]. To approximate the state equation we use the spaces

(2.12) Vh =
{
vh ∈ H1

0 (Ω) : vh|T ∈ Pk(T ) for all T ∈ Th
}
, k ≥ 1,
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where Pk(T ) denotes the space of polynomials of degree k defined on element T .
The SUPG discretization of (2.11) is given by

aah(ψ, λh) + 〈yh, ψ〉a = 〈ŷ, ψ〉a ∀ψ ∈ Vh,(2.13a)
αash(yh, v)− 〈λh, v〉s = α〈f, v〉sh ∀v ∈ Vh,(2.13b)

where

aah(ψ, λh) =a(ψ, λh)

+
∑
Te∈Th

τe〈−ε∆λh − c · ∇λh + (r −∇ · c)λh,−c · ∇ψ〉Te ,(2.14a)

〈yh, ψ〉a =〈yh, ψ〉+
∑
Te∈Th

τe〈yh,−c · ∇ψ〉Te ,(2.14b)

ash(yh, v) =a(yh, v) +
∑
Te∈Th

τe〈−ε∆yh + c · ∇yh + ryh, c · ∇v〉Te ,(2.14c)

〈λh, v〉s =〈λh, v〉+
∑
Te∈Th

τe〈λh, c · ∇v〉Te(2.14d)

for some positive parameters τe. We note that the SUPG discretization of the reduced
system (2.11) leads to a finite dimensional system that is equivalent to that obtained
from applying the SUPG discretization to the optimality system (2.4) (this is the
optimize-then-discretize approach in [8]).

We define a bilinear form ASUPG(·, ·) on (Vh × Vh) × (Vh × Vh) for the reduced
system (2.14) by

ASUPG({yh, λh}, {φh, ϕh})
= αash(yh, φh)− 〈λh, φh〉s + aah(ϕh, λh) + 〈yh, ϕh〉a.(2.15)

Since the discrete system is obtained by applying the SUPG method (which is strongly
consistent) to the optimality system, we have the usual Galerkin orthogonality,

(2.16) ASUPG
(
{y − yh, λ− λh}, {φh, ϕh}

)
= 0, ∀{φh, ϕh} ∈ Vh × Vh.

3. The Case of Interior Layers. We restrict the discussion of this section to
a bounded domain Ω ⊂ R2. According to the continuous theory, see [28, p. 473] or
[29, L. 23.1], the exact solution to an advection-diffusion problem at any fixed point
x0 ∈ Ω is influenced by the force term only from within an ε log (1/ε)-neighborhood
in the streamline (downwind) direction and within a

√
ε log(1/ε)-neighborhood in

the crosswind direction. The same behavior can be observed from the properties
of the corresponding Green’s function. In the presence of interior layers only, the
exact solution may vary strongly in the crosswind direction, but not in the streamline
direction. Since the adjoint equation has similar properties, the same behavior of the
solution can be expected from the coupled system. Our main goal of this section is
to show that similarly to the single equation (cf. [17, 29]), the interior layers do not
pollute the numerical solution to the coupled system. We will accomplish that by
weighted error estimates, where the purpose of the weighting function is essentially
to isolate the domains of smoothness from the layers. The analysis is rather technical
and in order to avoid unnecessary technicalities we will make several simplifications:

• ε ≤ h, i.e. we consider only the advection-dominating case.
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• The advection c is a constant vector.
• The reaction term r ≡ 1. This simplification is not essential, the same analysis

can be applied to r(x) ≥ r0 > 0.
• τe := τ = C1h, for some fixed constant C1. This assumption is logical since

we are in advection-dominating regime and the mesh is quasi-uniform.
To state the main result of this section we introduce a weight function ω, which is
O(1) on

(3.1) Ω0 = {x ∈ Ω : A1 ≤ (x× c) ≤ A2}

for some constants A1 and A2 and decays exponentially outside of a slightly larger
subdomain. Here we used the convection that for two dimensional vectors a and b
the cross product is defined by a× b := a1b2 − a2b1, which is just a z-component of
the cross-product if we think of vectors a and b as three dimensional vectors with z
component to be zero. Thus, the set Ω0 defines a strip along c of width |A2 −A1|.

More precisely, the weight ω is a positive function with the following properties:

ω(x) = O(1), for x ∈ Ω0,

|ω(x)| ≤ Ce−((x×c)−A2)/K
√
h, for (x× c) ≥ A2,

|ω(x)| ≤ Ce−(A1−(x×c))/K
√
h, for (x× c) ≤ A1.

Here K is a sufficiently large number and
√
h is potentially the size of the numerical

crosswind layer.
Remark 3.1. Estimating the actual size of the numerical crosswind layer is a

delicate process. Generally, for the standard SUPG method on unstructured quasi-
uniform meshes, like in our case, it is only known that the size of the numerical
crosswind layer is at most of order h1/2. In [17], the authors modified the SUPG
method by adding extra crosswind diffusion to the method and showed analytically
that it is at most of order h3/4 for piecewise linear elements. In [31], in the case of
aligned meshes and bilinear elements, the authors showed that it is of size h. The
numerical investigations by Semper, [26, 27], suggest that for linear elements on the
meshes not aligned with the advection it is about of order h0.7 and of order h on the
aligned meshes. To the best of our knowledge there is no theoretical or numerical
results for higher order elements.

Now we state our weighted result. Notice that we have traced the dependence of
the error on the stabilization parameter α.

Theorem 3.2. Let {y, λ} and {yh, λh} satisfy (2.16). In addition to the as-
sumptions at the beginning of Section 3 assume ετ ≤ h2/(4C2

invC
2
ω) and h ≤ C2α, for

constants Cinv and Cω defined below in (3.4) and (3.8), and some fixed constant C2.
Then there exists a constant C independent of h, ε, y, λ, α such that

αQ2
ω(y − yh) +Q2

ω(λ− λh) ≤ C(α min
χ1∈Vh

L2
ω(y − χ1) + min

χ2∈Vh
L2
ω(λ− χ2)),

where

(3.2) Q2
ω(v) := ε‖ω∇v‖2 + ‖ωv‖2 +

∑
Te∈Th

τ‖ωc · ∇v‖2Te

and

(3.3) L2
ω(v) := h−1‖ωv‖2 + h‖ω∇v‖2 + h3‖ω∆v‖2.
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The proof of Theorem 3.2 goes along the lines of [15] and [17], where the corre-
sponding result was established for a single equation. Since in the above mentioned
papers only piecewise linear elements were treated, high order stabilizations terms
were meaningless. In our situation we have to deal with those high order stabilization
terms in addition to the coupled terms. Consequently, the proof is more technical.
Furthermore, in the course of the proof we also need to trace the dependence of the
error on the parameter α. This adds additional technical difficulties. Theorem 3.2
will be proven in Section 3.2.

To give an application of Theorem 3.2 , let Ω0 be as in (3.1) and define

Ωs = { A1 − sK
√
h| log h| ≤ (x× c) ≤ A2 + sK

√
h| log h| } ∩ Ω, s > 0.

Corollary 3.3. Under the assumptions of Theorem 3.2 and assuming y, λ ∈
H2(Ω), there exists a constant C independent of y, λ, ε, and h such that for any
s > 0,

α

(
ε‖∇(y − yh)‖2Ω0

+ ‖y − yh‖2Ω0
+

∑
Te∈Th∩Ω0

τ‖c · ∇(y − yh)‖2Te

)
+ ε‖∇(λ− λh)‖2Ω0

+ ‖λ− λh‖2Ω0
+

∑
Te∈Th∩Ω0

τ‖c · ∇(λ− λh)‖2Te

≤ Cα
(
h3‖y‖22,Ωs + h2s+3‖y‖22,Ω

)
+ C

(
h3‖λ‖22,Ωs + h2s+3‖λ‖22,Ω

)
.

The right hand side in the error estimate of Corollary 3.3 depends on local and
global norms of the state and the adjoint. The local norms associated with h3 are
independent of ε if Ωs does not contain interior layers. The global norms may depend
on negative powers of ε. However, they are associated with the higher order terms
h2s+3. Thus negative powers of ε can be compensated by h2s for sufficiently large s,
provided that for these values of s the subdomain Ωs does not contain interior layers.
In this case the local convergence rates are optimal for H2 regular solutions.

Corollary 3.3 will be proven in Section 3.2.

3.1. Preliminary Results. First we recall the standard inverse inequality,
which holds for quasi-uniform meshes, and the approximation property of the finite
dimensional subspaces. The proofs can be found in many textbooks on finite elements,
such as [7].

3.1.1. Inverse inequalities. For T ∈ Th and v ∈ Vh, there exists a constant
Cinv independent of T and v, such that

(3.4) ‖∇v‖Lp(T ) ≤ Cinvh−1‖v‖Lp(T ), 1 ≤ p ≤ ∞.

3.1.2. Local approximation. There exists a local interpolant operator I :
Hk+1(Ω)→ Vh such that for any T ∈ Th,

(3.5) h‖∇(v − I(v))‖T + ‖v − I(v)‖T ≤ Chk+1|v|k+1,T .

3.1.3. The weight function. In addition to the properties of ω described
above, we assume that ω satisfies,

Dcω(x) = 0, for all x ∈ Ω, i.e. ω is constant in the direction c,(3.6)

|Dc⊥ω| ≤ CK−1h−1/2ω,(3.7)
RO(S, ω) ≤ Cω, for any ball S of radius Kh,(3.8)

9



where

Dc = c · ∇, Dc⊥ = c⊥ · ∇, and RO(S, v) = max
x∈S
|v(x)|/min

x∈S
|v(x)|.

The explicit construction of such a function is given in [17].

3.1.4. Superapproximation. Next we will need the superapproximation re-
sult. The proof of this result is essentially contained in [17], Lemma 2.2, or [29],
Lemma 25.1, where piecewise linear elements were treated. The extension to higher
order elements is straightforward.

Lemma 3.4. Let v ∈ Vh. Set Eω(v) = ω2v − I(ω2v), where I is the interpolant
from above. There exists a constant C independent of h and v, such that for any
triangle T ∈ Th,

‖ω−1Eω(v)‖T + h‖ω−1∇Eω(v)‖T ≤ Ch1/2K−1‖ωv‖T .

As we have mentioned above the proof of Theorem 3.2 follows from the following
three lemmas. The proofs of these lemmas are rather standard, although technical.
Due to space limitations we state the results without proofs. The details of the proofs
can be examined in the full version of the paper which is available as a technical
report [12]. In the following lemmas we use Qω and Lω as defined in the statement
of Theorem 3.2, (3.2) and (3.3) respectively.

Lemma 3.5. Let {yh, λh} ∈ Vh × Vh and assume ετ ≤ h2

4C2
invC

2
ω

. Then

αQ2
ω(yh) +Q2

ω(λh) ≤ 2ASUPG({yh, λh}, {ω2yh, ω
2λh}).

Lemma 3.6. In addition to the assumptions of Lemma 3.5, assume h ≤ C2α for
some fixed constant C2. Then, there exists a constant C independent of h and K such
that

ASUPG({yh, λh}, {ω2yh − I(ω2yh), ω2λh − I(ω2λh)}) ≤ CK−1
(
αQ2

ω(yh) +Q2
ω(λh)

)
.

Lemma 3.7. In addition to the assumptions of Lemma 3.5 and Lemma 3.6, let
{y, λ} and {yh, λh} satisfy (2.16). Then there exist a constant C and an arbitrarily
small constant δ both independent of h and K, such that

ASUPG({y, λ}, {I(ω2yh), I(ω2λh)})
≤ C

(
(δ +K−1)(αQ2

ω(yh) +Q2
ω(λh)) + αL2

ω(y) + L2
ω(λ)

)
.

Remark 3.8. Global analysis of the SUPG method for a single equation with high
order stabilization terms is presented in [18], Chapter 9.2. Similar to our analysis,
their argument also requires the corresponding restrictions on ε and τ .

3.2. Proof of Theorem 3.2 and Corollary 3.3. Assuming Lemmas 3.5-3.7,
we are ready to present a proof of Theorem 3.2.

Proof. By the triangle inequality, we have
(3.9)
αQ2

ω(y−yh)+Q2
ω(λ−λh) ≤ αQ2

ω(yh−χ1)+Q2
ω(λh−χ2)+C(αL2

ω(y−χ1)+L2
ω(λ−χ2)),
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where we have used that

Q2
ω(v − χ) ≤ CL2

ω(v − χ),

which follows from the properties of ω and the assumption ε ≤ h. Hence, it is enough
to show that for any χ1, χ2 ∈ Vh,

αQ2
ω(yh − χ1) +Q2

ω(λh − χ2) ≤ C(αL2
ω(y − χ1) + L2

ω(λ− χ2)).

Notice, the SUPG method is invariant on Vh, i.e. if the exact solution {y, λ} ∈ Vh×Vh,
then {yh, λh} = {y, λ}. Consequently, for χ1, χ2 ∈ Vh, we can replace {yh, λh} with
{yh − χ1, λh − χ2} and {y, λ} with {y − χ1, λ − χ2}. Therefore, it is sufficient to
establish

αQ2
ω(yh) +Q2

ω(λh) ≤ C(αL2
ω(y) + L2

ω(λ)),

whenever (2.16) holds. By Lemma 3.5,

αQ2
ω(yh) +Q2

ω(λh) ≤ 2ASUPG({yh, λh}, {ω2yh, ω
2λh}).

Since ω2v is not in Vh even if v ∈ Vh, to treat ASUPG({yh, λh}, {ω2yh, ω
2λh}) we add

and subtract ASUPG({yh, λh}, {I(ω2yh), I(ω2λh)}) and use the orthogonality prop-
erty (2.16). Thus,

ASUPG({yh, λh}, {ω2yh, ω
2λh})

= ASUPG({yh, λh}, {ω2yh − I(ω2yh), ω2λh − I(ω2λh)})
+ASUPG({y, λ}, {I(ω2yh), I(ω2λh)}).(3.10)

Applying Lemma 3.6 and Lemma 3.7 to the right hand side of (3.10) and choosing
K large enough and δ small enough, we complete the proof of Theorem 3.2.

Next we prove Corollary 3.3.
Proof. By Theorem 3.2, taking χ1 = I(y) and χ2 = I(λ), where I is the inter-

polant defined in Section 3.1.2, we obtain

α
(
ε‖∇(y − yh)‖2Ω0

+ ‖y − yh‖2Ω0
+

∑
Te∈Th∩Ω0

τ‖c · ∇(y − yh)‖2Te
)

+ ε‖∇(λ− λh)‖2Ω0
+ ‖λ− λh‖2Ω0

+
∑

Te∈Th∩Ω0

τ‖c · ∇(λ− λh)‖2Te

≤ αQ2
ω(y − yh) +Q2

ω(λ− λh) ≤ C
(
αL2

ω(y − I(y)) + L2
ω(λ− I(λ))

)
.

Let v denote either y or λ. By the triangle inequality

L2
ω(v − I(v))

≤ h−1‖v − I(v)‖2Ωs + h‖∇(v − I(v))‖2Ωs + h3‖∆(v − I(v))‖2Ωs
+ h−1‖ω(v − I(v))‖2Ω\Ωs + h‖ω∇(v − I(v))‖2Ω\Ωs + h3‖ω∆(v − I(v))‖2Ω\Ωs .

Using the approximation theory, we have

h−1‖v − I(v)‖2Ωs + h‖∇(v − I(v))‖2Ωs + h3‖∆(v − I(v))‖2Ωs ≤ Ch
3‖v‖22,Ωs .

For the remaining terms we use the fact that ω = O(hs) on Ω\Ωs and as a result,

h−1‖ω(v − I(v))‖2Ω\Ωs + h‖ω∇(v − I(v))‖2Ω\Ωs + h3‖ω∆(v − I(v))‖2Ω\Ωs
≤ Ch2s+3‖v‖22,Ω\Ωs .

The last two estimates establish the corollary.
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4. The Case of Boundary Layers. The presence of boundary layers makes
the estimates from the previous section rather meaningless. For example, ‖y‖H2 is
typically of order ε−3/2 and dominates h3/2 for ε < h. The numerical results of
Section 5 show that the presence of boundary layers pollutes the numerical solution
everywhere, even into the subdomains where the exact solution is very smooth. The
numerical examples suggest that the first order convergence rates are the best possible
in L2, L∞, or H1 norms even over subdomains that are far away from the layers
regardless the degree of polynomials used. This is in sharp contrast to the case of a
single equation, where it has been shown analytically that the SUPG method does
not pollute the solution into the domain of smoothness and the error is nearly optimal
there (cf. [17, 23]). A rough explanation of this phenomena is the following. Assume
we can solve one equation directly. Then we know that the error is nearly optimal in
the interior of the domain. On the other hand without any special mesh adaptation
the SUPG method can not resolve the boundary layer and the error is of order one
over such layer (cf. Figures 5.1). The size of the numerical boundary layer is typically
of order h| log h|. Thus even if the error is consistent for one equation it will not
be for the second one. In other words, the error equation will have a perturbation
term which will be the source of the pollution. Of course, for the coupled system,
the argument is more complicated. The main result of this section is to prove the
first order error estimates in local L2 norm (cf. Theorem 4.7) for the coupled system,
and as a result for the advection-dominated optimal control problems. The numerical
illustrations of Section 5 show the first order convergence rate is sharp. We will also
show that the global L2 error for the coupled system converges at the rate h1/2 (cf.
Theorem 4.11). This rate is sharp even for a single equation.

We will present a proof only in the one dimensional setting for piecewise linear
elements. Throughout this section we assume that

α = 1, c = 1, r = 1 and Ω = (0, 1).

Even in this simple setting, the errors measured in a local L2 norm away from the
boundary layer only exhibit first order convergence. Therefore, for more general
problems in higher dimensions better convergence rates can not be expected. This is
confirmed by our numerical experiments. Our numerical experiments also show that
in general not much can be gained from using higher order finite elements.

Since we assume α = 1, c = 1, r = 1 and Ω = (0, 1), our problem is

aah(ψ, λh) + 〈yh, ψ〉a = 〈ŷ, ψ〉a ∀ψ ∈ Vh,(4.1a)
ash(yh, v)− 〈λh, v〉s = 〈f, v〉sh ∀v ∈ Vh,(4.1b)

where

aah(ψ, λh) = ε〈ψ′, λ′h〉+ 〈ψ′, λh〉+ 〈ψ, λh〉+
∑
Te∈Th

τ〈−λ′h + λh,−ψ′〉Te ,(4.2a)

〈yh, ψ〉a = 〈yh, ψ〉+
∑
Te∈Th

τ〈yh,−ψ′〉Te ,(4.2b)

ash(yh, v) = ε〈y′h, v′〉+ 〈y′h, v〉+ 〈yh, v〉+
∑
Te∈Th

τ〈y′h + yh, v
′〉Te ,(4.2c)

〈λh, v〉s = 〈λh, v〉+
∑
Te∈Th

τ〈λh, v′〉Te .(4.2d)
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4.1. Estimates of Discrete Green’s Functions. Our proof makes heavy use
of the discrete Green’s function G = Gx0 ∈ Vh, which for any point x0 ∈ Ω = (0, 1) is
the unique solution of

(4.3) ash(χ,G) = χ(x0), ∀χ ∈ Vh.

Define

(4.4) Ω−s = {x ∈ Ω : x− x0 ≤ sKh`h, }, s > 0,

for some constant K sufficiently large. Here and in the rest of the paper we put

`h ≡ | log h|.

The next result shows that the discrete Green’s function is small outside of Ω−s .
Lemma 4.1. For ν sufficiently large, there exists s > 0 such that ‖G‖W 1

∞(Ω\Ω−s ) ≤
Chν .

The proof of these result in two dimensions is given in [23, L. 2.1]. The same
argument can easily be adapted to one dimensional setting.

Remark 4.2. Since G ∈ Vh and ν is arbitrary, by the inverse estimates we also
have ‖G‖ ≤ Chν in almost any other norm over Ω\Ω−s .

Following the ideas of [23], we can show the following result.
Lemma 4.3. Let G = Gx0 be the one dimensional discrete Green’s function

defined by (4.3). Then there is a constant C independent of h such that the following
estimates hold:

‖G′‖ ≤ Ch−1/2`
1/2
h , ‖G‖ ≤ C`1/2h , |G(x0)| ≤ C`h.

Proof. Let xm be the first meshpoint in Ω\Ω−s to the right of x0. Then by the
Fundamental Theorem of Calculus

(4.5) −G(x0) =
m∑
i=1

∫ xi+1

xi

G′(s)ds−G(xm),

where xi are the meshpoints. Now since |xm − x0| ≤ Ch`h

G(x0) ≤ Ch1/2`
1/2
h ‖G

′‖+ Chν .

On the other hand

G(x0) = ash(G,G) = ε〈G′, G′〉+ 〈G′, G〉+ 〈G,G〉+
∑
Te∈Th

τ〈G′ +G,G′〉Te .

Using that 〈G′, G〉 = 0 and
∑
Te∈Th τ〈G,G

′〉Te = 0, we have

ash(G,G) = ε‖G′‖2 + ‖G‖2 +
∑
Te∈Th

τ‖G′‖2Te = (ε+ τ)‖G′‖2 + ‖G‖2.

Thus using that ε ≤ h and τ = C1h, we have for ν sufficiently large,

h‖G′‖2 + ‖G‖2 ≤ Cash(G,G) = CG(x0) ≤ Ch1/2`
1/2
h ‖G

′‖+ Chν ≤ h

2
‖G′‖2 + C`h
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and we can conclude that

‖G′‖ ≤ Ch−1/2`
1/2
h and ‖G‖ ≤ C`1/2h .

Using the estimate for ‖G′‖ in (4.5) we see that G(x0) ≤ C`h.
Later in the analysis we will be interested in the case when x0 is near the boundary.

In the case when x0 is near the boundary that has no layer, we can show that the L2

norm of the corresponding discrete Green’s function is small. More precisely, we have
the following result.

Corollary 4.4. Assume Ω = (0, 1) and let G = Gx0 be the one dimensional
discrete Green’s function with x0 ∈ D−, where D− = {x ∈ Ω : 0 ≤ x ≤ Mh`h}, for
some M > 0. Then there exists a constant C independent of h such that

‖G‖ ≤ Ch1/2`
3/2
h .

Proof. Define

D−s = {x ∈ Ω : 0 ≤ x ≤ sMh`h}, s > 0.

Then, ‖G‖ ≤ ‖G‖Ω\D−s + ‖G‖D−s . By Remark 4.2 for some s we have that ‖G‖Ω\D−s
is small. Thus, we only need to estimate ‖G‖D−s .

For any x ∈ D−s by the Fundamental Theorem of Calculus

G(x) =
m−1∑
i=0

∫ xi+1

xi

G′(s)ds+
∫ x

xm

G′(s)ds,

where 0 = x0 < x1 < · · · < xm ≤ x. Since the mesh is quasi-uniform xi+1−xi = O(h)
and m = O(M`h). By the Cauchy-Schwartz inequality

|G(x)| ≤ ‖G′‖D−s

(
m−1∑
i=0

(xi+1 − xi)1/2 + (x− xm)1/2

)
.

Squaring both sides we obtain,

|G(x)|2 ≤ C‖G′‖2
D−s

(
m−1∑
i=0

(xi+1 − xi) + (x− xm)

)
= C‖G′‖2x.

Integrating over D−s and using the estimates from Lemma 4.3, we obtain

‖G(x)‖2
D−s
≤ C‖G′‖2h2`2h ≤ Ch`3h.

In the following section we will also require the adjoint discrete Green’s function
G∗ = G∗x0

∈ Vh, which is the unique solution of

(4.6) aah(G∗, χ) = χ(x0), ∀χ ∈ Vh.

Analogously to Lemma 4.1 one can show the following estimate.
Lemma 4.5. If

(4.7) Ω+
s = {x ∈ Ω : x− x0 ≥ sKh`h, }, s > 0,
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then for ν sufficiently large there exists s > 0 such that

‖G∗‖W 1
∞(Ω\Ω+

s ) ≤ Ch
ν .

We can also show that G∗ satisfies the same global estimates as G in Lemma 4.3
and we can establish the following result which corresponds to Corollary 4.4.

Corollary 4.6. Assume Ω = (0, 1) and let G∗ = G∗x0
be the one dimensional

discrete Green’s function with x0 ∈ D+, where D+ = {x ∈ Ω : 1 −Mh`h ≤ x ≤ 1},
for some M > 0. Then there exists a constant C independent of h such that

‖G∗‖ ≤ Ch1/2`
3/2
h .

4.2. Local error estimates. To describe the main theorem of this section, the
weighted error estimates, we need the following domain decomposition Ω = Ω−∪Ω0∪
Ω+, where

(4.8)

Ω− = {x ∈ Ω : 0 ≤ x ≤ Kh`h}
Ω0 = {x ∈ Ω : Kh`h ≤ x ≤ 1−Kh`h}
Ω+ = {x ∈ Ω : 1−Kh`h ≤ x ≤ 1},

with constant K sufficiently large. In addition we define two weight functions ω+ > 0
and ω− > 0 with the following properties:

ω+(x) ≡ 1, for x ∈ Ω− ∪ Ω0,(4.9)

ω+(x) ≤ Ce(x−1)/K h, for x ∈ Ω+,(4.10)
ω+(x)′ < 0.(4.11)

and ω−(x) = ω+(1− x). Note that by construction ω− = ω+ on Ω0.
Theorem 4.7. Let {yh, λh} be the SUPG solution of (4.1) and let y, λ, f , and

ŷ satisfy

‖y‖L∞(Ω+) + ‖y‖H2(Ω−∪Ω0) + ‖y‖W 1
1 (Ω+) ≤ C(4.12a)

‖λ‖L∞(Ω−) + ‖λ‖H2(Ω0∪Ω+) + ‖λ‖W 1
1 (Ω−) ≤ C(4.12b)

‖f‖L∞(Ω−) + ‖f‖L2(Ω0∪Ω+) + ‖ŷ‖L2(Ω−∪Ω0) + ‖ŷ‖L∞(Ω+) ≤ C.(4.12c)

Then there exists a constant C independent of y, λ, h, and ε, such that

Q2
ω+

(y − yh) +Q2
ω−(λ− λh) ≤ C

(
min
χ1∈Vh

L2
ω+

(y − χ1) + min
χ2∈Vh

L2
ω−(λ− χ2) + h2`6h

)
,

where this time

Q2
ω(v) = (ε+ τ)‖ωv′‖2 +

1
2
‖(ω|ω′|)1/2v‖2 + ‖ωv‖2

and

L2
ω(v) := h−1‖ωv‖2 + h‖ωv′‖2.
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The proof of Theorem 4.7 will be given later.
Remark 4.8. The assumptions on the data and the exact solution are natural,

since according to Theorem 2, in [19], the exact solution {y, λ} satisfies the following
estimates, ∣∣y(n)(x)

∣∣ ≤ C (1 + ε−ne−(1−x)/ε
)
, n = 0, 1∣∣λ(n)(x)

∣∣ ≤ C (1 + ε−ne−x/ε
)
, n = 0, 1.

Remark 4.9. In the proof we did not try to obtain sharp estimates in terms of
the power of the logarithmic terms. In the case of ε � h this power can be reduced.
Furthermore, the numerical results suggest that the estimates in this case should be
log free.

Theorem 4.7 implies the following local error estimate.
Corollary 4.10. Under the assumptions of Theorem 4.7 there exists a constant

C independent of y, λ, ε, and h such that,

‖y − yh‖Ω−∪Ω0 + ‖λ− λh‖Ω0∪Ω+ ≤ Ch`3h.

The proof is similar to that of Corollary 3.3. The numerical results in Section 5 show
that the above estimates, modulo logarithmic terms, are sharp.

4.3. Outline of the proof. The proof of Theorem 4.7 is more technical and
complicated than in the case of the interior layers (cf. Section 3 ) or in the case of a
single equation (cf. [17, 23]). The main difficulty is due to the presence of the coupled
terms of the form

(4.13) 〈λh − λ, ω2
+yh〉 − 〈yh − y, ω2

−λh〉.

All other terms are similar to the single equation case and of almost optimal order
over the domains of smoothness. In the interior layer case ω+ = ω− = ω and since we
use the same finite dimensional subspaces for both λh and yh

〈λh, ω2
+yh〉 − 〈yh, ω2

−λh〉 = 0.

In the presence of boundary layers there is no such cancellation. Numerical results
presented in Section 5 show the first order convergence rates in L2 or H1 norms even
over the subdomains of smoothness. Thus, the observed order reduction is due to the
presence of the coupling terms similar to the ones in (4.13). Hence the main challenge
is to show that these terms are if fact of order h.

We examine the coupling terms more closely. Consider for example,

〈λh − λ, ω2
+yh〉 = 〈λh − λ, ω2

+yh〉Ω− + 〈λh − λ, ω2
+yh〉Ω0∪Ω+ .

Since λ is smooth on Ω0 ∪ Ω+, we expect ‖λ − λh‖Ω0∪Ω+ to be of optimal order
and as a result the term 〈λh − λ, ω2

+yh〉Ω0∪Ω+ should not pose much trouble. On
the other hand, in general, λ has a boundary layer over Ω− and since the SUPG
method does not resolve the layer, ‖λ − λh‖L∞(Ω−) = O(1) . If for example we use
the Cauchy-Schwartz inequality and use that ω+ = 1 on Ω− we obtain

〈λh − λ, ω2
+yh〉Ω− ≤ ‖λ− λh‖Ω−‖yh‖Ω− .
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The size of Ω− is of order h`h and we expect ‖λ − λh‖Ω− = O(h1/2`
1/2
h ). This

result we in fact establish in Theorem 4.11. Hence the main problem is to show
‖yh‖Ω− = O(h3/2). Looking at the exact solution y we can see that such estimate
is feasible. For example, by the Mean Value Theorem, ‖y‖L∞(Ω−) = O(h) and using
that the size of of Ω− is of order h`h we do obtain ‖y‖Ω− = O(h3/2). For yh the
analysis is more complicated due to the fact that it is not clear to us how to establish
directly that ‖yh‖L∞ ≤ C or even ‖yh‖L∞ ≤ C`h. In Proposition 4.12 we prove the
somewhat weaker result

‖yh‖L∞(Ω−) ≤ Ch`3h +
1
16
‖λh‖2.

Still, this result is sufficient to derive the desired estimates. In fact, it implies that
‖yh‖L∞ ≤ C`

3/2
h . The rest of this section is devoted to provide the technical details

following the above outline.

4.4. Global L2 error estimates.. The following result, which has an indepen-
dent interest, shows that even if the exact solution has boundary layers, the error in
the global L2 norm converges almost at the rate h1/2. This result is sharp even in the
case of a single equation.

Theorem 4.11. Let {yh, λh} be the SUPG solution of (4.1) and let y, λ, f , and
ŷ satisfy the assumption of Theorem 4.7. Then there exists a constant C independent
of y, λ, h, and ε, such that

‖y − yh‖+ ‖λ− λh‖ ≤ Ch1/2`
3/2
h .

Proof. From (2.16) for any φh, ϕh ∈ Vh,

ASUPG({yh, λh}, {φh, ϕh}) = ASUPG({y, λ}, {φh, ϕh}).

Choosing φh = −λh and ϕh = yh we obtain,

ASUPG({yh, λh}, {−λh, yh})
= 〈λh, λh〉s + 〈yh, yh〉a + ash(yh,−λh) + aah(yh, λh)
= ‖λh‖2 + ‖yh‖2

= ASUPG({y, λ}, {−λh, yh})
= 〈λ, λh〉s + 〈y, yh〉a + ash(y,−λh) + aah(yh, λ)
= I1 + I2 + I3 + I4.(4.14)

We start with

I1 = 〈λ, λh〉s = 〈λ, λh〉+
∑
Te∈Th

τ〈λ, λ′h〉Te .

By the Cauchy-Schwarz and the arithmetic-geometric mean inequalities,

〈λ, λh〉 ≤ ‖λ‖‖λh‖ ≤ 4‖λ‖2 +
1
16
‖λh‖2.

By the Cauchy-Schwarz, the inverse inequality, and the arithmetic-geometric mean
inequalities and the assumption τ = C1h,

τ〈λ, λ′h〉Te ≤ C1Cinv‖λ‖Te‖λh‖Te ≤ C‖λ‖2Te +
1
16
‖λh‖2Te .
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Thus summing over all elements we obtain,

(4.15) I1 ≤ C‖λ‖2 +
1
8
‖λh‖2.

Very similarly we can obtain

(4.16) I2 ≤ C‖y‖2 +
1
8
‖yh‖2.

The analysis of I3 and I4 is more involved and we require the following result.
Proposition 4.12. Under the assumptions of Theorem 4.11, there exists a con-

stant C independent of h, y, and λ such that

‖λh‖L∞(Ω+) ≤ Ch`3h +
1
16
‖yh‖2 and ‖yh‖L∞(Ω−) ≤ Ch`3h +

1
16
‖λh‖2.

Assuming the proposition for now, we give an estimate for I3. Recall,

I3 = ash(y,−λh) = ε〈y′,−λ′h〉+ 〈y′,−λh〉+ 〈y,−λh〉+
∑
Te∈Th

τ〈y′ + y,−λ′h〉Te .

By the assumptions of the theorem, y is smooth on Ω− ∪ Ω0, but is rather rough on
Ω+, only in W 1

1 . Thus initially we split the first term on the right hand side as

ε〈y′,−λ′h〉 = ε〈y′,−λ′h〉Ω−∪Ω0 + ε〈y′,−λ′h〉Ω+ = J1 + J2.

By the Cauchy-Schwarz, the inverse inequality, the arithmetic-geometric mean in-
equality, and the assumption ε ≤ h

J1 ≤ CCinv‖y′‖Ω−∪Ω0‖λh‖ ≤ C‖y′‖2Ω−∪Ω0 +
1
16
‖λh‖2.

By the Hölder and the inverse inequalities, (4.12a), and Proposition 4.12,

J2 ≤ CCinv‖y′‖L1(Ω+)‖λh‖L∞(Ω+) ≤ C‖λh‖L∞(Ω+) ≤ Ch`3h +
1
16
‖yh‖2.

Thus, we can we conclude,

(4.17) ε〈y′,−λ′h〉 ≤ Ch`3h +
1
16
‖λh‖2 +

1
16
‖yh‖2.

Very similarly we can treat the second and the third terms 〈y′,−λh〉 + 〈y,−λh〉. To
treat the stabilization terms we split the sum,∑

Te∈Th

τ〈y′ + y,−λ′h〉Te

=
∑

Te∈Th∩(Ω−∪Ω0)

τ〈y′ + y,−λ′h〉Te +
∑

Te∈Th∩Ω+

τ〈y′ + y,−λ′h〉Te

= S1 + S2.

To treat S1, we use the Cauchy-Schwarz inequality, the assumption τ = C1h, the
inverse inequality, and the arithmetic-geometric mean inequality to obtain

S1 ≤
∑

Te∈Th∩(Ω−∪Ω0)

‖y′ + y‖TeC1Cinv‖λh‖Te

≤
∑

Te∈Th∩(Ω−∪Ω0)

C‖y′ + y‖2Te +
1
16
‖λh‖2Te

≤ C‖y′ + y‖2Ω−∪Ω0 +
1
16
‖λh‖2.
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To treat S2, we use the Hölder inequality, the assumption τ = C1h, the inverse
inequality, and (4.12a),

S2 ≤
∑

Te∈Th∩Ω+

‖y′ + y‖0,1,TeC1Cinv‖λh‖0,∞,Te

≤ C‖λh‖0,∞,Ω+

∑
Te∈Th∩Ω+

‖y′ + y‖0,1,Te

= C‖λh‖0,∞,Ω+‖y′ + y‖0,1,Ω+ ≤ C‖λh‖0,∞,Ω+

≤ Ch`3h +
1
16
‖yh‖2,

where in the last step we used the result of Proposition 4.12. Thus, we have shown,

(4.18) I3 ≤ C
(
h`3h + ‖y′‖2Ω−∪Ω0 + ‖y‖2Ω−∪Ω0

)
+

1
4
‖λh‖2 +

1
4
‖yh‖2.

Similarly we can obtain

(4.19) I4 ≤ C
(
h`3h + ‖λ′‖2Ω0∪Ω+ + ‖λ‖2Ω0∪Ω+

)
+

1
4
‖λh‖2 +

1
4
‖yh‖2.

Using (4.14), (4.15), (4.16), (4.18), and (4.19) we obtain

‖λh‖2 + ‖yh‖2 ≤ C
(
‖λ′‖2Ω0∪Ω+ + ‖λ‖2 + ‖y′‖2Ω−∪Ω0 + ‖y‖2 + h`3h

)
.

Using the triangle inequality, assumptions of the theorem and that diam(Ω−) and
diam(Ω+) are of order h`h,

‖λ‖2 + ‖y‖2 ≤ ‖λ‖2Ω0∪Ω+ + ‖y‖2Ω−∪Ω0 + ‖λ‖2Ω− + ‖y‖2Ω+

≤ ‖λ‖2Ω0∪Ω+ + ‖y‖2Ω−∪Ω0 + Ch`h(‖λ‖20,∞,Ω− + ‖y‖20,∞,Ω+)

≤ ‖λ‖2Ω0∪Ω+ + ‖y‖2Ω−∪Ω0 + Ch`h.

Thus,

(4.20) ‖λh‖2 + ‖yh‖2 ≤ C
(
h`3h + ‖λ‖21,Ω0∪Ω+ + ‖y‖21,Ω−∪Ω0

)
.

Since the SUPG method is invariant on Vh, (4.20) imply

‖λh − I(λ)‖2 + ‖yh − I(y)‖2 ≤ C
(
h`3h + ‖λ− I(λ)‖21,Ω0∪Ω+ + ‖y − I(y)‖21,Ω−∪Ω0

)
,

where I(v) denotes the interpolant of v. Hence by the triangle inequality and the
estimate above we have,

‖λh − λ‖2 + ‖yh − y‖2 ≤ ‖λh − I(λ)‖2 + ‖yh − I(y)‖2 + ‖λ− I(λ)‖2 + ‖y − I(y)‖2

≤ ‖λ− I(λ)‖2 + ‖y − I(y)‖2

+ C
(
h`3h + ‖λ− I(λ)‖21,Ω0∪Ω+ + ‖y − I(y)‖21,Ω−∪Ω0

)
≤ ‖λ− I(λ)‖2Ω− + ‖y − I(y)‖2Ω+

+ C
(
h`3h + ‖λ− I(λ)‖21,Ω0∪Ω+ + ‖y − I(y)‖21,Ω−∪Ω0

)
.

Using the local approximation properties of the interpolant, Section 3.1.2 and the
assumptions of the theorem on λ and y and the assumption ε ≤ h, we conclude

‖λh − λ‖2 + ‖yh − y‖2 ≤ Ch`3h + Ch`h(‖λ‖20,∞,Ω− + ‖y‖20,∞,Ω+)

+ Ch2
(
|λ|22,Ω0∪Ω+ + |y|22,Ω−∪Ω0

)
≤ Ch`3h.
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Taking the square root we conclude the proof of the theorem.
Remark 4.13. The case α 6= 1 can be handled similarly. One just needs to take

φh = −αλh and ϕh = yh at the beginning of the proof.
Remark 4.14. The proof of the above result could be significantly simplified if

(4.21) ‖yh‖0,∞ + ‖λh‖0,∞ ≤ C,

were known for some C, that may depend on `h. Using the Green’s function estimates
of Lemma 4.3, such estimate is easy to obtain for a single equation. It is not obvious
to us how to obtain such estimate for the coupled system directly. However, the result
of Theorem 4.11 does imply (4.21), whenever the assumptions of Theorem 4.11 hold.
This can easily be established by the inverse inequality, the triangle inequality, and the
approximation theory. Thus,

‖yh‖0,∞,Ω− + ‖yh‖0,∞,Ω+ ≤ Cinvh−1/2(‖yh‖Ω− + ‖yh‖Ω+)

≤ Ch−1/2(‖y − yh‖+ ‖y‖Ω− + ‖y‖Ω+)

≤ Ch−1/2(Ch1/2`
3/2
h + Ch1/2`

1/2
h ‖y‖0,∞,Ω) ≤ C`3/2h

and similarly,

‖yh‖0,∞,Ω0 ≤ ‖y − yh‖0,∞,Ω0 + ‖y‖0,∞,Ω0

≤ ‖y − I(y)‖0,∞,Ω0 + ‖yh − I(y)‖0,∞,Ω0 + ‖y‖0,∞,Ω0

≤ ‖y − I(y)‖0,∞,Ω0 + Cinvh
−1/2‖yh − I(y)‖Ω0 + ‖y‖0,∞,Ω0

≤ C‖y‖0,∞,Ω + Cinvh
−1/2(‖yh − y‖Ω0 + ‖y − I(y)‖Ω0)

≤ C‖y‖0,∞,Ω + Cinvh
−1/2(Ch1/2`

3/2
h + Ch2‖y‖2,Ω0) ≤ C`3/2h .

Estimates for λh are very similar.
In two dimensions, even for a single equation, such estimates are not known.

On general quasi-uniform meshes, the sharpest result so far was obtained by Niijima,
[23], which says that ‖yh‖0,∞ ≤ Ch−1/8`h for ε ≤ h3/2. On structured meshes some
improvements are possible (cf. [31]).

Remark 4.15. The above argument does not require r = 1 or even r > 0. The
same proof works for any r(x) ≥ 0.

4.5. Proof of Proposition 4.12. We will only provide a proof for ‖λh‖0,∞,Ω+ .
The proof for ‖yh‖0,∞,Ω− is very similar. Let z0 ∈ Ω+ be such that ‖λh‖0,∞,Ω+ =
|λh(z0)| and G∗ = G∗z0 ∈ Vh be the discrete Green’s function defined in (4.6). Then
using the Green’s function representation we have

λh(z0) = aah(G∗, λh) = 〈ŷ, G∗〉a − 〈yh, G∗〉a.

Define

(4.22) Ω+
s = {x ∈ Ω : 1− sKh`h ≤ x ≤ 1}, for s > 0.

By Lemma 4.5, G∗ is small on Ω\Ω+
s , for some s. Hence by the assumption of the

theorem and using that the diameter of Ω+
s is of order h`h, Lemma 4.3, and Corollary

4.6,

〈ŷ, G∗〉 = 〈ŷ, G∗〉Ω\Ω+
s

+ 〈ŷ, G∗〉Ω+
s

≤ ‖ŷ‖Ω\Ω+
s
‖G∗‖Ω\Ω+

s
+ ‖ŷ‖0,∞,Ω+

s
‖G∗‖0,1,Ω+

s

≤ Chν + Ch1/2`
1/2
h ‖G

∗‖Ω+
s
≤ Chν + Ch`2h ≤ Ch`2h.
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Similarly, using that τ = C1h,∑
Te∈Th

τ〈ŷ,−(G∗)′〉Te

=
∑

Te∈Th∩(Ω\Ω+
s )

τ〈ŷ,−(G∗)′〉Te +
∑

Te∈Th∩Ω+
s

τ〈ŷ,−(G∗)′〉Te

≤
∑

Te∈Th∩(Ω\Ω+
s )

τ‖ŷ‖Te‖(G∗)′‖Te +
∑

Te∈Th∩Ω+
s

τ‖ŷ‖0,∞,Te‖(G∗)′‖0,1,Te

≤ Chν
∑

Te∈Th∩(Ω\Ω+
s )

‖ŷ‖2Te + C‖ŷ‖0,∞,Ω+
s

∑
Te∈Th∩Ω+

s

h3/2‖(G∗)′‖Te

≤ Chν‖ŷ‖2
Ω\Ω+

s
+ C‖ŷ‖0,∞,Ω+

s

∑
Te∈Th∩Ω+

s

(
h+ h2‖(G∗)′‖2Te

)
≤ Chν + Ch`h + Ch2‖(G∗)′‖2 ≤ Chν + Ch`h + Ch2h−1`h ≤ Ch`h.

By the Cauchy-Schwarz inequality and Corollary 4.6,

〈yh, G∗〉 ≤ ‖yh‖‖G∗‖ ≤ Ch1/2`3/2‖yh‖ ≤
1
32
‖yh‖2 + Ch`3h.

Similarly, using the inverse inequality and Corollary 4.6,∑
Te∈Th

τ〈yh,−(G∗)′〉Te ≤
∑
Te∈Th

τ‖yh‖Te‖(G∗)′‖Te ≤ C
∑
Te∈Th

‖yh‖Te‖G∗‖Te

≤ 1
32

∑
Te∈Th

‖yh‖2Te + C
∑
Te∈Th

‖G∗‖2Te =
1
32
‖yh‖2 + C‖G∗‖2

≤ Ch`h +
1
32
‖yh‖2.

Thus,

(4.23) ‖λh‖0,∞,Ω+ ≤ Ch`3h +
1
16
‖yh‖2.

The analysis for ‖yh‖0,∞,Ω− is very similar.

4.6. Proof of Theorem 4.7. Step 1: Initial estimate for the uncoupled
terms.
From arguments in [17] or [23] it follows that for some constant C0

Q2
ω+

(yh) ≤ C0a
s
h(yh, ω2

+yh) and Q2
ω−(λh) ≤ C0a

a
h(ω2
−λh, λh).

Thus,

1
C0

(
Q2
ω+

(yh) +Q2
ω−(λh)

)
− 〈λh, ω2

+yh〉s + 〈yh, ω2
−λh〉a

≤ ash(yh, ω2
+yh)− 〈λh, ω2

+yh〉s + aah(ω2
−λh, λh) + 〈yh, ω2

−λh〉a

= ASUPG({yh, λh}, {ω2
+yh, ω

2
−λh}).
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Adding and subtracting ASUPG({yh, λh}, {I(ω2
+yh), I(ω2

−λh)}) and using the orthog-
onality relation (2.16), we have

ASUPG({yh, λh}, {ω2
+yh, ω

2
−λh}) = ASUPG({y, λ}, {I(ω2

+yh), I(ω2
−λh)})

+ASUPG({yh, λh}, {Eω+(yh), Eω−(λh)})
= ash(y, I(ω2

+yh))− 〈λ, I(ω2
+yh)〉s + aah(I(ω2

−λh), λ) + 〈y, I(ω2
−λh)〉a

+ ash(yh, Eω+(yh))− 〈λh, Eω+(yh)〉s + aah(Eω−(λh), λh) + 〈yh, Eω−(λh)〉a,

where Eω(v) = ω2v − I(ω2v). Similarly to Lemma 3.6 and Lemma 3.7, we can show

ash(yh, Eω+(yh)) + aah(Eω−(λh)), λh) ≤ CK−1
(
Q2
ω+

(yh) +Q2
ω−(λh)

)
,

and

ash(y, I(ω2
+yh)) + aah(I(ω2

−λh), λ)

≤ C(δ +K−1)
(
Q2
ω+

(yh) +Q2
ω−(λh)

)
+ C

(
L2
ω+

(y) + L2
ω−(λ)

)
.

Thus, for δ small enough and K large enough we have

Q2
ω+

(yh) +Q2
ω−(λh)

≤ C
(
L2
ω+

(y) + L2
ω−(λ) + 〈λh − λ, I(ω2

+yh)〉s − 〈yh − y, I(ω2
−λh)〉a

)
.(4.24)

Thus, we only need to estimate the coupling terms,

(4.25) 〈λh − λ, I(ω2
+yh)〉s − 〈yh − y, I(ω2

−λh)〉a.

Step 2: Estimating coupled terms (4.25)
We split 〈λh − λ, I(ω2

+yh)〉s and 〈yh − y, I(ω2
−λh)〉a over three subdomains Ω−, Ω0,

and Ω+, which are defined at the beginning of Section 4.4. Using that ω+ = 1 on Ω−

and Ω0 and I(yh) = yh, we have

〈λh−λ, I(ω2
+yh)〉s = 〈λh−λ, yh〉sΩ−+〈λh−λ, yh〉sΩ0 +〈λh−λ, I(ω2

+yh)〉sΩ+ = I1+I2+I3.

We start with

I1 = 〈λh − λ, yh〉Ω− +
∑

Te∈Th∩Ω−

τ〈λh − λ, y′h〉Te .

Using diam(Ω−) = Kh`h we find ‖λh − λ‖L1(Ω−) ≤ (Kh`h)1/2‖λh − λ‖. This in-
equality, inequality ‖yh‖L∞(Ω−) ≤ Ch`3h + ‖λh‖2 from Proposition 4.12, and using
the Cauchy Schwarz inequality and Theorem 4.11 yield

〈λh − λ, yh〉Ω− ≤ ‖λh − λ‖0,1,Ω−‖yh‖0,∞,Ω−

≤ (Kh`h)1/2‖λh − λ‖(Ch`3h + ‖λh‖2) ≤ Ch`2h(Ch`3h + ‖λh‖2)

≤ Ch2`5h + Ch2`4 + C‖λh‖4 ≤ Ch2`5h + C‖λh‖4.

By the inverse inequality and the estimates above,∑
Te∈Th∩Ω−

τ〈λh − λ, y′h〉Te ≤
∑

Te∈Th∩Ω−

‖λh − λ‖0,1,TeCinv‖yh‖0,∞,Te

≤ C‖yh‖0,∞,Ω−‖λh − λ‖0,1,Ω− ≤ C(h2`5h + ‖λh‖4).
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Thus,

(4.26) I1 ≤ C(h2`5h + ‖λh‖4).

We postpone the estimate of I2 for now and proceed with

I3 ≤ 〈λh − λ, I(ω2
+yh)〉Ω+ +

∑
Te∈Th∩Ω+

τ〈λh − λ, I(ω2
+yh)′〉Te .

Notice that by the Mean Value Theorem and the assumption of the theorem,

(4.27) ‖λ‖0,∞,Ω+ ≤ Ch`h‖λ′‖0,∞,Ω+ ≤ Ch`h.

Using the Hölder, the triangle, and the Cauchy-Schwarz inequalities, the stability of
the interpolant, Proposition 4.12, and (4.27), we have,

〈λh − λ, I(ω2
+yh)〉Ω+ ≤ ‖λ− λh‖0,∞,Ω+‖I(ω2

+yh)‖0,1,Ω+

≤ (‖λ‖0,∞,Ω+ + ‖λh‖0,∞,Ω+)Ch1/2`
1/2
h ‖I(ω2

+yh)‖Ω+

≤ C
(
h`3h + ‖yh‖2

)
Ch1/2`

1/2
h ‖yh‖ ≤ C(h2`5h + ‖yh‖4).

The other term in I3 can be estimated similarly to obtain

(4.28) I3 ≤ C(h2`5h + ‖yh‖4).

Similarly, using that ω− = 1 on Ω+ and Ω0 and I(λh) = λh we have

〈yh−y, I(ω2
−λh)〉a = 〈yh−y, I(ω2

−λh)〉aΩ−+〈yh−y, λh〉aΩ0+〈yh−y, λh〉aΩ+ = J1+J2+J3.

The estimates for the terms J1 and J3 are very similar to I1 and I3 and we can obtain

(4.29) J1 ≤ C(h2`5h + ‖yh‖4) and J3 ≤ C(h2`5h + ‖λh‖4).

Thus, we are only left to estimate I2 − J2. Using that 〈yh, λh〉s = 〈yh, λh〉a, we have

I2 − J2 = 〈λh, yh〉sΩ0 − 〈λ, yh〉sΩ0 − 〈yh, λh〉aΩ0 + 〈y, λh〉aΩ0 = −〈λ, yh〉sΩ0 + 〈y, λh〉aΩ0 .

By the Cauchy-Schwarz and the arithmetic-geometric mean inequalities

〈λ, yh〉sΩ0 = 〈λ, yh〉Ω0 +
∑

Te∈Th∩Ω0

τ〈λ, y′h〉Te

≤ ‖λ‖Ω0‖yh‖Ω0 + C1Cinv
∑

Te∈Th∩Ω0

‖λ‖Te‖yh‖Te

≤ Ch−1‖λ‖2Ω0 + Ch‖yh‖2Ω0 ≤ C
(
L2
ω−(λ) + h2 + ‖yh‖4

)
.

Similarly,

〈y, λh〉aΩ0 ≤ C
(
L2
ω+

(y) + h2 + ‖λh‖4
)
.

Step 3: Combining all estimates and using consistency of the method.
Taking the above estimates into account we obtain,

(4.30) Q2
ω+

(yh) +Q2
ω−(λh) ≤ C

(
L2
ω+

(y) + L2
ω−(λ) + Ch2`5h + ‖yh‖4 + ‖λh‖4

)
.
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Now proceeding exactly like at the end of the proof of Theorem 4.11, the last estimate
(4.30) implies

Q2
ω+

(y − yh) +Q2
ω−(λ− λh)

≤ C
(
L2
ω+

(y − χ1) + L2
ω−(λ− χ2) + Ch2`5h + ‖y − yh‖4 + ‖λ− λh‖4

)
,

for any χ1, χ2 ∈ Vh. The global L2 error estimates of Theorem 4.11 finish the proof
of Theorem 4.7.

5. Numerical Results. We illustrate our theoretical findings of the previous
sections with a few simple examples.

5.1. Example 1. To contrast the convergence behavior of SUPG stabilized finite
element methods for single PDE solves with those for optimal control problems, our
first example applies the SUPG method to the solution of the single PDE

(5.1a) −εy′′(x) + y′(x) = f(x) on (0, 1), y(0) = y(1) = 0.

We set

(5.1b) ε = 10−6

and we select the function f(x) such that the exact solution is

(5.1c) y(x) = x3 − e
x−1
ε − e− 1

ε

1− e− 1
ε

.

We compute the L2 and H1 error between the computed solution and the exact
solution over the subdomain

(5.1d) Ω0 = (0.2, 0.8).

For small ε the exact solution has a boundary layer at x = 1. Without any special
mesh design, the SUPG method fails to resolve the boundary layer for meshes with
h > ε. The left plot in Figure 5.1 shows the exact solution (5.1c) and the solutions
computed using SUPG and piecewise linear and piecewise quadratic elements on a uni-
form mesh with mesh size h = 1/20. Note that, in contrast to the standard Galerkin
methods, when SUPG is used, the error in the boundary layer does not pollute the
numerical solution outside the boundary layer. The right plot in Figure 5.1 shows
the L2- and H1-errors between the exact and computed solution on the subdomain
Ω0 = (0.2, 0.8), where the computed solution is obtained using SUPG with piecewise
linear and piecewise quadratic elements. The numerical results confirm that these
errors are of optimal order.

5.2. Example 2. In our second example we apply SUPG to the solution of the
optimal control problem (1.1) on Ω = (0, 1). The right hand side f and the desired
solution ŷ are selected such that the optimal state y and adjoint λ are given by

(5.2a) y(x) = x3 − e
x−1
ε − e− 1

ε

1− e− 1
ε

, λ(x) = x2(1− x).

We set the diffusion and regularization parameters to

(5.2b) ε = 10−6, α = 1.
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Fig. 5.1. Results for Example 1. The left plot shows the exact solution (5.1c) and the solutions
computed using SUPG and piecewise linear (P1) and piecewise quadratic (P2) elements on a uniform
mesh with mesh size h = 1/20. The right plot shows the L2- and H1-errors between the exact and
computed solution of the PDE (5.1a) on the subdomain Ω0 = (0.2, 0.8), when the computed solution
is obtained using SUPG with piecewise linear (P1) and piecewise quadratic (P2) elements.

Note that with this choice of α, the optimal control u is identical to the optimal
adjoint.

The solution is constructed in such a way that the optimal state y has a boundary
layer at x = 1, but the optimal adjoint λ is smooth and has no boundary layers.
See also Figure 5.2. However, the failure to resolve the boundary layer in the state
pollutes the numerical solution in the entire domain Ω = (0, 1). As a consequence, the
error between the exact solution of the optimal control problem and the numerical
solution of the optimal control problem using SUPG on the subinterval Ω0 = (0.2, 0.8)
behaves like O(h) for both the L2 and the H1 norm and for both piecewise linear
and piecewise quadratic elements. See Figure 5.3. This convergence behavior of the
SUPG method for the optimal control problem is significantly different from that of
the SUPG method for a single equation, as illustrated in Example 1.
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Fig. 5.2. Exact and computed states (left plot) and adjoints (right plot) for Example 2. The
computed states and adjoint are obtained using SUPG with piecewise linear (P1) or piecewise
quadratic (P2) elements, respectively, on a uniform mesh with mesh size h = 1/20.

One way to recover the optimal convergence rates is to consider special meshes.
We rerun the same problem on a Shishkin mesh, which is uniform on each interval
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Fig. 5.3. The left [right] plot shows the L2- and H1-errors between the exact and computed state
[adjoint] for Example 2 on the subdomain Ω0 = (0.2, 0.8), when the computed solution is obtained
using SUPG with piecewise linear (P1) and piecewise quadratic (P2) elements.

[0, σ] and [σ, 1], where we take σ = 5ε| log h|. We observe the optimal order of
convergence for both the state and the adjoint in L2 and H1 norms in the interior for
piecewise linear as well as piecewise quadratic elements. See Figure 5.4.

error in the state error in the adjoint

Fig. 5.4. The left [right] plot shows the L2- and H1-errors between the exact and computed state
[adjoint] for Example 2 on the subdomain Ω0 = (0.2, 0.8), when the computed solution is obtained
using SUPG with piecewise linear (P1) and piecewise quadratic (P2) elements on a Shishkin mesh.

5.3. Example 3. The third example also applies the SUPG to the solution of
an optimal control problem. In the previous example, we selected the optimal control
and adjoint and constructed the other problem data from the optimality conditions.
This may seem artificial. Therefore, we now specify right hand side f and desired
state ŷ rather than the solution of the optimal control problem. We consider the
optimal control problem (1.1) on Ω = (0, 1) with data

f ≡ 1, ŷ ≡ 1, ε = 10−4, α = 10−2.

The optimal state, control, and adjoint for this problem are not known analytically.
Instead we compute the solution of the optimal control problem using SUPG on a fine
grid with mesh size h = 1/(5 ∗ 210). We refer to this solution as the ‘exact’ solution.
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We compare this ‘exact’ solution with the computed solution on meshes with mesh
sizes h = 1/5 to h = 1/(5 ∗ 28).

We note that the solution of the state equation with u = 0 exhibits a boundary
layer at x = 1. The control tries to move the state as close as possible to the desired
state ŷ ≡ 1, while obeying the homogeneous Dirichlet boundary conditions. Further-
more, the control regularization penalizes excessively large (measured in the L2 norm)
control inputs. The exact and computed states (left plot) and adjoints (right plot)
for Example 3 are shown in Figure 5.5.

The error between the exact solution of the optimal control problem and the
numerical solution of the optimal control problem using SUPG on the subinterval
Ω0 = (0.2, 0.8) behaves like O(h) for both the L2 and the H1 norm and for both
piecewise linear and piecewise quadratic elements. Since the optimal control and
adjoint are related via αu = λ, we do not show the controls.

Figure 5.6 shows the L2 and the H1 errors between the exact and the computed
states and adjoints on the subinterval Ω0 = (0.2, 0.8) for various mesh sizes. Although
the states, controls and adjoints are smooth on Ω0 = (0.2, 0.8), the errors again behave
like O(h) for both the L2 and the H1 norm and for both piecewise linear and piecewise
quadratic elements. Again, this convergence behavior of the SUPG method for the
optimal control problem is significantly different from that of the SUPG method for
a single equation, as illustrated in Example 1.
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Fig. 5.5. Exact and computed states (left plot) and adjoints (right plot) for Example 3. The
computed states and adjoint are obtained using SUPG with piecewise linear (P1) or piecewise
quadratic (P2) elements, respectively, on a uniform mesh with mesh size h = 1/20.

5.4. Example 4. Theorem 3.2 among other things shows that interior layers
do not pollute the solution. To illustrate this statement numerically we consider the
system (2.11) with

Ω = (0, 1)2, ε = 10−5, α = 1, c = (1, 0)T .

The functions f and ŷ are computed such that the exact solution is

y(x1, x2) = (1− x1)3 tan−1

(
x2 − 0.5

ε

)
(5.3)

λ(x1, x2) = x1(1− x1)x2(1− x2).(5.4)
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Fig. 5.6. The left [right] plot shows the L2- and H1-errors between the exact and computed state
[adjoint] for Example 3 on the subdomain Ω0 = (0.2, 0.8), when the computed solution is obtained
using SUPG with piecewise linear (P1) and piecewise quadratic (P2) elements.

state

0

0.5

1

0
0.5

1

!1

0

1

x1x2

adjoint

0

0.5

1

0
0.5

1
0

0.02

0.04

0.06

x1x2

Fig. 5.7. Exact state and adjoint for Example 4.

For small ε the exact state has an interior layer along the line x2 = 0.5. The
SUPG method without special treatment does not resolve the interior layer even in
the case of a single equation. Because of the coupling the computed adjoint is not
resolved along the location of the interior layer, the line x2 = 0.5, despite the fact
that the exact adjoint is smooth (cf. Figures 5.8-5.8). On the other hand Theorem 3.2
says that the interior layers do not pollute the SUPG solutions into the subdomains
of smoothness. This fact we observe numerically in Figure 5.9.

5.5. Example 5. For our final numerical example we consider (1.1) with

Ω = (0, 1)2, ε = 10−5, α = 10−2, c = (cos θ, sin θ)T with θ = 47.3o

The boundary conditions for the state are shown in Figure 5.10. The coarsest grid is
obtained by subdividing Ω into squares of size h × h with h = 1/40, and then sub-
dividing (southwest to northeast) each square into two triangles. Subsequent meshes
are obtained by regularly refining each triangle into four triangles. We refer to the
coarse grid as the level 1 grid and to the fine grid as the level 7 grid.

The analytical solution for this control problem is not available. Therefore we
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Fig. 5.8. Computed state and adjoint for Example 4 using SUPG with piecewise linear elements
on a uniform mesh with mesh size h = 1/40.
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Fig. 5.9. The left [right] plot shows the L2- and H1-errors between the exact and computed
state [adjoint] for Example 4 on the subdomain Ω0 = [0.8, 1] × [0, 1], when the computed solution
is obtained using SUPG with piecewise linear (P1) and piecewise quadratic (P2) elements.
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Fig. 5.10. Left plot: Problem set-up for Example 5. Right plot: Computed solution of the state
equation with u = 0 using SUPG on a uniform mesh with mesh size h = 1/40 and piecewise linear
elements.
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refine our coarse grid six times and use the computed solution on the fine grid as our
exact solution. We compute the errors between the computed solution on the grids
with level 1 to 6 with the ‘exact’ solution on the fine grid (level 7). We compute
the L2(Ω0) and H1(Ω0) errors, where Ω0 = (0.5, 0.7) × (0.2, 0.8). The right plot in
Figure 5.10 indicates that the solution of the optimal control problem is smooth in
Ω0. The observed convergence rates for the local L2 and H1 errors are close to linear
(cf., Figure 5.11) for both linear and quadratic finite elements.
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Fig. 5.11. The left [right] plot shows the L2- and H1-errors between the exact and computed
state [adjoint] for Example 5 on the subdomain Ω0 = (0.5, 0.7) × (0.2, 0.8), when the computed
solution is obtained using SUPG with piecewise linear (P1) elements.

6. Conclusion. In this paper we have shown that the behavior of the SUPG
method applied to PDE constrained optimal control problems can be very different
than the behavior of SUPG method applied to a single equation. In particular we
have shown that when the governing PDE is an advection dominated second order
elliptic equation, then the presence of the boundary layers pollutes the numerical so-
lution everywhere even into subdomains where the exact solution is very smooth. In
general in such situations only first order convergence rates are the best possible on
unstructured quasi-uniform meshes regardless the order of approximating polynomi-
als. Hence, for such problems, it does not payoff to use high order elements. This is
in sharp contrast to a case of a single equation.

Our numerical examples strongly support the conjecture that the reason for the
reduction of the error between the SUPG solution and the solution of the infinite
dimensional optimal control problem to first order is that the boundary layers are not
sufficiently resolved. The discretization errors in the boundary layers are transported
via the adjoint equation and the state equation into the domain. Hence, we expect
that this order reduction cannot be avoided by using other stabilizations than SUPG,
such as local projection based stabilizations. To regain the optimal convergence rates
one must resolve the layers, typically by using special meshes, as indicated by one of
our numerical examples.
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