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NUMERICAL ANALYSIS OF SPARSE INITIAL DATA IDENTIFICATION
FOR PARABOLIC PROBLEMS

DMITRIY LEYKEKHMAN ', BORIS VEXLER? AND DANIEL WALTER®

Abstract. In this paper we consider a problem of initial data identification from the final time observation for
homogeneous parabolic problems. It is well-known that such problems are exponentially ill-posed due to the
strong smoothing property of parabolic equations. We are interested in a situation when the initial data we intend to
recover is known to be sparse, i.e. its support has Lebesgue measure zero. We formulate the problem as an optimal
control problem and incorporate the information on the sparsity of the unknown initial data into the structure of the
objective functional. In particular, we are looking for the control variable in the space of regular Borel measures
and use the corresponding norm as a regularization term in the objective functional. This leads to a convex but non-
smooth optimization problem. For the discretization we use continuous piecewise linear finite elements in space and
discontinuous Galerkin finite elements of arbitrary degree in time. For the general case we establish error estimates
for the state variable. Under a certain structural assumption, we show that the control variable consists of a finite
linear combination of Dirac measures. For this case we obtain error estimates for the locations of Dirac measures as
well as for the corresponding coefficients. The key to the numerical analysis are the sharp smoothing type pointwise
finite element error estimates for homogeneous parabolic problems, which are of independent interest. Moreover,
we discuss an efficient algorithmic approach to the problem and show several numerical experiments illustrating
our theoretical results.
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1. INTRODUCTION

In this paper we consider a problem of identification of an unknown initial data ¢ for a homogenous parabolic equation

du—Au=0 in (0,T) x £,
u=0 on (0,7) x99, (1)
u(0)=¢q in €Q,
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from a given (measured) data ug ~ «(T") of the terminal state u(7") for some 7" > 0. In general, this problem is known to
be exponentially ill-posed, see, e.g., [17]. We are interested in the situation, where the initial data we are looking for, is
known to be sparse, i.e. to have a support of Lebesgue measure zero. The strong smoothing property of the above equation
makes it difficult to identify such sparse initial data. The remedy is the incorporation of the information that the unknown
q should be sparse in the optimal control formulation. Following the idea for measure valued formulation of sparse control
problems, see, e.g., [7HoL20,128], we will look for the initial state ¢ in the space of regular Borel measures M (£2) on the
domain €, which is known to be isomorphic to the dual space of continuous functions which are zero on 9, Cy(Q)*.
The corresponding optimal control formulation reads as follows

o 1 .
Minimize J(gq,u) = §||u(T) — ud||2L2(Q) + gl m(), ¢ € M(R), subject to (T). 2)

Here and in what follows, €2 is a convex polygonal/polyhedral domain in RN, N = 2,3, I = (0, T] is the time interval,
ug € L*(Q) is the given (desired /measured) final state, and o > 0 is the regularization parameter. A very similar problem
is considered in [7]. There, the initial state ¢ is also searched for in the space M (). For given ¢ > 0 and ug € L*(Q)
the optimal control problem in [7] is formulated as follows:

Minimize ||g|| rq(q) subject to ||u(T') — uall 2oy < € and (I). 3)

One can directly show, that problems (2)) and (3)) are equivalent by appropriate choices of o and €.

The optimal control problem (2) possesses a unique solution (g, %), see next section for details. For a numerical
solution of the optimal control problem under consideration we will use discontinuous Galerkin methods dG(r) of order
r for temporal and linear (conforming) finite elements for spatial discretizations of the state equation () leading to the
discrete optimal solution (Gkn, @xr). The same type of discretization (with » = 0) is used in [7], where weak-star
convergence G, — § in M(Q) for the control and strong convergence iy, (T) — @(T) in L>(£2) is shown for the
discretization parameters k and A tending to zero. However, no convergence rates with respect to k or h are derived in [[7].
The main goal of this paper is to close this gap and obtain precise error estimates. In addition, in the case when the
optimal control is in the form of linear combination of Diracs, we obtain convergence rates for the source locations and
the corresponding coefficients. We illustrate the theoretical results with numerical experiments.

For the general case (i.e. without any further assumptions) we will prove the following error estimate

(@ — @) (T) || L2 () < (k7 F + Lyyh),

where k£ denotes the maximal time step, h is the spatial mesh size, and ¢y, is a logarithmic term, see Theorem @ for
details.

From the optimality system (see next section) we will deduce, that the support of the optimal control (optimal initial
state) ¢ is contained in the set of maxima and minima of the adjoint state Z(0), see Corollary Under additional
assumptions (Assumption [T on this set, which implies that the optimal control g consists of finitely many Dirac measures,

ie.
K —
7= Bibs.,
=1

we will show, that the discrete optimal control Gy, has a similar structure, i.e.

K nq
ljkh = E E Bk’h,’ijd’ikh,wa

i=1 j=1

where each Dirac measure dz, on the continuous level is approximated by n; > 1 Dirac measures dz, n.; on the discrete
level, see Lemma6.11]|for details. In this setting we will provide (see Theorem [6.4] and Theorem [6.12)) an improved error
estimate for the optimal states, i.e.

(@ = ) (D)l z2() < (k¥ 4 Lynh).
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Moreover, we will prove an estimate for the error in position of the support points,

o 2r+1 3

|Zi = Tgh,ij| < (B0 +L7,h)
foralll <i¢ < Kand1 < j < n; and a corresponding estimates for the coefficients. As a corollary we obtain an error
estimate for the discrete optimal solutions in the norm on the topological dual of the Sobolev space W°°(Q). This also

implies the same rate of convergence for gx, with respect to the Kantorovich-Rubinshtein norm, [3} Section 8.3], given
by

lallke = supd (.6} | @€ (@), sup V=@ oy o1 g @
Il,w;ieﬂ, ‘xl - mQ‘
T1FT2

for ¢ € M(R). In fact, we readily verify that this norm is equiavalent to the (W1°°)* norm. Roughly speaking, the
metric induced by the Kantorovich-Rubinshtein norm can be interpreted as an extension of the well-known Wasserstein-1
distance, [18]], which is defined for probability measures, to signed measures with different mean values.
In order to obtain such convergence rates we need to revise fully discrete pointwise smoothing error estimates for a
homogeneous parabolic problem
dv—Av=0 in (0,T)xQ,
v=0 on (0,T)x 0%, 5)
v(0) =vy in €,

with a general initial condition vy € L?(2). This means that for the fully discrete approximation vy, we need optimal
pointwise spatial error estimates for (v — vy, )(7T') in terms of the L?(£2) norm of the initial data. This problem is classical
and was considered in a number of papers, we only mention the most relevant ones to our presentation. Global L>°(£2)
error estimates for smooth domains and uniform time steps were established in [16], on the other hand superconvergent
results at time nodes in L2(£) norm, again on smooth domains were established in [12]. One of the main contribu-
tions of our paper is the derivation of superconvergent in time and pointwise in space interior error estimates on convex
polygonal/polyhedral domains. More precisely, we establish the following result

(0 = v ) (T, 20)| < C(T) (K + 043,2) [Jeo] 2, ©

where zy € € is an interior point. The precise form of the constants and the logarithmic terms are given in the statements
of the Theorem and Theorem This result is required for our error analysis for the problem and is also of
independent interest.

Throughout the paper we use |-| for the absolute value and also for the Euclidian norm of a vector in R™. We employ
the usual notation for the Lebesgue and Sobolev spaces. We denote by (-, -) the inner product in L?(2), by (-, -) the
duality product between M(Q2) and Co(f2), and by (-, ) s« the inner product in L?(J x ) with a subinterval J C 1.
With W (0, T') we denote the usual space

W(0,T) = L(I; Hy () N H (I; H ().

The paper is organized as follows. In the next section we introduce the optimal control problem, derive first order
optimality conditions and discuss structural properties of the optimal solutions. In section |3} we present a fully discrete
scheme for the homogeneous parabolic equation (5) and state key smoothing error estimates, the proofs of which are
postponed until sections[7]and[8] In section[d] we look separately at the time semidiscretization and the full discretization
of the optimal control problem and derive some preliminary results. In section 5| we first obtain suboptimal error estimates
for the general case which under additional assumptions we improve in section[6] Finally, the last two sections are devoted
to the description of the algorithm and numerical illustrations of our theoretical results.
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2. OPTIMAL CONTROL PROBLEM

To introduce the precise formulation of the optimal control problem under the consideration we first discuss the solution
of the state equation (T)). For a given ¢ € M(Q) we define a (very weak) solution u = u(q) € L' (I x Q) of (I) if the
following identity holds

(wa U)IXQ = <qa ¢(0)>
forall ¢ € L>°(I x Q), where ¢ € W(0,T) is the weak solution of
—0wp—Ap=1¢ in (0,T) %,
=0 on (0,T)x 09,
p(T)=0 in Q.
It is well known, that ¢ € C(I x Q) for ¢» € L>(I x Q), see, e.g., [15, Theorem 6.8] on general Lipschitz domains,

or [4, Theorem 5.1]. Therefore, ©(0) € Cy(£2) and the solution v is well defined. There holds the following proposition,
see |7, Lemma 2.2].

Proposition 2.1. For each ¢ € M(Q) there exists a unique solution u of (1)) in the above sense. Moreover, there holds
we L(I; Wy (Q)) for all v, p € [1,2) with

2 N
S+=>N+1
r p
and u(T) € L*(2) with the corresponding estimates

lull pr rwor ) < €llallm)
and
lu(T)L20) < cllgllme)-

Remark 2.2. The final state u(7") has more regularity. There holds (—A)*u(T) € L?(2) for any natural number k. For
example by taking k = 1, we obtain u(T) € H?(Q) N Hg (£2) using the convexity of the domain.

The unique solvability of the state equation allows us to introduce the control-to-state mapping S: M(Q2) — L?(Q)
with S(q) = u(q)(T). By the discussion above this operator is linear continuous and due to S(g) € H?({) it maps every
weakly star converging sequence {q, } C M(Q) to a strongly converging sequence in L?(2). Based on this operator we
define the reduced cost functional j: M(Q2) — R by

) 1
ila) = §||S(Q) — ual72(q) + llal m)-
The optimal control problem (2) can then be formulated as
Minimize j(q),q € M(£). @)

Theorem 2.3. The problem (7)) possesses a unique solution § € M(SQ). There holds the estimates

_ _ 1
[a(T)|| 2y < 2ludllL2) and  a|glme) < iHud”zL?(Q)’

where @ = u(q) is the corresponding optimal state.

Proof. The existence follows by standard arguments, cf., e.g, [9, Proposition 2.2.]. The uniqueness follows as in [7,
Theorem 2.4] using density of the range of the semigroup generated by the heat equation [14], which is equivalent to the
backward uniqueness property of the heat equation. The estimates follow from j(g) < 5(0). O
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The unique solution ¢ and the corresponding optimal state @ can be characterized by the following optimality condi-
tions.

Theorem 2.4. The control § € M(RQ) is the solution of (1) if and only if the triple (q,u, z) satisfies the following
conditions:

e state equation, i = u(q) in the sense of Proposition
e adjoint equation for z € W(0,T) being the weak solution of

—5}2 —AzZ = 0, in (O,T) X Q,
z=0, on (0,T) x 09,
zZ(T)=a(T) —uq, in S

e variational inequality

—{1=a.2(0) < a(llalme) = lallme) foral g€ M(Q).

Proof. The proof is similar to [5, Theorem 2.1]. Note, that Z(0) € Cy(f2), which makes the duality product in the
variational inequality well defined. ]

The next lemma states additional regularity for z(0).

Lemma 2.5. Let § € M(2) be the solution of @), u be the corresponding state and z the corresponding adjoint state.
Let Qq be an interior subdomain of €, i.e. Qg C Q. Then there holds 2(0) € H*() < C?(Qq) with

12(0)[| zr4(020) < elluall Lz

where the constant ¢ depends on 2, T and €.

Proof. As in Remark2.2] one shows directly —AZz(0) € H?() N H{ () with
1AZ(0)| 520y < cllA%2(0)||L20) < ella(T) — udl 2,
cf. also below. Then the elliptic interior regularity result from [[13, Chapter 6.3, Theorem 2] implies
1200) || 52 (20) < cllAZ(0) || 52y < cl|i(T) — uallz2() < clluall2(@),

where in the last estimate we used Theorem 2.3] O

From the above optimality condition we obtain the following structural properties of the optimal solution ¢ and the
corresponding optimal adjoint state Z.

Corollary 2.6. Let q be the solution of (1), u be the corresponding state and z the corresponding adjoint state. Then
there hold

() a bound for the adjoint state Z(0)
|2(0,z)| < a forall z €Q,
(b) a support condition for the positive and the negative parts in the Jordan decomposition of § = ¢+ — q~
suppgm C {x € Q| 2(0,2) = —a} and suppg C{z€Q|2(0,2) =a}.
Moreover there is a subdomain Qq with Qo C Q such that

supp ¢ C Q.
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Proof. The proof is similar to [9] or [5]. O

Remark 2.7. The adjoint state Z(0) is analytic on §2g, see [19]. This implies by the above corollary that Lebesgue measure
of supp ¢ is zero.

3. DISCRETIZATION AND SMOOTHING TYPE ERROR ESTIMATES

In this section we describe the (fully discrete) finite element discretization of the (axillary) homogeneous equation (3))
and present smoothing type error estimates. To discretize the problem we use continuous linear Lagrange finite elements
in space and discontinuous Galerkin methods of order = in time. To be more precise, we partition 7 = (0,7 into
subintervals I;, = (ty—1,tm] of length kyp, = ¢y, — i1, where 0 = tg < t1 < -+ < tpr—1 < tpy = T. The maximal
and minimal time steps are denoted by k¥ = max,, k,, and ky;, = min,, k,,, respectively. We impose the following
conditions on the time mesh (as in [22]] or [24]):

(i) There are constants ¢, 8 > 0 independent on & such that
kmin Z Ck'B-
(ii) There is a constant x > 0 independent on k such that forallm =1,2,..., M — 1

k?’n

-1
k<
karl

< K.

(iii) It holds k < QT%.

The semidiscrete space X of piecewise polynomial functions in time is defined by
Xi={ v € L*(I; Hy(Q) | @rlr,, € Pr(lm; Hy(Q)), m=1,2,..., M },

where P,.(I,,,; V) is the space of polynomial functions of degree r in time om I,,, with values in a Banach space V. We
will employ the following notation for functions with possible discontinuities at the nodes ¢,,:

wh = lim w(t, +¢), w, = lim w(t, —¢), [Wn=w) —w,. (3)
e—0*+ e—0+
Next we define the following bilinear form
M M
B(w,p) = > (w0, @) 1x0 + (Vw,Vo)ixa + Y ([Wlm-1,05_1) + (0, 7)), ©)
m=1 m=2

where (-,-)7, «xq is the duality product between L?(I,,,;; H=(2)) and L?(I,,,; H}(£2)). We note, that the first sum van-

m

ishes for w € Xg. The dG(r) semidiscrete (in time) approximation vy € X ,‘j of (3)) is defined as
B(vg, 1) = (vo, p5) forall ¢y € XJ. (10)

Rearranging the terms in (9)), we obtain an equivalent (dual) expression for B:

M M—-1
B(w,p) == Y (w,00) 1, x0 + (YW, Vo) 1xa = Y (wy, [#lm) + (Wiy, ©3p)- (11
m=1 m=1

In the sequel we require the projection operator 7 for w € C(I, L*(Q)) with mpw|s,, € Pp(Ln; L2(Q)) for m =
1,2,..., M on each subinterval I, by

(Tpw — w, @)1, xq =0, forall o € P,_y(I,n, L*(R)), 7 >0, (12a)
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mew(ty,) = w(ty,). (12b)
In the case r = 0, mxw is defined only by the second condition.

Next we define the fully discrete approximation scheme. For h € (0,ho]; hg > 0, let 7 denote a quasi-uniform
triangulation of 2 with mesh size h, i.e., 7 = {7} is a partition of Q2 into cells (triangles or tetrahedrons) 7 of diameter
h, such that for h = max, h,,

diam(7) < h < C|T|ﬁ, forall 7€ T,
hold. Let V}, be the set of all functions in Hg(€2) that are affine linear on each cell 7, i.e. Vj, is the usual space of
linear conforming finite elements. We define the following three operators to be used in the sequel: discrete Laplacian
Ay : Vi, — V}, defined by
(—=Apvp,wy) = (Yo, Vwy)  forall vy, wy € Vi,
the L? projection Py, : L?(Q) — V}, defined by

(Prv,wp) = (v,wy)  forall wy, € Vi,
and the Ritz projection Ry, : H}(Q) — V), defined by
(VRyv,Vwp) = (Vo,Vwy,) forall wy, € V).
To obtain the fully discrete approximation of (3)) we consider the space-time finite element space
X ={vkn € X | vknlr, € Pg(Im; Vi), m=1,2,..., M }. (13)
We define a fully discrete cG(1)dG(r) approximation vy, € X ,:,11 of (3)) by
B(vkn, ern) = (vo,iy,) forall ¢py, € X;:’}L- (14)
Notice that we have the following orthogonality relations
B(v— vk, @) =0 forall ¢ € X, (15a)

B(v—vkn, orn) =0 forall g, € X)) (15b)
In the proofs we will use the following truncation argument. For wg, o € Xj, we let wy = X (¢, mjwk and @ =
X(tm,T]Pk> where X(t5,T] is the characteristic function on the interval (¢,5, T}, for some 1 < m < M, i.e. wy = 0 on
I U---U Iy for some m and wy, = wy, on the remaining time intervals. Then from @]) we have the identity

Bk, o) = Bwg, Br) + (Wi > P ) (16)

Same identity holds of course for fully discrete functions wyp, rn € X ,:}L The following smoothing properties of the
continuous, semidiscrete and fully discrete solutions are essential in our arguments.

3.1. Parabolic smoothing

It is well known that the solution v to the homogeneous problem (3)) has the following smoothing property.
! l c
180 ®)llLr () + (=AY v(B)llzr@) < Fllvollzr@) t>0, 1<p<oo, 1=01,.... (17
To get smoothing estimates in some other norms, we will frequently use the Gagliardo-Nirenberg inequality

yoo e
||g||L°°(B) < CHQH}{?(B)HQHLQ(By (18)
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which holds for any subdomain B C {2 fulfilling the cone condition (in particular for B = Q) and for all g € H?(B),
see [1, Theorem 3]. For B = it follows with the H2-regularity

g o -k
HQHLOO(Q) < C||AgHL2(Q)”g”L2(Q)' (19)

The following smoothing estimates can be obtained from (17).

Lemma 3.1. Let vy € L?(Q2) and v € W(0,T) be the solution of @). Then v(T) € H?() N H () and the following
estimate holds

[0(T) |20y < CT Hlvoll L2 ()
Moreover, for each interior subdomain Q) with Qo C Q, the final state v(T) is (real) analytic on such Qg and there hold

IVo(T)l| pe(00) < CT ™2 T ||ugllre()  and  [[o(T)lc200) < CT 2% ug | 220y

Proof. The first inequality follows right the way from (T7) with [ = 1 by H? regularity. The analyticity can be found,
e.g., in [19]. To prove the second inequality we first observe that

IVo(T)llz2() < CT72 |lvollz2i@y and || VAU(T)||z2(0) < CT 2 [lvo| z2(0y-

Then we use Gagliardo-Nirenberg inequality (I8) for g = Vo (T') and B = Q resulting in

N 11—
IV0(T) @) < CIVOD) o) V0D iy
z 1
< CHVAU(T)HLZ(Q)||VU(T)||L2(Q)
3N _

<CT= 557307 ug | g2
=CT™ 2% o 20y,
where we have used the interior regularity result [13, Chapter 6.3,Theorem 2]. To show the last inequality we use
Gagliardo-Nirenberg inequality (T8) for g = V2v(T) and B = ) resulting in
2 T 2 1-4
lo(D) ez < CUVOD 2 a0y I V0D 2y
N 1—-N
< oD s 0D 2
N 1-N
< C||AU(T)||14{2(Q)HAU(T)HH(?D
2 T -4
< ClIA%(T) | fa o 1 A0(T) 1 2
1N
<CcT '3 llvollz2 (),
where we again have used the interior regularity result [[13, Chapter 6.3,Theorem 2] and convexity of €2. O

For the discontinuous Galerkin methods similar smoothing type estimates also hold, see Theorems 3.,4,5,10 in [23] for
general L? norms, cf. also |11, Theorem 5.1] for the case of the L? norm.

Lemma 3.2 (Smoothing estimate). Let vy and vy, be the semidiscrete and fully discrete solutions of (10) and (T4),
respectively. Then, there exists a constant C independent of k and h such that

_ C
sup [|0pvx (t) || e (@) + sup [[Avk ()]l o) + ki Norlm—1ll e () < THUOHLP(Q)a
tel, tel,, m

_ C
sup [|0gven (E)|| o) + sup | Anven ()|l o) + ko | vkn)m—1llLe ) < r||volle(Q),

€l te€lm,
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form = 1,2,... M and any 1 < p < oo. For m = 1 the jump term is understood as [vg]o = v,jo — vy and
_ ot
[Uk:h]O = vkh,O — Ph’Uo.

In addition the stability with respect to the L”(2) norm is valid for the semidiscrete and fully discrete approximations
of the heat equation. For the proof we refer to [23, Lemma 5], see also [27].

Lemma 3.3. Let vy, and vy, be the semidiscrete and fully discrete solutions of (10) and (14), respectively. Then, there
exists a constant C' independent of k and h such that

vkl oo (r;ze(@)) < Cllvollr)  and vkl Lo (r;2e () < CllvollLr (o)

holds for any 1 < p < o0.

From Lemma [3.2] we immediately obtain the following corollary. Note, that the corresponding estimate is not true on
the continuous level, which explains the presence of the logarithmic term.

Corollary 3.4. Under the assumptions of Lemma[3.2} for any 1 < p < oo we have

M
T
>~ (10els sty + 18N 1@ + Bl AVl r(@) + Noklmtllr(@) ) < Cln—lvollzse)

m=1

and

M
T
> 1900kl 22 1 2000 HI A3 1525 @)+ 1Ak, 2o+ a1l @) ) < Ol ool oo,

m=1

Proof. We only provide the proof for the semidiscrete case, the fully discrete case is identical. Using the above smoothing
result from Lemma[3.2] we have

M
Z (/ ||5tvk(t)HLp(Q)dt+/
m=1 Im I

M
< Z K <Sup |00k ()| e () + sup [Av ()| L) + km1||[7fk}m—1||m(9)>
clm

tely,

IMWMMMMHkMM%MMmﬁHMMAMmﬂ

m

M
km
<C Z THUOHLP @ < ClH*HUoHLp(Q

where in the last step we used that

Z*</ 7<01 (20)

For sufficiently many time steps, applying Lemma [3.2]iteratively, we immediately obtain the following result.

Lemma 3.5. Let vy, and vy, be the semidiscrete and fully discrete solutions of (I0) and (14), respectively. For any
m € {1,2,... M}, anyl < m, and any 1 < p < oo there hold

- _ _ C
Sup 10 (=) ok ()] 20 + sup I(=2) ok (le (@) + ki (1= 2) " 0kl llo (@) < 3 Vol o),
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and

_ _ _ C
sup 10e(—An)" " orn (8)[| Lo ) +tSL}p 1(=An) vrn ()| Le@) + k(A1) Wknlm—1ll e @) < tTH”OHLp(Q)»
€lm €lm m

. tom
provided k < ;.
The next lemma is the semidiscrete analog of Lemma|3.1
Lemma 3.6. Let vg € L?(Q2) and vy, € X} be the semidiscrete solution of (I0). Let 2y be an interior subdomain, i.e.
Qo C . Then v (T) € Whe2(Q0) N C%(Qo) and the followings estimates hold
1N N
[Vor(T) L (00) < CT ™27 % g2y and  |Joi(T)l|lc2(0y) < CT 5 [lvol| L2(e)-

Proof. The proof is similar to the proof of Lemma[3.1]and uses Lemma 3.3] O

Using the discrete version of the Gagliardo-Nirenberg inequality

N 1—-N
||’UhHLoo(Q) < C”AhvhH£2(Q)”vh”LZ(?z)? forall vy, € Vh, 21D

which for example was established for smooth domains in [16, Lemma 3.3], but the proof is valid for convex domains as
well, we immediately obtain the following smoothing result.

Corollary 3.7. Under the assumption of Lemma|3.2\for allm = 2,3, ..., M, we have

m

sup ||vkn < (Q vollL2(0)-
su L>(Q) N/ L2(Q)

3.2. Smoothing pointwise error estimates

One of the main tools in obtaining error estimates for the optimal control problem under consideration are the pointwise
smoothing error estimates that have an independent interest. The next theorems show that for the error at a point (T, zg)
we can obtain nearly optimal convergence rates in space and superconvergent rates in time. For elliptic problems such
interior pointwise elliptic results are known from [30,31]]. For homogeneous parabolic problems with smoothing such
results are new.

The first theorem provides an L>°(2) error estimate for the semidiscrete error (v — vg)(T).

Theorem 3.8. Let vy € L?(Q), let v and vy, satisfy (3) and (10). Then there holds
1(v = o) (D) L= () < CTIE* ol 20,

with C(T) ~ T—2r+1+5),

Note, that we obtain here a superconvergent estimate of order O(k?"*1) for the discretization with polynomials of
order . The proof of this theorem is given in Section|[7]

Remark 3.9. In the sequel we will apply this and the following theorems for both, a heat equation formulated forward in
time (3)) and for a heat equation formulated backward in time, i.e.

—Ow—Ay=0, in (0,T)xQ,
y=0, on (0,7)x 09,
y(T)=yr, in Q
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for some yr € L?(12). Its semidiscrete approximation y, € X} solves

B(or,yx) = (yr,¢r(T)) forall ¢p € Xj.

For this case the statement of the above theorem reads

1(0) = g3t ol (o) < CDK yrlL2(0)-

Correspondingly we will apply also Theorem and Theorem for this setting.
A corresponding result is true also for the L norm of the gradient.

Theorem 3.10. Let vy € L*(Q), let v and vy, satisfy @) and (10). Let moreover Qo with Qo C ) be an interior
subdomain. Then there holds
IV (v — ve)(T)| L (20) < C(TVE"Hvoll L2 ().

with C(T) ~ T~ @r+3+%),
The proof of this theorem is given in Section[7}

Remark 3.11. The result of Theorem is valid also on the whole domain € instead of {2y with a slightly different
constant C'(T).

For the spatial error (vy — vk )(T) we can not expect an O(h?) estimate with respect to the global L°°(£2) norm.
However for a given point 2y € {2 we obtain the following result.

Theorem 3.12. Letvg € L?(R), let vy, and vy, satisfy and (14), respectively and let xo € Q) such that dist(xg, 0) =
d with d > 4h. Then there holds

|(vk — vkn) (T, z0)| < C(T, d)lenh®||voll 20,

where Ly, = In % + |lnh| and C(T, d) is a constant, which explicit dependence on T and d can be tracked from the proof.

The proof of this theorem is given in Section [§] Combining both theorems we immediately obtain an estimate for
(v = vEp) (T, ).

Corollary 3.13. Let vy € L?(2), let v and vy, satisfy () and (T4), respectively and let xo € Q such that dist(xq, 0Q) =
d with d > 4h. Then there holds

[(v = vrn) (T, w0)| < C(T,d) (K> + L h®) [Jvoll 20
where l, =In L + |In h|.
4. DISCRETIZATION OF OPTIMAL CONTROL PROBLEM

In this section we describe the temporal and spatial discretizations of the optimal control problem (2).

4.1. Temporal semidiscretization

To introduce the associated semidiscrete state ux, = uy(g) for a given control ¢ € M (2) we consider slightly modified
semidiscrete spaces X, C X C X/ defined by

Xi={or e U X Q) | eulry € Po(T WG (@), 9alr,, € Pr(Tns HY(Q), m=2,..., M }

and
Xr = { or € L2(I x Q) ’ orln € Po(Ts W (Q)), oulr, € Prll; HY(Q)), m=2,..., M }
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with some 1 < s < % and s’ > N with L + 1 = 1. For this setting we have ¢}, € Co(Q2) for all ¢;, € X7 due to
the embedding W, s’ (Q) < Cp(). The bilinear form B(-,-) from (9) can be extended to )Z',: x X i». This allows us to
define the semidiscrete state uy(g) € X}, by

Bluk, pr) = (¢, ¢f,) forall g, € XJ. 22)

The corresponding semidiscrete control-to-state mappings Sy, : M(2) — L?(Q) is given by Si.(q) = ux(q)(T) and the
semidiscrete reduced cost functional jj: M(2) — R by

) 1
ir(a) = 511Sk(9) = uall L2 (o) + @llalmee)-

With this reduced cost functional we formulate the semidiscrete optimal control problems without discretization of the

control space as follows:
Minimize jx(q), ¢ € M(Q). (23)

As on the continuous level we obtain the existence of a solution to [23).

Theorem 4.1. The problem|23|possesses at least one solution g, € M(Q) with corresponding state ty, = uy(q). There
hold the estimates

_ _ 1
1t (T) | 20y < 2l|uallr2@)  and  al|@ellame) < 5lluallZzo)-
Proof. The existence and the estimates follow by standard arguments, as on the continuous level. (]

The question of uniqueness of gy is more involved and is discussed after the statement of the optimality system.

Theorem 4.2. The control @, € M(Q) is a solution of (23) if and only if the triple (i, U, Zx) fulfills the following
conditions:

e semidiscrete state equation, U, = u(qr) € X], in the sense of (22).
o semidiscrete adjoint equation for Zj, € X, being the solution of

B(yk, zk) = (g(T) — ug, ok (T))  forall ¢y € )},2
e variational inequality
—(q— @ 7o) < a(lalme) = lakllme)  forall g € M(Q).

Proof. The proof is the same as for the continuous problem. (]

Corollary 4.3. Ler g, € M(Q) be a solution of 23), uy, € )?,: be the corresponding state, and z, € X " the correspond-
ing adjoint state. Then there hold
(a) a bound for the adjoint state 2,:0
|2k+0(9c)| <a foral z€Q,
(b) a support condition for the positive and the negative parts in the Jordan decomposition of Gy, = (j,j —q

supp g, C {xEQ ’ Z,io(a?):—a} and suppq, C {xEQ ‘ Ezo(x):a}.

Moreover there is a subdomain Qg with Qo C € such that supp @i C Qq.

Proof. The proof is the same as for the continuous problem. U
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The uniqueness of the solution g on the continuous level follows (cf. [7, Theorem 2.4]) by the fact that for the solution
of the heat equation (3) we have that v(T)) = 0 implies vo = 0. This is also true for the dG(0) discretization but is in
general wrong for the dG(r) semidiscretization with » > 1. However, the following technical lemma allows us to prove
uniqueness of the semidiscrete control g.

Lemma 4.4. Let ¢ € M(Q) and uj, = ui(q) € X be the corresponding semidiscrete state defined by @2). Let
ug(T) = 0. Then the holds:

(1) Forr =0 we have q = 0.

(2) Letr > 0. If there exists an open set D C §Q such that q|p = 0, then ¢ = 0.

Proof. Tt is well known, cf., e.g., [12]], that dG(r) discretization of a homogeneous problem coincides with the corre-
sponding subdiagonal Padé approximation scheme. Therefore, there is a rational function f, = a, /b, with polynomials
a, €P., b, € Py and b,.(s) # 0 for s € R, such that

upy = fr(=k1A)q, and wy,, = frl-knDug,, ., m=2,3,...M.

By the assumption of the lemma we have u;_,, = u(T") = 0.

(1) Forr = 0 we have fo(s) = 1= and therefore

(Id —k:MA)u,;M = Up proqs

which implies w, ), ; = 0. Similarly, we obtain w, = 0forall m = 2,3,... M and consequently ¢ = 0.

(2) Forr > 0 we argue differently. We consider the elgenvalues 0< A1 <A < /\3 . of —A and the corresponding
system of eigenfunctions ws, w, ... with (w;,w;) = &;;. The initial condition ¢ € M(2) C H~2(£2) can be
expanded as

q= Z GnWn, With ¢, = <q7wn> (24)

n=1

and the convergence to be understood in H ~2({2). We define the polynomials

M M
H am(kms) and Bg(s) = H b (km$).
m=1 m=1

With this notation we have
(Bi(=0)) 7" Ax(=2)g = ujp, =0
and consequently Ax(—A)g = 0. This results is

Z QnAk(An)wn =0
n=1

and therefore
GnAr(Ay) =0 foralln € N.
Assume now that ¢ # 0. Since Ay, € P,ps has no more than M positive zeros, there are only finitely many g,

with g,, # 0. For this reason we have that the expansion (24) is a finite sum and therefore ¢ € H?(2) N HZ ()
since w,, € H?(Q) N HE(Q) for every n by convexity of (2. We have with some R € N

R

q:quwm, Ny <ng<---<ng, ¢n, #0.
i=1
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From g € H?(2) and q|p = 0 we obtain that (—A)!q also vanishes on D for every [ € N. Therefore, we have
R
(—=A)'q ="M, gn,w,, =0 on D
i=1

and dividing by \}, , We have

LAV
Z ()\m> Gn;Wn, =0 on D.

i=1 MR

For [ — oo all summands with A,,; < A, converge to zero resulting in

w = Z Gn;Wp, =0 on D.

i:/\"i:)\"R

This w # 0 is an eigenfunction of —A, which provides a contradiction, since a nontrivial eigenfunction can not
vanish on an open set by the unique continuation principle, see, e.g., [21, p. 64]. This completes the proof.

(]
Theorem 4.5. The solution g, € M(Q) of is unique.

Proof. We first observe the uniqueness of u(T") by the strict convexity of the tracking term in ji(g). It remains to show,
that this implies the uniqueness of gj,. Assume there are two optimal controls and consider the difference g := g 1 —qk 2 €
M(). Let wy, = ug(q1) — ug(Gz), i-e. wi = ug(q). Then there holds ug(T) = 0. In the case r = 0 we immediately
obtain ¢ = 0 by the first statement of Lemma @ For r > 0 we obtain from Corollary [21;3], that supp gi; C Qo with
Qo C 2 and therefore supp g C €. This implies the existence of an open set D C 2\ {2 with ¢|p = 0. Then we obtain
g = 0 from the second statement of Lemma [4.4] 0

4.2. Space-time discretization
For a given control ¢ € M () we also introduce the associated fully discrete state ug, = ugp(q) € X 12}11 by
B(ukn, okn) = (4, 01p,) forall op, € XZ}“ (25)

the fully discrete control-to-state mappings Si;, : M(Q) — L?(Q) by Sk (q) = urn(q)(T), and the fully discrete reduced
cost functional ji,: M(2) — R by

. 1
dkn(a) = 511Skn(a) = wallZz () + allgllre)-

Based on this definition we formulate the corresponding optimal control problem, where we first look for the control
variable in the whole space M (2). This leads to the following formulation.

Minimize jip(q), ¢q€ M(Q). (26)

One can not expect, that this problem has a unique solution. For = 0 however, where is a unique solution in the properly
defined discrete subspace M}, of M (), see the discussion below. To introduce the space My, let A, be the set of all
interior nodes of the mesh 7. For z; € NV}, let 6, € M(2) denote the Dirac measure concentrated in z; and ¢, ; € Vj,
be the nodal basis function associated to the node x;. Then we define the space My, as

My, = span{ 6,

x; € Np } C M(Q)
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and introduce a projection operator Ap,: M(Q) — My, (cf., e.g., [5]) by

Ahq: Z <qv§0h,z>6:vI

z; €N
The definition implies that
<AhQ7w> = <Q7ihw> for all qc M(Q)7 w e CO(Q)7 (27)
where ij,: Cy(2) — V}, is the nodal interpolation operator. The following two properties of A, can be directly checked.
Lemma 4.6. There holds
@ ([ Angllmee) < llallme) forall g € M(Q).

(b) The fully discrete solutions of the state equation associated with q and with Ay q are the same, i.e.

upn(Aq) = ukn(q) forall g € M(Q).

Proof. The proof of (a) follows from [6| Thm. 3.1] and the proof of (b) uses the definition (23] of uyy, and 7). O
The next theorem provides the existence of a solution to (26)).

Theorem 4.7. There exists a solution of (26). For each solution i, € M(Q) the projection Gy, = ApGin € My, is also
a solution of 26). For r = 0 the solution Gy, € My, is unique. For any solution qxp, € My, and the corresponding state
g, the following estimates hold

_ _ 1
ltukn(T) 2@y < 2[luallLz@)  and  al|genlm@) < EHUdH%?(Q)'

Proof. The existence and the estimates follow as on the continuous level. The fact that Gx;, = ApGrn € My, is also a
solution of (26)) follows directly from Lemma The uniqueness in the case of » = 0 follows from the fully discrete
analog of the first statement of Lemma[d.4] cf. also the proof of [7, Theorem 4.8]. (]

Remark 4.8. For r > 0 it seems that problem (26) may in general have multiple solutions in Mj,. The argument we
used to prove uniqueness of the semidiscrete solution g, is based on the second statement of Lemma 4.4} which does not
extend to the fully discrete setting.

In the next theorem we state the optimality system on the fully discrete level.

Theorem 4.9. The control Gy, € My, is a solution of in My, if and only if the triple (Qxn, Ukh, Zkn) fulfills the
following conditions:

e fully discrete state equation, gy, = ukp(qrn) € X,:,ll in the sense (23).
o fully discrete adjoint equation for Zyp, € X,:’}L being the solution of

B(pkn, ) = (wrn(T) — ug, orn(T))  forall opn € X

e variational inequality

—(q = @rns 200 < @ (llallm) = l@rnllmey)  forall g € M(Q).

Proof. The proof is the same as for the continuous problem. (]

Remark 4.10. Please note, that the variational inequality in the above theorem holds for all variations ¢ € M (f2) and not
only for those from M},. This is due to the fact that the solution g, € M, solves the problem (26)), where the control is
not discretized, see Theorem

Corollary 4.11. Let gy, € My, be a solution of 26), ux, € X,z,ll be the corresponding state and Zy;, € X,Z}l the
corresponding adjoint state. Then there hold
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(a) a bound for the adjoint state leh,o
|2,jh70(;v)| <a foral z €,
(b) a support condition for the positive and the negative parts in the Jordan decomposition of G, = cj,jh - qyp,

supp g, C {:c €N,

2,':,170(3:) = —a } and supp q,;, C { x €Ny E,jh’o(x) =a } .

Moreover there is a subdomain )y independent on k and h with Qo C Q such that supp G C Q.

Proof. The proof is the same as for the continuous problem. (]

5. GENERAL ERROR ESTIMATES FOR THE OPTIMAL CONTROL PROBLEM

In this section we prove an error estimate for the error between the optimal state on the continuous and on the discrete
level, which does not require any further assumptions on the structure of the solution.
As the first step we provide an estimate for the error in the state at terminal time for a given control ¢ € M(Q).

Lemma 5.1. Let ¢ € M(Q) be a given control with suppq C Qg and Qy C Q. Let u = u(q) be the solution of the
state equation (1), uy, = uy(q) € X}, be the semidiscrete approximation 22) and ug, = ugn(q) € X ;}L the fully discrete
approximation 23). Then there hold

I = ) (T) 2 < CR ] e

and
1 Cur = wen) ()| L2 () < CT)eenh? all me)
where l, =In L + |In h|.

Proof. To prove the first estimate we consider the solution y € W (0,T') of the dual problem

-0y — Ay =0, in (0,7)xQ,
y=0, on (0,7T) x 909,
y(T) = (u—w)(T), in 9

and its semidiscrete approximation yj, € X & solving
Blpr,yr) = ((u = w)(T), px(T)) forall oy, € X}

There holds

1w = i) ()72 () = Blu,y) = Bluk, yr) = (0,5(0) = y0)
< llall v 1(0) =y oll =@y < CE* gl a1 (u = ) (T) 220,

where in the last step we used Theoremfor the error y(0) — y,:r’o in the L>°(Q2) norm, see also Remark
For the proof of the spatial estimate we consider the dual solution wy, € X & solving

B(ow, wi) = ((u, — wn)(T), i (T)) forall o € XF.

and wyy, € X,:’,lL solving

B(@rns wrn) = ((ur — urn)(T), 0kn(T))  forall gp, € X7
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Then we get

Il (un = wen) (D)1 72) = Bluk, wi) — Blugn, wen) = (g, wil g — wih, o)

< ||‘J||M(Q)Hw;r,0 - wijh,oHLOO(Qo) < kahh2||QHM(Q)||(Uk — ugn) (1) 20

where we used the fact that supp ¢ C Qg and Theorem [3.12]in the last step.
O

Remark 5.2. Please note that the assumption supp g C Qo with Qy C © in the above theorem is required only for the
spatial estimate.

Based on this theorem we can directly obtain estimates for optimal values of the cost functional.

Theorem 5.3. Let ¢ € M(Q) be the optimal solution of () with the corresponding optimal state u. Let g € M ()
be the optimal solution of the semidiscrete problem [23) with the corresponding state uy, € X}, and let Gy € My, be a
solution of the fully discrete problem (26)) with the corresponding state uy, € XIZ}L Then there hold:

() — ju(an)| < CE*+1

and
136 (@) = Jkn(@n)| < Clynh?®,
where {j, = In T + [Inh| and C = C(T,uy) depends on T and ||[uq| 2 (q)-

Proof. By the optimality of g for (7) we have
3(@) = e (@) < 5(ar) = jr(ar)
Similarly by the optimality of g, for (7)) we have

(@) = x(@x) = 3(q) — jr(@)
and therefore
17(2) — gr(qr)| < max (|5(qx) — jr(ar)l, 17 (@) — x(@)]) -
For both ¢ = q and ¢ = §;, we estimate

50) = 3n(@)] = 5 | Iu(@) = el — uele) = vallZ2(a
= 5 10u(a) = (@), ulq) + (o) — 2u4)

IN

1
5””((1) — uk (@) 22 llu(q) + ur(q) — 2udllL2(0)-
Then using the first estimate from Lemma[5.1] the estimates

lw(@)llz2) < Cllallam) and  [Jur(@)lz2) < Cllgllme)

as wells as estimates for ¢ and gj, from Theorem 2.3]and Theorem .T| we complete the proof for the temporal error. The
spatial error is estimated similarly by using the second estimate from Lemma[5.1] (]

The next theorem is the main result of this section, which provides an estimate for the error between the optimal states.
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Theorem 5.4. Let § € M(Q) be the optimal solution of () with the corresponding optimal state u. Let @, € M(2)
be the optimal solution of the semidiscrete problem [23)) with the corresponding state uy, € X}, and let gy, € My, be a
solution of the fully discrete problem (26)) with the corresponding state uyy, € X,:,ll Then there hold:

(@ — @) (T)|| 20y < Ck™2

and )
@@k — wxn)(T)]|L2() < CLh,
where (p, =In % + [Inh| and C = C(T, o, ug) depends on T, o and ||ugl| 12 (.-
Proof. To prove the first estimate we use the variational inequality from Theorem 2.4 with ¢ = g,
—(@x = 4,2(0)) < a (I3l mee) — llallmee)

and the corresponding variational inequality from Theoremd.2] with ¢ = ¢

(G = > 25 0) < @ (l@llmee) = gkl i) -

Adding these two inequalities results in
(@ — q,2(0) — 7o) > 0.
To proceed we introduce @y, = ui(g) € X}, as the solution of (22)) for ¢ = g and 2, € X, fulfilling
B(px, 2k) = (a(T) — ug, o (T)) forall @) € Xj. (28)

Using the semidiscrete state and adjoint equations we obtain

+ Tk — 3,250 — Zi0)

+ B(ug — bk, 2 — Zk)

+ ((@ = )(T), (ay — @) (T))

— (@ = a) (D720 + (@ — @) (T), (@ — i) (T)).

This results in
(@ — @) (D) |72y < (@ — 7, 2(0) = £4) + (@ — @)(T), (@ — i) (7))
By the Cauchy-Schwarz inequality in the last term and absorbing [|(% — g )(T')|| 12(q) in the left-hand side we obtain

(@ — @) (D)7 < 2(@k — G, 2(0) — £ o) + (@ — @) (D)1 22(c)- 29)

Using the estimates for [|g|| x() and [|Gk|| r(c) from Theorem 2.3|and Theorem [4.1] we get

(@ — @) (T) 172 () < Clluallz2qyl1Z(0) = 25|

o) + |I(u — ﬁk)(T)H%z(Q)-
For the term ||Z(0) — 73;0 || o () We can directly apply Theorem 3.8|resulting in

12(0) = 5 oll <oy < CDR(T) = wall oy < OO gl 2.
The term ||(@ — @ )(T)|| £2(q) is estimated by the first estimate in Lemma leading to

i 1
(@ — @) (T) | 20y < CD)EHdllaa) < CRuall 22 g
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Putting these estimates together we obtain
(3 — @) ()2 () < CK*,

which is the the first desired estimate. The estimate for (@ — @gp)(T) is obtained similarly using Theorem and the
second estimate from Lemma[5.1] O

For the error in the control we can in general only expect a weak star convergence, see the following lemma.

Lemma 5.5. Let § € M(Q) be the optimal solution of (1), Gz € M(Q) be the optimal solution of the semidiscrete
problem @23), and Gi, € My, be a solution of the fully discrete problem [26). Then there holds

— * 0 _

g —q in M(Q) for k—0

and for fixed k > 0
Toh — Gr  in M(Q)  for h— 0.

Proof. The proof is similar to the proof of [7, Theorem 4.10]. (]

Under an additional assumption stronger results are discussed in the next section.

6. IMPROVED ERROR ESTIMATES FOR THE OPTIMAL STATE AND CONTROL

In the previous section we provided error estimates for the error in the cost functional and for the optimal states at the
terminal time. In general we can not expect an error estimate for the control, § — g, with respect to the norm in M (€2),
since only weak star convergence of the controls can be expected, cf. the corresponding discussion in [[7]. However, if the
optimal control consists of finitely many Diracs, error rates for the positions and the coefficients of these Diracs can be
shown. To prove such error estimates and to improve the estimate for the state from Theorem [5.4] we make the following
assumption.

Assumption 1. Let q be the solution of the problem of (1) with the corresponding optimal state u and adjoint state z. We
assume that

suppg={z € Q||z2(0,2)|=a} ={Z1,Z2,...,Tx }
with K € Nand z; € Q fori=1,2,..., K are pairwise disjoint points. Moreover, there holds

V?2(0,Z;) is positive definite for T; with (0, Z;) = —«

and
V?2%(0,Z;) is negative definite for z; with 2(0, ;) = a,
where V?%(0, Z;) denotes the Hessian matrix of Z with respect to the spatial variable.

Remark 6.1. e From Corollary [2.6](b) we have that
suppg C {z € Q[ |2(0,z)[ = }.

Here, we assume equality of these two sets and the finite cardinality of them.

e Due to the fact |Z(0, 2)| < a by Corollary [2.6| (), the points Z; with Z(0,Z;) = —« are the minimizers and the
points Z; with (0, Z;) = « are the maximizers of Z(0). Therefore, we have VZ(0, Z;) = 0 and the corresponding
Hessian matrices are positive semidefinite in the former and negative semidefinite in the later case. In addition we
assume positive and negative definiteness respectively. This assumption corresponds to sufficient second order
optimality conditions for minimizers and maximizers of Z(0).

e Similar assumptions can be found in the literature, see [25/[32] in the context of semi-infinite programming and
the notion of non-degeneracy in super-resolution [10].
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Under the above assumption the optimal control ¢ consists of finitely many Diracs and has the form
K —
q=> Bz, (30)
i=1

with 3 = {B;} € RE, where j3; > 0 for Z; with 2(0,Z;) = —a and 3; < 0 for Z; with (0, Z;) = a.
6.1. Error estimates for the temporal error

We first prove that under Assumption [I] the structure of the semidiscrete control gy is similar to that of ¢ (30). To
this end we first show that Hessian matrix of the discrete adjoint state zj, has the same definiteness properties as of the
continuous adjoint state Z in the neighborhoods of the points Z;.

Lemma 6.2. Let Assumptionbe fulfilled. Let g, € M(S2) be the optimal solution of the semidiscrete problem 23)) with
the corresponding state iy, € X}, and the adjoint state z, € X|. Then there exist ¢ > 0, kg > 0, and v > 0 such that

Amin(VQ'EI::O)(:E) Z 0

forall x € B.(%;) and all k < kg for T; with Z(0,Z;) = —a, where Apin(+) denotes the smallest eigenvalue of the
corresponding matrix. Similarly,

/\min(*VQEI—:,o)(I) e
forall x € B.(%;) and all k < kg for T; with 2(0,%;) = a.

Proof. We consider Z; with (0, Z;) = —a. The Hessian matrix V22(0, ;) is positive definite by Assumption (1} More-
over 2(0) € C%(Qp) by Lemma Therefore, there exists a neighborhood B.(Z;) such that V2%(0, z) is uniformly
positive definite for x € B¢ (Z;). It remains to prove that

||2(0) — ZZOHCZ(QO) —0 as k—0.
There holds

12(0) = 2} ollcza) < ell2(0) = Zgll ) < clAZ(0) = Zio)lm2(e) < cllA*(Z(0) = Zio)llz2(e)

by the embedding H*(Qg) < C?(Q), the interior regularity result [13, Chapter 6.3,Theorem 2] and convexity of §2. To
proceed we insert 2, € X, defined by (28) leading to

12(0) = 2l llca(a) < el A%(2(0) — )220y + el A% (2 — Zio)lL2()-
The first term is directly estimated by Lemma[7.2] (below) with j = 2 resulting in
1A2(2(0) = o)l z2() < CK* !
and for the second term we have by the smoothing estimate Lemma [3.5]
18%(25 = 50 l2@) < Cll(@ — @) (T) | p2(o) < CK2,

where in the last step we used the first estimate from Theorem[5.4] This completes the proof. (]

Lemma 6.3. Let Assumption [I| be fulfilled. Let g, € M(Q) be the optimal solution of the semidiscrete problem (23)
with the corresponding state uy, € X and the adjoint state z;, € X.. Then there is an € > 0 and ko > 0 such that the
neighborhoods B, (Z;) are pairwise disjoint and for each i and k < kg there is a unique Ty, ; € B.(%;) such that

Zk»,o(fk,i) =a if 2(0,7;) = «
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and
2 o(@hi) = —a if 2(0,3;) = —a.

Moreover there are no further points x € ) with E:O(a:) = *a and the semidiscrete control has the structure

with B, = {Bk,i} € RE, where Blm’ > 0 for &y, ; with Z,';O(a’:k,i) = —«a and B;“ < 0 for &y, ; with Zzo(im) =q.
Proof. First we choose € > 0 such that the statement of Lemma6.2|are fulfilled for all 7 and the balls B.(7;) are pairwise
disjoint. Let i be fixed with z; ((Zy;) = —a. The case of z ,(Zx,;) = o is discussed in the same fashion. From

Lemmaﬁwe have G, — G in M(£2). We choose a smooth cut-off function w with w(z) = 1 for all z € B, /2(%;) and
with suppw C B.(Z;). From the weak star convergence we obtain

<Qk7w> — <CY7 UJ> = Blw(jz) = Bi > 0.
Therefore, there exists ko > 0 such that (g, w) > 0 for all & < ko, which proves that supp g, N B (Z;) is not empty. The
support condition for g from Corollary 4.3|implies the existence of at least one Zy, ; € B.(Z;) with Z;‘O(f ki) = —o. By
Lemma 2;:0 is strictly convex on B.(Z;). This implies the uniqueness of the minimizer Zj, ; in B.(Z;). In order to

show that there are no further points x with Z ,(¥) = —« in the complement of the union of all B.(;), it is sufficient to
show that ||Z(0) — 2,‘;0 | Lo () — 0 for k — 0. We have as in the proof of the previous lemma

12(0) = 2ol () < 112(0) = 2ol + 1580 — Zrolli= (@),
where Z;, € X, is defined by (28). For the first term we obtain by Theorem [3.§]
12(0) — 2ol Lo ) < CDEHU(T) — uall L2 (o

and for the second one
N _ _ el
12160 = Zdoll o) < (@ = ) (D)l L2 < Ok 2,

where in the last step we used the first estimate from Theorem[5.4] This completes the proof. U

The main result of this section provides optimal order estimates for the error in the position Z; — Zj ;, the coefficients
Bi — Bk, and improves the first estimate from Theoremfor the state error ||(z — tg)(T)|| L2 ()

Theorem 6.4. Let q be the solution of the problem of (I) with the corresponding optimal state u and the adjoint state z
and let Assumptionbe fulfilled. Let moreover g, € M(S2) be the optimal solution of the semidiscrete problem 23)) with
the corresponding state Uy, € X, and the adjoint state Z;, € X|. Then there exists ko > 0 such that for k < kg there hold
(a)
18— @) (1) | 20y < CRZ+Y,

(b)
max |Z; — Tg,;| < Ck¥r+t
1<i<K
(©) -
18— Bi| < CE* !
(d)

llg — (ij(leao(Q))* < O+t

where C = C(T, a, uq) depends on T', o and ||ugl| 12 (q)-
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Remark 6.5. From the equivalence relation in (??) we directly infer
- = 2r+1
7 — qrllkr < CE*

from statement (d) above.

To prepare the proof of Theoremwe first estimate the error in the position Z; — Zj, ; and in the coefficients Bi — B—,“
in terms of the state error ||(z — ) (T')||2(q).-

Lemma 6.6. Let Assumption[I|be fulfilled. Then there exists ko > 0 such that for k < kg there holds
|2 — Zpi| < CE T+ Cll( — ) (T) || 120

foralli=1,2,... K, where C = C(T,uq) depends on T and |[uq||r>()-

Proof. Forafixedi € {1,2,..., K} we assume without restriction that Z(Z;) = —« (the case Z(Z;) = « can be treated
similarly). Then we have that 520(@“‘) = —a by Lemma The point Z; is a minimizer of Z(0) and the point Zy, ; is a
minimizer of Z,’:O. Therefore, there holds

Vz(0,%;) =0 and Vz,j,o(jzm) =0.
Due to the fact that V22(0) is uniformly positive definite on B.(Z;) and 7). ; € B.(Z;) we have
|7 — Zri| < CIVE(0,3;) — VZ(0,2Z1,4)| = C|VZ o(Thi) — VZ(0, T )|
and therefore
|75 — Tl < CIIV(Z(0) = 5ol L= (0) < CIV(Z0) = £ o)< (00) + CIV(EL o = B o)l L=(0)
where 2,10 € X is the solution of the intermediate discrete adjoint equation (28) and € is an interior subdomain with

U B.(Z;) € Qp, Qo C Q.

1<i<K
By Theorem[3.10| we have
IV(2(0) — 2 )l (0) < CKHUT) — uallL2) < CKF ™ H|uall 20
and by the smoothing property from Lemma 3.6]
V(%0 = Zio) Lo o) < Cll(a — @) (1)l L2 (o) -
This completes the proof. U

To proceed we introduce the operators G, G*, G, : REK — L2 (Q) by

K K K
G(B) =S (Z &%) ,GRB) =8 (Z Biai,c_,,;> , Gr(B) = Sk (Z ﬁia@,i> :
=1 =1 =1

where S and S, are the continuous and the semidiscrete solution operators defined above. Moreover we restrict the
codomains of these operators to the corresponding image sets and call the resulting operator G, G* and G}, with

G:RE 5 Im(G) c L*(Q), G*:R¥ = Im(G*) c L*(Q), Gi: RX = Im(Gy) C L*(Q)
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and
G(B) = G(B), G*(B) = G*(B), Gr(B) = Gx(B), forall B e RX. 31)

In the next lemma we estimate the errors between these operators.

Lemma 6.7. Let Assumption[I|be fulfilled. There hold
k o
1G(B) — G"(B)|lL2() < C|B] 11%1%?% Ty — Ty
and
IG*(8) = Gr(B) |20y < CIBIK* .

Proof. For given 3 € RX we consider ¢, ¢* € M () defined by

K K
g=Y Bidz, and ¢* =) Bidz,,
=1 =1

as well as the corresponding states u = u(q), u* = u(q*) in the sense of Proposition [2.1|and u;, = u,(¢%) € )?}; in the
sense of (22). The second statement is then directly given by Lemma[5.1] since

IG*(B) = Gr(B)ll2(0) = (W* = uw)(T) I L20) < CK**H|¢" | mee) < CIBIK* 1.
To prove the first statement we consider a dual problem for y € W (0, T') solving

-0y — Ay =0, in (0,7) x Q,
y =0, on (0,T) x 909,

and obtain
IG(B) = G*(B)1Z2(0) = I(w — u*)(T) 720y = (@ — a",4(0))
K
:Z (0, %) — y(0, Zh4))
|ﬁ|||Vy( M oo (20) 1252%@2 — Zp i
< O1pI[(u — uk)(T)||L2(Q) f%liaé{m — Zpl,
where in the last step we used smoothing estimate from Lemma 3.1 for y. This completes the proof. (]

Lemma 6.8. Let Assumptionbe fulfilled. The operators G, G* are bijective and there is a constant ¢ > 0 such that
Bl < cllGB)llr2()  and || < cllG*(B) 2o
hold for all 3 € RX. Moreover, there is ko > 0 such that G, is bijective and the estimate
18] < cl|Gr(B) L2

holds for all B € RE and all k < k.
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Proof. All three operators G, G* and G, are surjective by definition. We first argue the injectivity of G. Let G(3) = 0 for
some 3 € RX. This means that for the solution v of the heat equation with the initial condition given as the corresponding

linear combination of Diracs, i.e. v = S (Efil ,Biéji), we have v(T) = 0. By a similar argument as in proof of

uniqueness of the optimal control g, cf. [7, Theorem 2.4], we obtain

K
Z Bidz, = 0.
i—1

This results in 8 = 0 by the fact that the points Z; are pairwise disjoint. This provides the existence of an inverse mapping

G~1: Im(G) C L?(Q2) — RE and the estimate
18] < 167 2@y e |G 20 (32)

holds. For the operator G¥ we can argue similarly. It remains to show that G is bijective and |G}, || L2(Q)-RK 18
bounded independently of k. Let 3 € R¥ be arbitrary. There holds by (32)) and Lemma

181 < clG(B) 2y < el Gr(B)llnzoy +clIG(B) — G*(B) 2y + G (8) = Gi(B) (e
< cllGu(B) 2o + Bl ma |7 — il + |G+

< cllGre(B)ll2 o) + C\B|k7‘+% + | Bl

where in the last step we used Lemmal[6.6|and Theorem[5.4] Choosing ko small enough we obtain

1
1Bl < cllGr(B)lL2(0) + 5\5|7

which completes the proof. (]
Lemma 6.9. Let Assumption[I|be fulfilled. Then there exists ko > 0 such that for k < kg there holds
B = Bil < CK* + Ol (@ — @) (1) 252
where C' = C(T,uq) depends on T and ||ug|| L2 (q).
Proof. There holds by Lemmal6.8]
1B = Bl < c|G(B) — G(Br)ll 2o
< d|G(B) — Gk(Bk)HLz(Q) + |G (Br) — Gk(ﬁk)”mm) + C||Gk(5k) - G(Bk)||L2(Q)~
By the definition we have G(j3) = u(T) and Gy (%) = ux(T). Using Lemma and Lemmawe obtain
1B = Bl < ell (@ — @) (T)||2() + clBrl K™ + | B max |7; — T ]
< cll(@ = ap)(T)| 2 () + el Brlk* .

The fact that ~
1Bkl < cllarllme) < clluallrzo)
completes the proof. (]

Previous lemmas allow us to obtain the corresponding estimate for a negative norm of ¢ — i in terms of ||(z —
k) (1)l L2 (0)-
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Lemma 6.10. Let Assumption|[l|be fulfilled. Let § € M(S) be the solution of (1) and @, € M(S2) be the solution of the
semidiscrete problem (23). Then there holds

1q = @il w9y < CE T+ C|l(@ — wp)(T) | 22(0)

Proof. Let ¢ € W1°(Q) with [|o]| 1.0 () < 1. We have to estimate

<qfq_ka B? £L‘1 Bk 7¢(Ik 1))

(ﬂ ﬁkz irz +Zﬂkz 7, (xk 7,))

-
Il

HM» HM»

ClB = Brllell =) +|/D’k| max [ 7 — Tl [|Vell e () -

Using Lemma [6.6]and Lemma [6.9] we obtain
(@— Qo) < CR 4+ C||(a — g ) (T) || 22 (),
which completes the proof. (]
We proceed with the proof of Theorem [6.4]
Proof. We start with the estimate (29) from the proof of Theorem[5.4] i.e.
(@ = ar) (D) Z2() < 2@k — @ 2(0) = 20) + (@ — @) (D)1 22(q), (33)

where 4, = uk(q) € X} and 2, € X} is the solution of (28). The second term can be estimated as in the proof of
Theorem [5.4] by the first estimate in Lemma [5.1]leading to

(@ = ax)(T)[| 220y < Ok H|al me) < CE*Huall72q)
It remains to estimate the duality product from (33). We have by Lemma[6.10]

2oy <la [12(0) = 2o llwroe ()

<q_k — qv 2(0) - >
<(CE* 1 4+ Cl( — k) (T)| 2e) 120) = 2 gllw.= (20)

where we have used the fact that supp g, supp gr C €. Using Theorem 3.8]and Theorem [3.10 we have
12(0) = 2 gllwre ) < CR*HH1G(T) — wallL2(0) < O uall L2 (0)-
Putting all terms in (33) together we get
(@ = k) (D) Z2() < C (CE + Cli(a@ — @) (T) || L2 (y) k27 + CEF 2,

Absorbing ||(@ — ) (T)||L2(q) in the left-hand side we obtain the estimate (a) in Theorem The estimates (b), (c),
and (d) are obtained from (a) using Lemmal[6.6} Lemma[6.9)as well as Lemma|6.10]
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6.2. Error estimates for the spatial error

For the semidiscretization we have shown (see Lemma [6.3) that the number of support points of the semidiscrete
control g, € M(Q) is the same as on the continuous level in Assumption For the fully discrete control ggp, € My, the
situation is different. We will show (see next lemma) that in the neighborhood of each support point Zj, ; of gy, there is
at least one support point of g, but there could be more than one such point. This phenomena is also observed in our
numerical experiments.

Lemma 6.11. Let Assumption[l|be fulfilled. Let g, € M(Q) be the optimal solution of the semidiscrete problem (23)
with the corresponding state Uy, € X, and the adjoint state zj, € Xj,. Let qin, € M}, be an optimal solution of the fully
discrete problem (26) with the corresponding state iy, € X,:’}L and the adjoint state Zyp, € X,:j}l. Then there is ky > 0
such that for any fixed k < kg the following holds. There is ane > 0and hy > 0 such that the heighborhoods B (Zk,i)
are pairwise disjoint and for each i and h < hg there is at least one Ty, ;; € Be(Tr,;) N N, such that

Zin0(@rnig) = o if Z5o(Tr) = @
and
Zino(@rnig) = —a if Zf o (Thi) = —a.
Moreover there are no points x € Q\ U, B=(Z;) with z;, o(z) = Lo

Proof. The proof is similar to the proof of Lemmal6.3] O

Under the conditions of Lemma[6.11]a fully discrete control g, consists of groups of Dirac functionals for each single

Dirac 6z, , on the semidiscrete level. This means, that gy, is given as
K n;
drkn = E E Brh,ijOzis ;5
i=1 j=1

where n; € N describes the cardinality of supp gxs| . (s, )- The cardinality of supp g, is then K, = Zfil n; > K. In
order to compare the vector of coefficients Brn = {Bkh,i]‘} € R&» with the vector 8;, € R¥ on the semidiscrete level,
we define By, € RE by

Mg
Brh,i = Zﬁkh,i]w
j=1
The next theorem is the main result of this section.

Theorem 6.12. Under the conditions of Lemma[6.11|there holds

(@)

|t — trnllz2(0) < Cﬁéhh,
(b)
|Zki — Thnij] < Cféhh
foralll <i< Kandl<j<mn,;
©
1B — Benl < Cf%hh,
(d)
@ — Gl ()~ < Cf%hh-

where l, =In L + |In h|.
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Remark 6.13. As in Remark[6.5] we directly conclude the a priori estimate

1
@k — Grnllkr < CLZR

from statement (d) in Theorem [6.12}

To prove Theorem [6.12] we start with the lemma providing a sub-optimal estimate for the distance between the support
points of gi and qxp,-

Lemma 6.14. Under the conditions of Lemma there is a constant C' > 0 such that for each Ty, ; € Be(ZT,;) with
zz_h,o(jkh,i) = +a there holds

1
Tk — Trnl < Cf;ﬁhh%,
where l, =In L + |Inh|.

Proof. We consider the Taylor expansion with an appropriate & € (Zk s, Tkh,i)

1

20 (@rni) = 2o (Thi) + VZL (@) T (Thi — Trni) + 5 (@ni — Zrn)' V2EE () (Thi — Thns)
1
= Zln0(@rni) + 5 (Thi = Trni) T V2EL(€) (Thi = Tani),

where we used that Z,:O(fchi) = 27, o(Zn,;) by the previous lemma and Vi,j,o(a?;m) = 0 by the optimality of Zj, ; for
2,:0, see Corollary and Lemma Using uniform definiteness of V22,:0, see Lemma we obtain

Newi = Zenil® < 1250 = Znoll @0)»
where (g is an interior subdomain with
supp g, Usupp grn, C 0, Qo C €,
see Corollary and Corollary To proceed we introduce an intermediate discrete adjoint state 2, € X ,:,IL fulfilling
B(pkn, Zkn) = (k(T) — ug, pin(T))  forall gpy € X[7),. (34)

We obtain

’Y|57k,i - jkh,i|2 < ||51—:,0 - 22_}170HL°°(90) + ”'éljh,o - zljh,o ‘L°°(Qo)'

The first term is estimated by Theorem [3.12]leading to
120 = 2ol Lo (0) < Clinh®
and the second term by the smoothing property from Corollary 3.7]and by the second estimate from Theorem [5.4]
1
12100 = Zin.oll= o) < Cll(ax — wn)(T) || L2 (@) < CEZ,h.

This completes the proof. O

For the proof of Theorem@ we introduce a further intermediate adjoint state Z;, € X, defined by

B(px, 2k) = (ugn(T) — ua, pr(T)) forall ¢y € Xj. (35)
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Lemma 6.15. Let the conditions of Lemma be fulfilled and let Z), € X be defined by (33). Then for each Ty, ; with
22'0(3’3;.“) = —a there is a minimizer Ty, ; € Be(Tk;) oféz'o and for each Ty, ; with Zgo(jk}i) = « there is a maximizer
T € Be(Tg4) ofiljo. Moreover there holds

1
|3_'3k,i - i'k,i| < Cf,ghh

Proof. Without restriction we assume that ¢ > 0 and ko > 0 from Lemma [6.11] are chosen such that the statement of
Lemmaholds. We fix ¢ with Ego(ikﬂ-) = —a and introduce two functions F', Fj,: B:(Zy ;) — RN by

F(z) = VZZO(Z‘) and Fy(z) = VZ;:O(l‘).

There holds by the optimality of zj, ; for leo(x) that F'(Zy ;) = 0 and by Lemmathat F' (%) = V?E,jo(f;m-) is
positive definite. Moreover we have

1
|F(Zn) = Fr(@n,)] < IV (5o = 2o lp= @0y < Cll(@n — aen)(T)lz2(0) < CLA

and
1
|F'(Zr.0) — Fy(Tr0)] <1760 — 2 olle200) < Cll(@n — arn) (T)[| 2y < CLELA (36)
by the smoothing property from Lemma [3.6|and the estimate from Theorem In addition F} is Lipschitz continuous
on B, (Zy,;) with the Lipschitz constant

L=z olles o) < Cllarn(T) — uallz2) < Clluallz2 o),

where we have used interior estimate as in the proof of Lemma [3.1] In this setting we can apply [29] Theorem 3.1] to get
the existence of &y, ; € B, (Z,;) (for h < hg) with F},(Zx,;) = 0 and a positive definite F} (T ;), such that

1
|Zh,i — Ti| < ClF(Zg,s) — Fp(Tri)| < CO D

This completes the proof. O
In the next lemma we improve the estimate from Lemma[6.14}

Lemma 6.16. Let the conditions of Lemmal[6.13|be fulfilled. Then there holds forall1 < i < K and all1 < j <n;
ki — Tanij] < CLIh.
Proof. We fix an i with zlj,o(jk',i) = —aandan 1 < j <n;. For Z;, € X/ defined in (33)) we observe
1210 = ZinollLoe @) < Clunh®|[tn(T) — wallL2) < Clanh?
by Theorem Due to Corollarywe have Z,;O(x) > —a for all x € Q) and therefore
szo(jlm) > —a — Clgph? = lehp(i'kh,ij) — Clypnh?.
Using the Taylor expansion and the fact that V%,:O(:EM) = 0 we get with some & € B.(Ty ;)

t s 1, _ - - _
2 o(@knig) = 2o (@ha) + §($lm — ZTinij) ' VZ,0(E) (Eyi — Trn,i)

> lehyo(i'k:h,ij) — Clgph?® + %lim — Zgn il
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where we have used that VQZ;C,O is uniformly positive definite on B.(Z ;) by the positive definiteness of \v& Z,0 and @)
This results in

|Z1i = Zanig|* < 150 (Trnsig) — 2 o(Tanig)| + Clinh?
< ||Z;O — 2;h70||Loo(QO) + kahh2 < kath.
This completes the proof. (]
We proceed with the proof of Theorem [6.12]
Proof. The first statement is already shown in Theorem[5.4} The second statement follows directly from Lemma[6.15]and

Lemmal6.16]by the triangle inequality. It remains to prove statements (c) and (d). To this end we will use the operator G,
introduced in (1). Similarly we introduce the operator G} : REK — L2(Q) by

K
G1(B) = Skn (Z ﬁiéxk,i> :
1=1

Without restriction we assume that kg > 0 from Lemma@is chosen such that the statement of Lemma[6.8|holds. Then
we obtain similarly to the proof of Lemmausing Gr(Br) = ur(T)

|Br — Bien| < ClGr(Br) — Gr(Ben) |l 2

R . . (37)
< C|[(ar — @) (D) || 2y + Cllakn(T) — GE(Brn)l 2 + ClIGEBrn) — Gr(Brn)| 2 (-

The first term is estimated by Theorem[5.4]

'l
I(@x = @kn)(T) || L2@) < CLELR,
the last term is estimated by Lemma 5.1]leading to

|GR (Brn) — Gk(Bkh)HB(Q) < Clynh?|Brn| < Clynh?.
To estimate the second term in (37) we observe that
K

tn(T) — GR(Brn) = Sk Z(Z BrehijOzn.; — Bkh,ifsazk,i)

i=1 j=1

For a given ¢p € W1°°(Q) we get for the inner difference using Bkh,i = 277:1 Brh.ij

< Brh,ijOzin.i; — Bkh,i5xk,i,1/f> = ZBkh,ij(lb(fkh,ij) = P(Zr,i)) < C[VY| L () | Jax Tkh,ij — Thil-
=1 i=1 -

Then by a duality argument as in the proof of Lemma [6.7] we obtain

_ hih _ _
_ < R )
@ (T) = G (Ben)llzz(@) < € max . max [unij — T

resulting in

| (T) — G (Brn) |l 2y < CLZLh
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by the statement (b). Inserting this into (37) completes the proof of the statement (c). To prove statement (d) let ¢ €
W22(Q) with ||l w1. o) < 1 be given. We estimate

g
Br.ip(Tri) — Z Breh,ij P (ZTkn,ij)

Jj=1

-

s
Il
-

(Gk — Qrn, @) =

(Bkz - Bkh,i)w(fk,i) + Z Bkhu(@(sz) — ©(Tkn,ij))

Jj=1

[
.MN

s
Il
-

< C | 1Br — Bunlllell Lo=(a) + |Brnl A [T, — Trnil [Vl e (@)
1<j<n;

Using statements (b) and (¢) from Theorem as well as the boundedness of |3, | we obtain

(@ — ar, ) < CLA,

which completes the proof. (]

7. PROOF OF SMOOTHING ERROR ESTIMATES IN TIME

In this section we prove Theorem 3.8]and Theorem [3.10] First we establish the following result.

Lemma 7.1. Let vy € L?(R), let v and vy, satisfy () and (I0). Then for | = 0,1,...,r, there exists a constant C
independent of k and 'T' such that

1(=2)"2" (v = v ) (D) 20y < CR ™ Hlvol L2 (0.
Proof. Forany !l € {0,1,...,r}, lety be the solution to the following backward problem
-0y — Ay =0, in (0,7)xQ,
y =0, on (0,7) x 09,
y(T) = (~2)" (v —v)(T,x), in @

and yy, be its dG(r) approximation, i.e.

B, yx) = (=A) "2 (v — v )(T), ¢ (T)), forall ¢ € X}.
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Using the orthogonality conditions (T3a) and the dual representation of the bilinear form (TT)

1(=2)"2 (v — ve) (D)2 () = BI(=A) (v — vp),9)
= B(v — vy, (-4) 7% 1y)
= B(v — o, (=A) 2y — yx))
= B(v —mv, (—=A) 7y — yi))

M
== (=, (=) y = yi)) 1o + (V0 = m0), V(=A) "y — yi) ) 1xe

M
==Y (V0= m0), V(=A) 20, (y — y)) 1, x2 + (V(0 = i), V(=A) 27y — i) 1x

m=1

=J1 + Jo,

where 7y, is the projection defined in (12)). Note, the jump terms vanish by the definition of 7. We set 7 := y — 7y and
& = Ty — yg. Using the approximation and the standard energy estimate we have

IV (=A) "l 2 rea) < CETHIV(=A) 0 | 2 (1xq) = CE VYl L2 (rxa) < CETHy(T) || 220)- (38)
Using the properties of the bilinear form (9), we have

IV (=A) " kT2 (1) < BU(=A) "k, (=A) 717 16) = B((=A) 7726, &)
B((=A)7*"2&k,m) = —B((=A) "1, (-A) ")
(V(=2) ", V(=A) ") 1xa

<NV(=A) "l 2 axay IV (=) Tl e (1 x0)-

= —B((-A)
= —(V(-4)

Canceling and using (38) we obtain
IV(=A) " 2 rxa) < CE T Y(T)| 12 (- (39)
Combining (38) and (39) we also have
IV (=A) "y = yi) | z2(rx) < CETHy(T) || 22 (0)- (40)

Next we estimate | V(—A)"""19,(y — yx)||2(1,,x)- By the triangle inequality, inverse inequality and (38), (39), and

(#@0) we obtain

IV(=A) 10y — yi)ll L2 (1,0 x2)
< |IV(=A) 10 (mky — ye) L2 r, <o) + IV(=A) 70, (y — my) | 22(1, x)
< CEYV(=A) """ ey — i) le2 (1, xe) + CEIV(=A) 107 Yl L2 1, <o
< CE (IV(=A) " my = )l 2 xe) + IV (=) " e — 92, x0)) + CEIVY 21, <)
< CEV(=2) "0yl 21, x0) + CRIIVYll 221, 000
< CEYIVY r2(1,, x)-

(41)
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This allows to estimate J; as follows
M
J1 < Z [V(=A) " (v - 7Tk’U)||L2(1me)||V(*A)7l713t(y —ye)llL2 (1, x0)

M
< Ot Z ||V(—A)71713é+1UHL?(I,,,xQ)||V(—A)71713£+1y||1:2(1mxQ)

m=1

M
CE™ N IVl L2 (1, xe IVl 21,0 x92)

m=1

= CKwo 2o 1(=2) 721 (v — 0 ) (1) L2 ()
Similarly, using approximation and (40) we obtain for .J

Jy < IV(=A) " o = meo) |2 (rx o IV (=A) "y — we) L2 (1x )

< CEMV(=A) o || e mz)Hy(T)HLz(Q)
< CE* ol 2@l (=2) 7 (0 = vi) (1)l 2
Combining the estimates for .J; and .J5 and canceling ||(—A) =2 ~! (v — vg)(T) || 12(), We obtain the lemma. O

Now we show the next result.

Lemma 7.2. Let vy € L*(2), let v and vy, satisfy @) and (10). Then for j € Ny provided k < Wq;—ﬂ and M > 2r+j+2,
there exists a constant C(T') independent of k such that

[(=A) (v = ve)(T) || 2202y < C(T)* H|vol| £z

where C(T) ~ T—2r=3=1,
Proof. For any j € Ny, let y and y; be the solutions to the continuous and to the semidiscrete dual problems with
yr(T) = y(T) = (=A) (v — o) (T), i.e. y € H(I; L2(2)) N L2(I; HY(Q)) solving
-0y — Ay =0, in (0,T) x £,
y=0, on (0,7) x 09, (42)
y(T) = (~A) (v —v)(T), in Q
and y;, € X satisfying .
Bk, yk) = (er(T), (=AY (v —v)(T)), forall ¢ € XJ. (43)

We choose 17 such that - € I7, and define & := X(t, 1V as Well as U, = X (¢, 1)k, .. U and Oy are zeroon [; U- - -Ul
and 0 = v and U5, = v}, on the remaining time intervals. Then we test (@2)) with ¢ = (—A)7? and choose @), = (—A)7 0,

in (@3)). Using (16), we have
(=AY (v = o) (D) |72y = BU(=AY 0,y) = B(=A) ok, yk)
=B(0, (=A)y) — B0y, (=) yk)
=B(v, (=AY ) + (v(tm), (=AY y(tm)) -
=(v(tm), (=AY y(tn)) = (Ve m (A ¥ 5)
=(v(tm) = v (A y(ts )) (Ve (Y (y(ta) = v )
=1 + I5.
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Note, that B(v, (—A)7j) = 0 and B(vg, (—A)?§x) = 0 by construction. Using the Cauchy-Schwarz inequality, Lemma
with [ = r and T' = ¢, and the smoothing estimate (17)

L< [(=0)* o(tm) — Uk_,m)Hm(Q)|\(—A)2T+1+jy(tm)||L2(Q)
k2r+1 )
< CWHUOHN(Q)H(*AV (v = ve) (D) L2()-

Similarly, using the Cauchy-Schwarz inequality, Lemma [7.1] with | = r and T" = ¢,5 and the semidiscrete smoothing
estimate in Lemma[3.3]

I < [[(=A)" 9 o 2 e 1(=2) "2 Hy(tn) — vt a2 @)
2r+1

k )
< CWHUOHH(Q)H(—A)J(U —ve)(T) L2 ()

Combining the estimates for /; and I3 and canceling ||(—A)7 (v — vx)(T)|| () on both sides, we obtain the lemma. [J

7.1. Proof of Theorem 3.8
We use the Gagliardo-Nirenberg inequality (T9) and obtain

N 11—
lv = vkl () < ClIAQ = vl 2y 1 (v = Vi)l 2 0)-

Application of Lemma[7.2)with j = 0 and j = 1 yields the result.

7.2. Proof of Theorem 3.10;
We use Gagliardo-Nirenberg inequality (I8) with B = € as in the proof of Lemma[3.T]and obtain

N 1—-
IV(0 = 00)(T) | = (c20) < CIVA® = o) (D) o ) IV (0 = vi) (D) 12y

< Oll( = o) (D172 A = ) (D) |72 1A (0 = v) (D) 2 ()

Application of Lemma([7.2)with j = 0, j = 1, and j = 2 yields the result.

8. PROOF OF SMOOTHING ERROR ESTIMATES IN SPACE
In this section we prove Theorem [3.12] Before we provide the proof we show the following results.

Lemma 8.1. Let vy, € X}, and vy, € X,:,ll be the semidiscrete and fully discrete solutions of (10) and (14), respectively.
Then there exists a constant C' independent of h, k, and T such that

_ T
1A, (Povk — ven)(T) || 22(0) < Ch®In E||v0||L2(Q).
Proof. Let zy), € X;}L be the solution to a dual problem with z;,(T') = A;I(thk — vpp)(T), 1.e.

B(xXkhs zkn) = (Xen(T), Ay (Prog — vgn)(T))  forall xpp, € X;:}L
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Then taking xxn = A;l(thk — vgp,) by the Galerkin orthogonality, the stability of the L? projection, the standard
elliptic error estimates, Lemma 3.3]and Corollary [3.4] we obtain

185 (Prok = o) (T)[|72() = B(A,H (Pavk — vkn), 2kn)

= B(Pyvg — Vgp, A;lzkh)

= B(Ppvy, — vg, A;lzkh)

= (V(Pyvr — Ruvr), VA, 2in) <o

= —(Prvr — Rpvk, 2kn) 1x0

< || Prok — Ryvkllor iz ) l12kn |l noe (1.2 ()

< Cllvg = Ruvrll Lo sz 12en Lo (102 (02))

< CP? || Avk |l sz 1AL (Prvk — vin) (T) | 2 (o)

T -
< Ch*In ool 2@ 1Ay (Phok = ven) (D) 22(9)-
Canceling, we obtain the result. (|

In order to establish optimal pointwise error estimates for Ry v — vip, we first show the corresponding estimate with
respect to the L2(£2) norm and then for Ay, (Ry vy, — vg) in the L2(£2) norm likewise.

Lemma 8.2. Let v, € X and vy, € X,:’}L be the semidiscrete and fully discrete solutions of (10) and (14), respectively.
There exists a constant C' independent of k, h, and T such that

2

Ch T
1(Brve = vkn)(Dz2() < =7 In ~llvollzz (o)

Proof. Let yip, € X,:}L be the solution to a dual problem with yy, (T) = (Rpvr — vin)(T), i.e. ygn € X,:}] satisfies
B(@kh, Ykn) = (ern(T), (Rpve — vgn)(T)), forall ¢rp € X;;ll (44)

We abbriviate ¥, = Rpvr —vin € X;}l and set @kh to be zero on I; U- - - U I3 for m such that % € I; and qﬂkh = Yrh
on the remaining time intervals. Similarly we define ;. Then by (T6) and using the Galerkin orthogonality, we have

I(Rhox — vien)(T)[|72 (0 = B(Ykn, Yin) = B(Wrn, Jkn) + (Vi Y )

= B(Rpvk — Vkh, Ukn) + ((RaVkm — Vkhm) y;jh,m)

B(Ryvk, — vk, kn) + (Rnvkm — Okhm) "> Ui
J1+ Js.

Using (T1) and the property of the Ritz projection, we have

M M
Ji=— Z (Rrvk — Uk, OtYh ) 1,0 x2 — Z (Rnvg = Voo [Ykhlm) — (Rrvg 5 — U;m,y$h7m)
m=m-+1 m=m-+1

M
< |Rhvk — vkl Loo (b1 7Y L2()) (”atykh”Ll(I;L?(Q)) + ) llyknlmllzac) + |y2_h,m||L2(Q)> .

m=1
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By the Lemma[3.2]and Lemma [3.3] we obtain
M
n T
10syrnllr (zsz2@) + D Myenlmllz2 @) + 16l L2 < ClHEH(thk —ven) (D) 220 -
m=1
. . . . . . 2 . . T
By the approximation properties of the Ritz projection, H= regularity, and using the fact that 5 € I3, we have

h2
[ Rnvk — vkl oo (e 1 myi2()) < CRP AU || Loo (b2, 7)12(00)) < O llvollz20)-

Canceling, be obtain the result for J;.
To estimate J> we add and subtract vy, ,,,. Thus we obtain

Jo = ((thk,m - 'Uk'h,m)77 y;jhm)

= ((Brvwsm — ven) "> Yinm) T (Wkn = Vkhmn) " Yinm) = J21 + Joz.

Similarly to the above, using Lemma [3.2]and Lemma [3.3| we obtain

Jo1 < || Rpvr, = vkl Lo (s 1222 @0) |0Rh | 22 (2
< CR?|| Avkl poe (b1 22 ) | (Brvk — vin) (D)l £2(0)

Ch?

T
< =7 ool [l (Brve = ven) (D) 22(0)-

To estimate Jyo we use Lemma @ with T' = t,; and the fact the constant there does not depend on 7' together with
Lemma[3.3] Hence,

J22 = (Phk,i — Vkhm) ™ Y m)

<AL (Pavkm — vknm) 22 @) | Ay |22 @)

Ch?

T
< T In E”UOHL%Q)H(thk —ven)(T)| 2 () -

Canceling, we obtain the lemma. O

Next we establish the following smoothing result in L? norm with discrete Laplacian.

Lemma 8.3. Let vy, € X}, and vyp, € X,Z,ll be the semidiscrete and fully discrete solutions of (10) and (14), respectively.
There exists a constant C' independent of k, h, and T such that

Ch? T
1A (Brok = orn) (Tl 2(0) < =55 In ol 2 @)-

Proof. Let yiy, € X,:,IL be the solution to a dual problem with yi,(T) = Ap(Rpvr — vgr)(T), i.e. ygp satisfies
B(grn, yin) = (@rn(T), Ap(Ryvr — vpn)(T)),  forall pp, € X[, (45)

As in the proof of the previous lemma we abbriviate vy, = Rpvr — v, and set @kh to be zeroon I; U --- U I for
some m to be specified later and v, = 1 on the remaining time intervals. Similarly we define g;;. Then setting
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©rh = Aptbp, and using the Galerkin orthogonality and (T6), we have

AR Rk = ven) (T)1 72 () = B(Antkn, yen)

Anyrn)

B(
(n
(¢kh, Anirn) + (wk_h o yl:_hﬁz)
(
(

Rpvi — vgn, ApGkn) + (RuVkm — Vkhm) Ahy;mm)

By
B
B
B(Rpvr — vk, Anin) + (Ravkm — Vkhoi) > Anli.m)
Jr + Jo.

Choosing m such that % € I, using the definition of the bilinear form B(-, -), the discrete maximal parabolic regularity
from Corollary 3.4 and Lemma 3.5 we obtain

M M
Ji = (8t(thk — k), Anyen)r,x2 + Y ((Rnvk = Vklm, Anyidy )

m=m

< |0s(Rrvr — vr) || Lo (12 () | ARYRR I L1 (0 722 (2))

M

+

+ mgln?i(M {km ” Rpvr — Uk]m||L2 Q)} Z kmnAhykh,mHL%Q)
m=m

T
< C’ln—h2 (HatAkaLoo((t ,T);L2(Q)) + inax {k‘ 1H AUk]m”L? Q)}) |Ah thk - Ukh)(T)”Lz(Q)

Ch? T
< o I llvollz2 @ 1 AR (B — wien) (1) 22 (0

Canceling we obtain the desired estimate for .J;.
To estimate .JJo we proceed as in the proof of the previous lemma,

J2 = (Rnvkom — Vi) s Antinm) + (Vkm — Vknm) ™ AnYinm) = J21 + Joa.
Similarly to the above,

Jo1 < [|Rhvk — vkl oo (4, 1):L2(0) 1ARY35 il 22 ()
Ch?
<~ lAvk] oo (b s mys22(0)) | AR (BRVE = vrn ) (T) [ 22(0)
Ch?
< WHUOHL%Q)HAh(thk —vkn) (1) 2 (0)-

To estimate .Jo2, we proceed as in the proof of the previous lemma, and using Lemma|[8.1] we have

Ja2 = ((Pnvk,m — Vkhm) Ahy;jh,m)
< HAfl(Phwc m = khan) 2@ ALY w2
Ch?
< Wln ||U0HL2(Q)||Ah(thk = ven) (D) 229 -
Canceling we obtain the lemma. (]

As a consequence of the two lemmas above and the discrete Gagliardo-Nirenberg inequality (ZI) we immediately
obtain the following result.
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Lemma 8.4. Ler vy, and vy, be the semidiscrete and fully discrete solutions of (10) and (14), respectively. Then, there
exists a constant C' independent of k and h such that

Ch?

T
[(Brox — ven) (D)l Lo (o) < TirE In —[lvoll 2 (@)

Remark 8.5. The result in Lemma [8.4]is rather interesting and of independent interest. It shows that the L>°(£2) error
between the semidiscrete solution and its Ritz projection for piecewise linear elements is of optimal second order even
if the exact solution at a final time T is not in W2°°(£2) as for example in the case if the domain  has strong corner
singularities. This in particular shows a well-known fact that the presence of corner singularities is essentially an elliptic
problem.

Similar to the results in [33], it also can be used to show a superconvergent result for the gradient. Thus for N = 2
using the discrete Sobolev inequality

Vx| L) < Cllnh|"2(|Apx| r2(), forall x € Vi, (46)

we also have the following superconvergent estimate

Ch? T
IV (Brvw = o) (T) | o= 0) < =55~ [In h['?1n 7 lvollzz()-

8.1. Proof of Theorem
Adding and subtracting Ry vy, we have
|(vk — vin ) (T, 20)| < [(Ruvi — vien) (T, 2o)| + |(ve — Rpow) (T, o).

From Lemma 8.4l we have T
|(Rhvk — vin) (T, m0)| < C(T)h* In EHUO”LQ(Q)-

Using the pointwise interior elliptic results from [30] we have
[(wr = Byvr) (T 20)| < Clln hf min fJog(T) = Xl (Bt + Cd™% || (vk — Rave) (1)l 20
< ORI hf[[on(T) w2 (Ba(e)) + CRA™ 2 [[0x(T) | 112 )
< ORI hfl[o(T) | 1 (Ba(aoy) + Ch?d™ | Avr(T) | 12
< Ch?|In ||| Av(T)|| 2 () + Ch2d™ % | Avg(T)|| 12(a
< Ch?|In | A%04(T) | 20y + Ch2d™ % | Avg(T)|| 12(a
< CR* (T2 h| +d~ ¥ T71) Jlooll (o,

where we used the embedding H*(Bgy(z0)) < C%(Ba(x)), the interior regularity result [[13| Chapter 6.3, Theorem 2]
and convexity of €.

9. ALGORITHMIC TREATMENT

This section is devoted to the algorithmic solution of the sparse initial data identification problem under consideration.
Let us first note that by Theorem we can look for a minimizer gy, in the space My, consisting of linear combinations
of Diracs concentrated in the interior nodes N}, of the mesh, i.e.

dkn = Z Vieh,i0z; 5
z; ENp,
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where 5, € R#¥VN» is a vector of optimal coefficients. Thus, the fully discrete problem (26) can be equvalently reformu-
lated as a finite dimensional problem (of dimension #M\/},) in the coefficients ~y; with an [; regularization term leading
to

2 #N,

> VeniSkn(0a,) — ta +a Y nal, en € RFVE
=1

|
Minimize 3
z; ENp,

L3(Q)

This problem can be solved by a variety of efficient solution algorithms, e.g., semi-smooth Newton methods, [26], or
FISTA, [2]]. However, a direct application of finite dimensional optimization algorithms to this problem may lead to mesh-
dependent methods, whose convergence behavior critically depends on the fineness of the discretization. In contrast,
we employ an optimization algorithm, which can be described on the continuous level, as a solution algorithm for the
problem (7). This algorithm can be then directly adapted to the discretized problem (26). Since the convergence properties
of the presented algorithm can be analyzed on the continuous level, see [34], one expects mesh independent behavior for
the discretized problem, which is also confirmed by our numerical results.

We propose a version of the Primal-Dual-Active-Point (PDAP) method from [34] which iteratively generates a se-
quence of finite linear combinations of Dirac delta functions. The algorithm on the continuous level is briefly described
and its convergence properties are summarized below. Given an ordered set of finitely many points A = {z;}X ; define
the parametrization

Q.A: R#A - M(Q)v ﬂ = Z ﬁz‘szq
;€A
as well as the finite dimensional subproblem

Minimize j (Q4(8)), 8 € R#4, 47

We initialize the proposed algorithm with a sparse initial iterate go € M(2), # supp go < oco. In the n-th iteration, a
new support point Z" € 2 is determined based on the violation of the condition (a) in Corollary [2.6|by the current adjoint
state 2™ (0) = S*(Sq, — uq). Subsequently, the new iterate is found as g, 11 = Q .4, (8"!) where f7+1 € R#4» is a
solution to for A = A,,. Thus, the method alternates between updating the active set .A,, by adding 2" to the support
of the current iterate ¢,, and computing a minimizer of j over M(A,,). The procedure is summarized in Algorithm Note

Algorithm 1 Primal-Dual-Active-Point method

1. Choose go € M(R2), #supp qo < 00. Set My = j5(q0)/5-

while ®(¢,,) > TOL do
2. Compute 2, (0) = S*(S¢n, — uq) € Co(2). Determine " € arg max,cq, |2,(0,x)|.
3. Set A,, = supp ¢, U {2"} and compute a solution 3"*! to with A = A,,.
4. Setguy1 = Qu, (B"H).

end while

that the support of ¢,, is pruned after each iteration i.e. Dirac delta functions with zero coefficients are removed from the
iterate. Additionally, we observe that Algorithmis monotonous, i.e. j(¢n+1) < j(qn), and thus also ||g, || pm(0) < Mo
for all n € N. To monitor the convergence of the algorithm we consider the primal-dual-gap functional ®: M(2) — Ry
which is defined as

®(¢g)=  ma [(2[d](0),q — 0g) + Bllallm) — BlI0glme)]  where  z[g](0) = S*(Sq — uq)

= X
16l pm () <Mo

and My = j(qo)/c. This is justified by the following lemma, see [34, Lemma 6.12 and Lemma 6.41].
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Lemma 9.1. There holds ®(q) > 0 for all ¢ € M(Q) with equality if and only if ¢ = q is the optimal solution of (7).
Furthermore we have

i(q) — (@) < @(q) Vg€ M(Q).
Let {q,} denote the sequence generated by Algorithm Then we obtain

®(gn) = Mo(l[2n0)llc() = B)  where  2,(0) = 57 (S¢n — ua), (48)

forn > 1.

We point out that, due to (#8), the primal-dual-gap ®(g,,) can be cheaply computed as a byproduct of step 2.

The following theorem, see [34, Theorem 6.43], provides two convergence results. For the general case we obtain
sub-linear convergence of the the cost functional. Under Assumption I} we obtain linear convergence for the functional,
positions of the Diracs and for the corresponding coefficients.

Theorem 9.2. Let the sequence {q,} C M(SQ) be generated by Algorithmstarting Sfrom qo € M(R2). Then we have

J(q0) — (@)

ni\_a(pn 07 ‘n*-_<
In — (qn) — Jlan) —3(q) < L+an

for alln € N and a constant ¢; > 0. IfAssumptionholds, then § = Zszl Bi0z, and there exist R, c3 > 0, ¢ € (0,1)
with

K
supp qn - UBR(jl)a BR(Q_%)QBR(:%]) :ma SUPPQntR(fv) 7&®7 7’7] = 172a"'7K
i=1
as well as
J(qn) = 3(q) + max {qn (Br(z:)) — Bil + max |z — xi|RN} <"
i=1,...,K xE€supp ¢nNBr(Z:)

for all n € N large enough.

We emphasize that the adaption of Algorithm [I]to the discrete problem (26) is straightforward. In detail, we replace
the control-to-state operator .S by its fully discrete counterpart Sy;, and compute ZZ;LJFO = S}, (Skngn — uq). Moreover, in
view of Theorem[4.7} the search for the maximizer £" in step 2 can be restricted to the set of interior nodes A r. The new
coefficient vector 3" *1 is then found as solution to the finite-dimensional subproblem

Minimize jx, (Qa,(B)), f € R¥Ax, (49)

Note, that the support of ¢, usually consists of only few points, i.e. the dimension of the subproblem (49)) is small the this
subproblem can be solved efficiently by existing finite dimensional algorithms. In our numerical realization we use the
semi-smooth Newton method for the solution of (9).

10. NUMERICAL EXAMPLES

The final section is devoted to the presentation of numerical experiments which serve to underline the practical applica-
bility of the proposed sparse control approach as well as to verify the derived theoretical results. Throughout the section,
the spatial domain is given by the unit square 2 = (0,1) x (0, 1) and the final time is set to 7" = 0.1. All arising discrete
optimal control problems are solved by an adaptation of the PDAP method, Algorithm [I] as described at the end of the
previous section.
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10.1. Identification of point sources

First, we aim to identify a sparse source term ¢/ = —108,, + 253,, from noisy observations of u(7T') = S(q"). The
time interval (0, 7] is uniformly partitioned into M = 256 subintervals, the spatial domain {2 is divided into triangles,
see the description in Section [3] We emphasize that the support points z1 and x5, respectively, correspond to nodes of
the triangulation. For the discretization of the state equation a ¢cG(1)dG(0) (i.e » = 0) approximation is considered. The
observations are given by ups = Skh(qf) + & where 6 € L%(Q) is a given noise term. We plot ups alongside ¢'in
Figure [1} To reconstruct ¢' from the given final time observation we propose to solve (26) with ug = ueps. For the

1 1

0.9} . 09
0.8} . 08
2500
0.7} 1 07
0.6] . 06
2 05) . 05
0.4} 4 04
0.3} -10.00 1 03
02} j 02

0.1} - 0.1

0 . s \ \ \ \ \ \ s 0
0 0l 02 03 04 05 06 07 08 09 1

X X

1

(A) Reference source qT (B) Noisy observation ugbs

FIGURE 1. Inverse problem setup

described example we empirically determine o = 0.001 as a suitable regularization parameter. Applying the Primal-
Dual-Active-Point method to yields a reconstruction gx, € My, with # supp gy, = 3. By a closer inspection,
two of its support points are located in adjacent nodes of the triangulation. A possible explanation for this clustering of
support points is provided by Theorem More in detail, a spike appearing in a discrete optimal solution § & My,
at an off-grid location will appear as several nodal Dirac delta functions in the projected solution A,G. For a better
visualization of the results we replace the Dirac delta functions associated to the clustering support points by a single
one of the same combined mass located at the center of gravity of the original positions. The post-processed measure is
depicted in Figurelzltogether with leh,o = S5 (SknGen — ua).

As predicted by Corollary we have |Z,:’h’0(z)| < afor all z € Q and equality holds at the support points of Gxp.
Moreover, we also plot the final state Sy, (¢) corresponding to the initial source ¢' as well as the reconstructed final
state Sk (xn). We see that the proposed sparse control approach together with the lumping of clustering support points
recovers the main structural features of the source ¢f. In particular, we point out to the correct number of points sources
as well as quantitatively reasonable estimates of their locations and coefficients. Note that we cannot expect the exact
recovery of ¢! due to the appearance of the noise term ¢ as well as the nonzero regularization parameter . We specifically
stress that supp g, Nsupp gt = 0.

10.2. Space refinement

Next we practically verify the derived a priori error estimates for the optimal states. Let us first discuss spatial re-
finement. To this end we consider ¢G(1)dG(r) approximations for both » = 0 and r = 1 of the state equation on an
equidistant grid in time with M = 256 steps and a sequence {7;}5_; of spatial triangulations. Here, 7;; is obtained by
one global uniform refinement of 7;, 1 < i < 5. The desired state uy4 and the regularization parameter « are chosen as in
Section[T0.1] Since no analytic solution for this problem is known we take the optimal state on the finest spatial grid as
a reference «. On each refinement level, the optimal state iy, is computed using the PDAP algorithm. The convergence
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FIGURE 2. Reconstruction results

plots are given in Figure [3] For visual comparison we also plot the corresponding rate of convergence as given in Theo-
rem [6.12] without the logarithmic factor. We clearly see that the computed rates for the optimal states match the predicted
order of O(h) for both temporal approximation schemes.

10.3. Time refinement

In order to verify the temporal error estimate we discretize the state equation again by the cG(1)dG(r) scheme for both
r = 0 and r = 1, on equidistant time grids with 2° steps, i = 4,...,8, and a fixed triangulation of the spatial domain.
The desired state u, is chosen as the discrete final state corresponding to the measure ¢' on the finest discretization.
The regularization parameter is set to « = 0.001. Again, the optimal state on the finest discretization is considered
as reference @. The computed convergence results for the optimal states are plotted in Figure [] alongside the rates
of convergence derived in Theorem As predicted by the theory, we observe a linear O(k) rate for dG(0) and a
cubic O(k?) rate of convergence for dG(1).
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