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Abstract In this chapter we give a brief overview of optimization problems with
partial differential equation (PDE) constraints, i.e., PDE constrained optimiza-
tion (PDECO). We start with three potentially different formulations of a general
PDECO problem and focus on the so called reduced form. We present a derivation
of the optimality conditions. Later we discuss the linear and the semilinear quadratic
PDECO problems. We conclude with the discretization and the convergence rates
for these problems. For illustration, we make a Matlab code available at

https://bitbucket.org/harbirantil/pde constrained opt

that solves the semilinear PDEO problem with control constraints
.

1 Introduction

This volume is aimed at early career graduate students or whoever is interested in
entering into the field of PDE constrained optimization (PDECO), i.e., optimiza-
tion problems with PDE constraints. The purpose of this particular chapter is to
provide a brief mathematical introduction to this topic with an emphasis on opti-
mality conditions and finite element discretization. Most of the material presented
here is well-known and can be found in several textbooks. In particular, we mention
[14, 52, 55, 61, 80].
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PDE constrained optimization problems arise in many applications, for instance
in flow control [41] and shape optimization [42, 79]. To name a few: controlling pol-
lutants in a river [5]; drug delivery using magnetic fields [8, 9]; optimal placement
of droplets on electrowetting on dielectric (EWOD) devices [7]; shape optimization
of microfluidic biochips [3, 4]. In the first two examples, the control is distributed
(confined to either the entire domain or a subdomain). In the third example the con-
trol acts on the boundary and in the final example, the control is the shape of the
domain. These problems range from macroscale to microscale and contain varying
levels of difficulties due to the underlying physics.

A PDE constrained optimization problem has four or five major components: i)
a control variable z; ii) state variable u; iii) a state equation (i.e., PDE or system of
PDEs) which associates for every control z a unique state u; iv) a cost functional J
to be minimized which depends on z and u; and possibly, v) constraints imposed on
z (control constraints) or/and on u (state constraints). In the most abstract form this
amounts to:

minimize J(u,z) (1)

subject to u ∈Uad and z ∈ Zad satisfying

e(u,z) = 0. (2)

Thus we want to minimize the cost J which is a function of the state u and the
control z. The state equation is given by (2) represents a PDE or system of PDEs
(usually in the weak form) with u in an admissible set Uad and the control z in an
admissible set Zad .

For the full understanding a PDECO problem the following topics must be con-
sidered: (i) functional-analytic analysis of the problem; (ii) solver development; (iii)
discretization and software development. We shall briefly elaborate on each next, a
more detailed discussion will be given in the subsequent chapters. By analysis we
mean

• Existence, uniqueness, and regularity of a solution to (2).
• Existence and uniqueness of a solution to the PDECO (1)-(2).
• First-order necessary optimality conditions using adjoint equations.
• If possible the second order necessary/sufficient conditions.

We can carry out the solver development, typically gradient based, either at the con-
tinuous level [48, 49, 81] or at the discrete level [56, 65]. The choice depends on the
choice of (a) ”First discretize then optimize approach” or (b) ”First optimize then
discretize approach”. As the names suggest in case of (a) one first discretizes the
optimization problem and then develops a solver for the resulting finite dimensional
problem. On the other hand (b) requires first writing the optimality conditions at the
continuous level and then discretizing them. These two approaches in general are
different. For instance the discretization of the adjoint variables is tied to the state
variables if one proceeds with (a). On the other hand (b) provides more flexibility
with respect to this particular aspect. There is no universal approach to select either
of the approaches [52, Section 3.2.4]. However a choice should be made so that
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the discrete system preserves the structure of the continuous problem. In any event
one should avoid using off-the-shelf finite dimensional algorithms to solve PDECO
problems. This may lead to mesh dependence, i.e. when the number of optimization
iterations drastically increases with mesh refinement. In order to overcome such is-
sues we must adapt such algorithms (if we are using them) to incorporate functional-
analytic concepts, for instance, suitable inner products. Nevertheless discretization
and software development amounts to

• Either finite difference, finite volume, or finite element discretizations of the PDE
and the control [19, 45, 69]. Other discretizations such as wavelets are possible
as well see [77] and references therein.

• Analysis of discrete PDE and optimization solvers and check for mesh indepen-
dence [50, 81].

• Make the solver efficient, for instance by using

– Adaptive finite element methods (AFEM) [58, 66].
– Preconditioning techniques [15, 75, 83], time parallel approaches [16, 30, 31,

82].
– Model reduction: Proper orthogonal decomposition [6, 40, 53, 54], reduced

basis method [17, 44, 68].

• Software development, for instance, Rapid Optimization Library (ROL) [59],
Dolfin-Adjoint [34].

Our goal for this chapter is to collect the necessary ingredients to understand
basic PDECO problems. The remaining chapters of this volume provide compre-
hensive treatments of variational inequalities, algorithm development, optimization
under uncertainty, inverse problems, shape optimization and several applications.
We introduce notation, relevant function spaces and notions of derivatives. We pro-
vide an abstract treatment to solve (1)-(2). Moreover, we discuss the linear quadratic
PDECO problem in detail (quadratic cost functional with linear elliptic PDEs and
control constraints), provide a flavor of the semilinear quadratic PDECO problem,
and discuss the necessary components for the numerical analysis of the linear and
semilinear quadratic PDECO problems. We also provide a Matlab implementation
of the semilinear quadratic PDECO problem where the space discretization is car-
ried out using FEM. We solve the resulting optimization problem using Newton-CG
or LBFGS in absence of the control contraints (Zad = Z) and semismooth Newton
in presence of the control constraints. The code can be downloaded using the link

https://bitbucket.org/harbirantil/pde constrained opt

The first part of this chapter is organized as follows: in Section 2 we first consider
a general optimization problem. We discuss existence of solution to this problem in
Section 2.1 and provide notions of derivatives in function spaces in Section 2.2.
We conclude this section with the first order necessary optimality conditions (cf.
Section 2.3). We apply the approach discussed in Section 2 to the general PDECO
(1)-(2) in Section 3 and discuss the full and the reduced forms. Derivation of opti-
mality conditions is discussed using both full and reduced forms.
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In the second part of this chapter we focus on the linear and semilinear quadratic
PDECO problems. We introduce basic Sobolev spaces in Section 4. In Section 5
we mention the results relating to the well-posedness (existence and uniqueness
whenever possible) of linear elliptic PDEs and their regularity. Next in Section 6 we
formulate the linear quadratic PDECO problem and study its well-posedness in the
reduced form. Section 7 discusses the semilinear quadratic PDECO problem. We
conclude by introducing a finite element discretization for the linear and semilinear
quadratic PDECO problems in Section 8.

2 Abstract Optimization Problem

The purpose of this section is to consider an abstract optimization problem and study
its well-posedness (cf. Section 2.1). We derive the first order necessary optimality
conditions in Section 2.3. This requires the notions of derivatives in function spaces
(cf. Section 2.2). The results presented in this section will be applied to the PDECO
problems in the subsequent sections.

Let Z be a real reflexive Banach space and Zad , is the set of optimization vari-
ables, is its closed convex subset. We consider the minimization problem

min
z∈Zad

f (z). (3)

2.1 Existence

We first show existence of solution to the minimization problem (3) using the direct
method of calculus of variations. This is also known as the Weierstrass theorem.

Theorem 1. Suppose f : Z→ R is weakly lower semicontinuous with Z a reflexive
Banach space and Zad ⊂ Z is closed convex. Let the lower γ-level set {z ∈ Zad :
f (z)≤ γ} of f is nonempty and bounded for some γ ∈ R. Then problem (3) has an
optimal solution, i.e., there exists z̄ ∈ Zad such that f (z̄)≤ f (z) for all z ∈ Zad . If f
is strictly convex then the solution is unique.

Proof. The proof is based on the direct method of calculus of variations. Following
the proof of [14, Theorem 3.2.1] we can construct a minimizing sequence {zn}n∈N
contained in the lower γ-level set such that f (zn)→ inf f (z) as n→ ∞. Since the
lower γ-level set is convex and closed therefore it is weakly sequentially closed [80,
Theorem 2.11]. In addition since Z is reflexive and the lower γ-level set is bounded
therefore it is weakly sequentially compact [80, Theorem 2.11]. As a result there
exists a subsequence (not relabeled) such that

zn ⇀ z̄ in Z
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with z̄ in the lower γ-level set. It then remains to show that z̄ is the optimal solution.
Due to the weak lower semicontinuity of f we conclude that

f (z̄)≤ liminf f (zn) = inf f (z).

Finally, in order to show the uniqueness let us assume that z1 and z2 be two optimal
solutions. Using the definition of strict convexity we have

f
(

z1 + z2

2

)
<

1
2

f (z1)+
1
2

f (z2) = inf f (z)

which is a contradiction. This completes the proof.

After showing the existence of minimizers a natural question to ask is what the
first order optimality conditions are. However, we need to understand the notions of
derivatives in function spaces before we can proceed further.

2.2 Differentiation in Banach Spaces

We introduce the notions of derivatives in function spaces [18, 78]. As an example,
we shall apply the ideas to a quadratic cost functional. We will also derive the first
order optimality conditions for the problem (3) based on the derivatives introduced
in this section.

Let L (A,B) denote the space of bounded linear operators from Banach space A
to B. Let (Z,‖ ·‖Z), (V,‖ ·‖V ) be real Banach spaces, Z ⊂ Z, open and F : Z →V .
Moreover, let z ∈Z :

Definition 1 (Directional derivative). F is said to be directionally differentiable at
z if the limit limt↓0

1
t (F(z+ th)−F(z)) exists in V for all h ∈ Z. If such limit exists,

we denote
F ′(z,h) := lim

t↓0

1
t
(F(z+ th)−F(z))

and say that F ′(z,h) is the directional derivative of F at z in the direction h.

Notice that for a given z, h 7→ F ′(z,h) is not necessarily a linear mapping but it is
positive homogeneous, we refer to [78, 80] for examples.

Definition 2 (Gâteaux derivative). F is said to be Gâteaux differentiable at z if it
is directionally differentiable and F ′(z,h) = F ′(z)h for F ′(z) ∈L (Z,V ). We refer
to F ′(z) as the Gâteaux derivative at z.

We next introduce a stronger notion.

Definition 3 (Fréchet derivative). F is said to be Fréchet differentiable at z if and
only if F is Gâteaux differentiable at z and the following holds:
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F(z+h) = F(z)+F ′(z)h+ r(z,h) with
‖r(z,h)‖V
‖h‖Z

→ 0 as ‖h‖Z → 0.

We refer to F ′(z) as the Fréchet derivative at z.

Remark 1 (Few facts).

(i) If the Fréchet derivative exists so does the Gâteaux derivative and they coin-
cide. However, the converse is not true in general.

(ii) We say that F is continuously Gâteaux differentiable if F ′(·) exists and F ′(·)
is continuous. In that case F is Fréchet differentiable [18, pp. 35-36].

(iii) Let E = G(F(z)) where F is Gâteaux differentiable at z and G is Fréchet dif-
ferentiable at F(z), then E is Gâteaux differentiable. 1

Notice that when V = R then L (Z,V ) = Z∗. In addition if F is Gâteaux differ-
entiable at z then we have

F ′(z)h = 〈F ′(z),h〉Z∗,Z ,

where Z∗ is the dual space of Z and 〈·, ·〉Z∗,Z denotes the duality pairing.
Before we conclude this subsection we apply the above introduced definitions to

two prototypical quadratic functionals. The derivatives in both these examples are
Fréchet derivatives.

Example 1. Let (H,(·, ·)H) be a real Hilbert space and F : H→R defined as F(z) :=
‖z‖2

H = (z,z)H , then for all z,h ∈ H we have

F(z+h)−F(z) = 2(z,h)H +‖h‖2
H .

Thus,
F ′(z)h = (2z,h)H .

Using the Reisz Representation Theorem (identify H with its dual H∗), we can write

(∇F(z),h)H = 〈F ′(z),h〉H∗,H ,

where ∇F(z) ∈H is the representative of F ′(z) ∈H∗. We refer to ∇F(z) ∈H as the
gradient of F at z. In the above case we have ∇F(z) = 2z.

Remark 2 (gradient). As can be seen from the above example, the expression that
we obtain by identifying F ′(z) ∈ H∗ with an element of H is called the gradient of
F . We will use the notation ∇F(z) to denote the gradient. We further notice that the
definition of the gradient depends on the underlying inner product.

Example 2. Let (Z,(·, ·)Z),(H,(·, ·)H) be real Hilbert spaces and ud ∈ H be fixed.
Let S ∈L (Z,H). Consider E : Z→ R,

1 The chain rule only require the outer function to be Hadamard directionally differentiable and
the inner function to be Hadamard (Gâteaux) directionally differentiable [78, Proposition 3.6].
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E(z) = ‖Sz−ud‖2
H .

Then E(z) = G(F(z)), where G(v) = ‖v‖2
H and F(z) = Sz−ud .

Next using the chain rule we obtain that

〈E ′(z),h〉Z∗,Z = 〈G′(F(z)),F ′(z)h〉H∗,H = (2v,F ′(z)h)H

= 2(Sz−ud ,Sh)H = 2〈S∗(Sz−ud),h〉Z∗,Z ,

where S∗ ∈L (H∗,Z∗) is the adjoint of S. Here we have assumed that S∗S and S∗ud
are well defined. Thus E ′(z) = S∗(Sz−ud)∈ Z∗. Since Z is a Hilbert space, similarly
to the previous example we can again apply Reisz representation theorem to get the
representative ∇E(z) ∈ Z of E ′(z).

2.3 First Order Necessary Optimality Conditions

We conclude this section with the following result on the first order necessary opti-
mality conditions.

Theorem 2. Let Z be a real Banach space (not necessarily reflexive). Let f : Z →R
be Gâteaux differentiable in Z , where Zad ⊂Z ⊂ Z, Z open. If z̄∈ Zad is a solution
to (3) then the first order necessary optimality conditions are

〈 f ′(z̄),z− z̄〉Z∗,Z ≥ 0 ∀z ∈ Zad . (4)

In addition, if f is convex and z̄ ∈ Zad solves (4) then z̄ is a solution to (3), i.e., (4)
is necessary and sufficient.

Proof. The proof of the first part is a direct consequence of of the definition of
Gâteaux derivative. Let z ∈ Zad be arbitrary. By the convexity of Zad we have that
z̄+ t(z− z̄) ∈ Zad for all t ∈ [0,1]. From the optimality of z̄ it follows that

f (z̄+ t(z− z̄))− f (z̄)≥ 0 ∀t ∈ [0,1].

Dividing both sides by t and taking the limit as t approaches 0+ we arrive at (4).
Next we use the convexity of f , i.e., for all t ∈ (0,1] f (z̄+t(z− z̄))≤ (1−t) f (z̄)+

t f (z). By rearranging terms and taking the limit as t approaches 0+ we arrive at

f (z)− f (z̄)≥ 〈 f ′(z̄),z− z̄〉Z∗,Z ∀z ∈ Zad .

We then obtain the desired sufficient condition by using (4).

Remark 3. i. Notice that the assumption of existence of z̄∈ Zad in Theorem 2 solv-
ing (3) can be fulfilled if Z is reflexive (cf. Theorem 1).

ii. In general, for a nonconvex f , we cannot expect to achieve a global minimum
but only a local minimum. We call z̄ ∈ Zad a local minimum to (3) if there exists
an ε > 0 such that
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f (z̄)≤ f (z) ∀z ∈ Zad ∩Bε(z̄)

where Bε(z̄)⊂ Z is a ball of radius ε centered at z̄.
iii. The equation (4) is known as the variational inequality.

3 Application to PDE Constrained Optimization Problems

Let Z be a real reflexive Banach space and U,Y be real Banach spaces. We begin by
recalling the abstract problem (1)-(2)

min
(u,z)∈U×Z

J(u,z) subject to e(u,z) = 0, z ∈ Zad , u ∈Uad , (5)

where J : U×Z→R and e : U×Zad→Y where Zad ⊂ Z is closed convex. We refer
to (5) as the full space form. Before we proceed further we remark that often the
cost functional J has two components

J(u,z) = J1(u)+ J2(z),

where J1 : U → R is the objective (to be attained) and J2 : Z → R is the control
penalty.

Another way to write (5) is by letting X := U ×Z, Xad := Uad ×Zad . Then we
seek x ∈ Xad such that

min
x∈Xad

J(x), subject to e(x) = 0. (6)

Notice that (6) does not assume splitting of the control and state variables and is a
generalization of (5).

By eliminating the state variables we obtain a third form of (5) and we call it the
reduced form. Specifically this require existence of a solution operator: S : Z→U ,
which assigns each control to a unique state

z 7→ S(z) = u(z) where u(z) satisfies e(u(z),z) = 0.

Thus we define the reduced cost functional as J : Z→ R

J (z) := J(S(z),z).

Instead of (5) we then solve
min
z∈Zad

J (z). (7)

We remark that the formulations (5) and (7) are not equivalent in general. For in-
stance there are applications where the solution operator S does not exist, i.e., the
problem (7) may not have a solution but (5) is still solvable.
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We next state existence result for (7). For simplicity of presentation from here on
we will assume that Uad =U , i.e., no state constraints. However the discussion can
be easily adapted to this more general situation.

Corollary 1. Let the following assumptions hold

(i) Zad ⊂ Z is closed and convex.
(ii) For each z ∈ Zad there exist a unique mapping S(z) that solves e(S(z),z) = 0.

(iii) S is continuous, i.e., if zn ⇀ z in Zad then S(zn)⇀ S(z) in U.
(iv) The lower γ-level set {z∈ Zad : J (z)≤ γ} of J is nonempty and bounded for

some γ ∈ R.
(v) J1 is continuous and convex and J2 is weakly lower semicontinuous.

Then there exists a solution to (7).

Proof. We notice that since J1 is continuous and convex therefore it is weakly lower
semicontinuous [80, Theorem 2.12]. The weak continuity of S combined with the
weak lower semicontinuity of J2 implies that J is weakly lower semicontinuous.
The proof is then using Theorem 1.

We remark that in many applications we replace the lower γ-level set by either
boundedness of Zad or the coercivity of J2. More details will be provided in the
subsequent sections.

At times it is more suitable to directly work with the full space (5) form as the
reduced form (7) may not even exist. This requires us to use the Lagrangian func-
tional we will discuss this in Section 3.2. Another advantage of using Lagrangian
formulation is the ease with which it allows us to derive the first and second order
derivative. This will sbe discussed in Section 3.2. We first consider the derivation of
first order optimality conditions for the reduced form in Section 3.1.

3.1 Reduced Form: First Order Necessary Optimality Conditions

Corollary 2. Let all the assumptions of Corollary 1 hold except Z being reflexive.
Let Z be an open set in Z such that Zad ⊂ Z such that z 7→ S(z) : Z → U is
continuously Gâteaux differentiable with derivative

S′(z) ∈L (Z,U),

(u,z) 7→ J(u,z) : U×Z→ R is continuously Gâteaux differentiable with

J′(u,z) ∈L (U×Z,R).

If z̄ is minimizer of (5) over Zad then the first order necessary optimality conditions
are given by

〈S′(z̄)∗Ju(S(z̄), z̄)+ Jz(S(z̄), z̄),z− z̄〉Z∗,Z ≥ 0 ∀z ∈ Zad , (8)
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where Ju and Jz are the partial derivatives of J. If J is convex then the condition
(8) is sufficient.

Proof. The proof is a consequence of Theorem 2. Let z̄ be a solution of (5) then
from Theorem 2 we have that 〈J ′(z̄),z− z̄〉Z∗,Z ≥ 0 for all z ∈ Zad . Combining this
with the directional derivative

〈J ′(z̄),z− z̄〉Z∗,Z = J′(S(z),z)h = 〈Ju(S(z),z),S′(z)h〉U∗,U + 〈Jz(S(z),z),h〉Z∗,Z
= 〈S′(z)∗Ju(S(z),z),h〉Z∗,Z + 〈Jz(S(z),z),h〉Z∗,Z

we obtain the assertion.

To further understand the structure of S′(z̄), we assume that the PDE constraint
function e is sufficiently smooth and the conditions of Implicit function theorem
holds. Upon differentiating the state equation (formally) we obtain that

eu(S(z̄), z̄)S′(z̄)h =−ez(S(z̄), z̄)h.

Subsequently we arrive at

S′(z̄)h =−eu(S(z̄), z̄)−1 (ez(S(z̄), z̄)h) . (9)

Substituting this in (8) we obtain that

−
〈
ez(S(z̄), z̄)∗

(
(eu(S(z̄), z̄)−1)∗Ju(S(z̄), z̄)

)
,z− z̄

〉
Z∗,Z + 〈Jz(S(z̄), z̄),z− z̄〉Z∗,Z ≥ 0.

Introducing the adjoint variable p̄ solving the adjoint equation

eu(S(z̄), z̄)∗ p̄ = Ju(S(z̄), z̄), (10)

we arrive at the following reformulation of (8)

−〈ez(S(z̄), z̄)∗ p̄,h〉Z∗,Z + 〈Jz(S(z̄), z̄),z− z̄〉Z∗,Z ≥ 0. (11)

Notice that
J ′(z) =−ez(S(z),z)∗p+ Jz(S(z),z) ∈ Z∗, (12)

is the derivative of J at z. We summarize the computation of J ′(z) in the Algo-
rithm 1.

Algorithm 1 Derivative Computation Using Adjoints
1: Given z, solve e(u,z) = 0 for the state u.
2: Solve the adjoint equation eu(u(z),z)∗p = Ju(u(z),z) for p.
3: Compute J ′(z) = Ju(u(z),z)− ez(u(z),z)∗p(z).

The Algorithm 1 requires two PDE solves (possibly nonlinear in Step 1, linear
PDE in Step 2).
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In order to get the gradient we can again apply Reisz representation theorem to
get a representative ∇J (z) satisfying

(∇J (z),v)Z = 〈J ′(z),v〉Z∗,Z ∀v ∈ Z.

Having the expression of the gradient in hand, we can develop a gradient based
optimization solver. We will provide another derivation of the first order optimality
conditions in Section 3.2 using the Lagrangian approach.

In order to design Newton based methods, it is desirable to have the second order
derivative information of the reduced functional. This can be obtained by either us-
ing the reduced functional approach or the Lagrangian approach. We will provide a
brief discussion in the next section as well. More details will be given in subsequent
chapters, we also refer to [43, 52].

3.2 Lagrangian Formulation

First Order Optimality Conditions.

The full space form require us to introduce Lagrangian functional: L : U × Zad ×
Y ∗→ R,

L(u,z, p) = J(u,z)−〈e(u,z), p〉Y,Y ∗ . (13)

where Y ∗ is the dual space of Y (recall that e : U ×Zad → Y ). Notice that if we set
u = u(z) in (13) then e(u(z),z) = 0 and we obtain that

J (z) = J(u(z),z) = L(u(z),z, p) for any p ∈ Y ∗. (14)

Now if (ū, z̄, p̄) denotes a stationary point then the partial derivatives of L(u,z, p)
with respect to u, z, and p at (ū, z̄, p̄) vanish and as a result we obtain

Lp(ū, z̄, p̄) = 0,

which reduces to the state equation

e(ū, z̄) = 0.

Also

Lu(ū, z̄, p̄) = 0, (15)

which is just the adjoint equation (10). Indeed

〈Lu(ū, z̄, p̄),ξ 〉U∗,U = 〈Ju(ū, z̄),ξ 〉U∗,U −〈p̄,eu(ū, z̄)ξ 〉Y ∗,Y
= 〈Ju(ū, z̄)−eu(ū, z̄)∗ p̄,ξ 〉U∗,U .
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In other words
Lu(ū, z̄, p̄) = Ju(ū, z̄)−eu(ū, z̄)∗ p̄.

Finally,
〈Lz(ū, z̄, p̄),z− z̄〉Z∗,Z ≥ 0 ∀z ∈ Zad ,

which is equivalent to the variational inequality for the control (11). Indeed we have
that the gradient of the reduced function J at z (12) is

J ′(z) = Lz(u,z, p).

where u and p solves the the state and the adjoint equations respectively.
Few comments are in order, first of all the above approach provides an elegant

way to derive the first order necessary optimality conditions and is highly recom-
mended. As we will discuss below the above approach also allows us to easily derive
the second order derivatives for the reduced functional. Secondly even though the
above introduced Lagrangian L is rigorous, however, we have not yet addressed the
question of existence of the Lagrange multiplier p which makes the approach “for-
mal”. The existence of Lagrange multiplier p can be shown by using the Karush–
Kuhn–Tucker (KKT) theory in function spaces [80, Chapter 6]. This theory requires
the Robinson’s regularity condition [70] or the Zowe–Kurcyusz constraint qualifi-
cation [84], see [52, Chapter 1]. In certain cases, in particular, in the absence of
control constraints and linear PDE constraints, one can also use the inf-sup theory
for saddle point problems [38] to show existence of the Lagrange multipliers.

Second Order Derivatives

Next we focus on deriving the expression of the second order derivative of the re-
duced functional J . The second order derivative information can significantly im-
prove the convergence rates for optimization algorithms. For instance in the absence
of control constraints the first order necessary optimality conditions are J ′(z̄) = 0
in Z∗. In order to solve for z one can use a Newton’s method which is quadratically
convergent (locally). Each iteration of Newton’s method require solving

J ′′(z)v =−J ′(z) in Z∗ (16)

for a direction v ∈ Z. In practice it is expensive to store the Hessian in memory. In
view of (16) one is only interested in storing a Hessian-times-vector product. We
will discuss this computation next. We remark that in case of bound constraints on
the control one can use a superlinearly (locally) convergent semismooth Newton
method [47, 55, 81].

We will proceed by using the Lagrangian approach. We operate under the as-
sumption that J and e are twice continuously differentiable.

From (14) we recall that

J (z) = J(u(z),z) = L(u(z),z, p)
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u(z) = S(z) solves the state equation and p ∈ Y ∗ is arbitrary. After differentiating
this expression in a direction h1 we obtain that

〈J ′(z),h1〉Z∗,Z = 〈Lu(u(z),z, p),u′(z)h1〉U∗,U + 〈Lz(u(z),z, p),h1〉Z∗,Z .

Again differentiating this expression in a direction h2 and choosing a particular p
that solves the adjoint equation (15) we arrive at

J ′′(z) = T (S(z),z)∗H(S(z),z, p)T (S(z),z),

where

T (u,z) =
(
−eu(u,z)−1ez(u,z)

IZ

)
and H(u,z, p) is given by

H(u,z, p) =
(

Luu(u,z, p) Luz(u,z, p)
Lzu(u,z, p) Lzz(u,z, p)

)
.

Then one can compute the Hessian vector product by using the Algorithm 2.
Notice that

Algorithm 2 Hessian-Times-Vector Computation
1: Given z, solve e(u,z) = 0 for u (if not done already).
2: Solve adjoint equation: eu(u,z)∗p = Ju(u,z) for p (if not done already).
3: Solve eu(u,z)w =−ez(u,z)v.
4: Solve eu(u,z)∗q = DuuL(u,z, p)w+DuzL(u,z, p)v.
5: Compute

J ′′(z)v =−ez(u,z)∗q+Luz(u,z, p)w+Lzz(u,z, p)v.

Algorithm 2 requires two linear PDE solves in Steps 3 and 4. We refer to [52,
Chapter 1] and [43] for further details.

So far our approach has been general. For the chapter remainder we will fo-
cus on two particular examples where the cost functional is quadratic and the PDE
constraints are linear and semilinear elliptic PDEs. In order to develop notion of
solutions to these PDEs we first introduce Sobolev spaces.

4 Sobolev Spaces

In this section, we introduce the necessary function spaces to be used throughout
the chapter remainder. Let Ω ⊂ Rn be an open, bounded domain with Lipschitz
boundary ∂Ω . For 1≤ p < ∞, we denote by Lp(Ω) the Banach space
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Lp(Ω) :=
{

v : Ω → R : v is measurable and
∫

Ω

|v(x)|p dx < ∞

}
with the norm ‖v‖Lp(Ω) := (

∫
Ω
|v(x)|p dx)

1
p . These spaces are equivalence classes of

functions equal up to a set of measure zero [35]. In particular when p = 2, we obtain
L2(Ω) which is a Hilbert space with inner product (u,v)L2(Ω) =

∫
Ω

u(x)v(x) dx.
When p=∞, we obtain L∞(Ω), a Banach space with norm ‖v‖L∞(Ω) := ess supΩ |v|.

Moving forward, we use multi-index notation to define partial derivatives. For a
multi-index γ = (γ1, . . . ,γn)∈Nn

0 :=N∪{0}we let its order to be |γ| := ∑
n
i=1 γi. The

associated |γ|-th order partial derivative of a function u at x is

Dγ u(x) :=
∂ |γ|u

∂xγ1
1 . . .∂xγn

n
(x).

Then we denote by W k,p(Ω) the Sobolev spaces with the norm

‖u‖W k,p(Ω) :=

{(
∑|γ|≤k

∫
Ω
|Dγ u|p dx

)1/p 1≤ p < ∞

∑|γ|≤k ess supΩ |Dγ u| p = ∞.

If p = 2, we write
Hk(Ω) =W k,2(Ω), k = 0,1, . . .

which is a Hilbert space with inner product

(u,v)Hk(Ω) = ∑
|γ|≤k

(Dγ u,Dγ v)L2(Ω).

Notice that H0(Ω) = L2(Ω).
We denote by W k,p

0 (Ω) the closure of C∞
0 (Ω) with respect to W k,p(Ω)-norm.

Thus u ∈W k,p
0 (Ω) if and only if there exist functions um ∈C∞

0 (Ω) such that um→ u
in W k,p(Ω). The space H1

0 (Ω) consists of functions u ∈ H1(Ω) such that

u = 0 on ∂Ω ,

in the trace sense. Using the Poincaré inequality ‖u‖L2(Ω) ≤ C‖∇u‖L2(Ω), where
C =C(Ω), we have

‖u‖H1(Ω) ≤C‖∇u‖L2(Ω).

Finally, we denote the dual of H1
0 (Ω) by H−1(Ω). It is easy to see that L2(Ω) is

continuously embedded in H−1(Ω). For more details we refer to [1].
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5 Second Order Linear Elliptic PDEs

In this section, we study the second order elliptic PDEs. In general, we cannot ex-
pect classical solutions to these PDEs, therefore we first introduce the notion of
weak solutions in Section 5.1. We will also study the notion of ‘strong’ solutions
for this problem in Section 5.2. This higher regularity (strong solutions) will help
us to establish the approximability of the continuous solution using the finite ele-
ment method (cf. Section 8). Strong solutions, in addition, also play a role in other
situations, for instance, in studying the regularity of multipliers in state constrained
problems [20] and PDECO problems with variational inequalities [48].

5.1 Existence and Uniqueness

We begin this section by making certain uniform ellipticity assumptions.

Assumption 3 (coefficient matrix) Let A be an n× n matrix with entries ai j for
1 ≤ i, j ≤ n. We assume that ai j are measurable, belong to L∞(Ω), and symmetric,
that is, ai j(x) = a ji(x) for all 1≤ i, j≤ n and for a.e. x ∈Ω . We further assume that
A is positive definite and satisfy the uniform ellipticity condition

∃ β ≥ α > 0 such that α|ξ |2 ≤ A(x)ξ ·ξ ≤ β |ξ |2 ∀ξ ∈Rn, a.e. x in Ω . (17)

Given f , we consider the following linear second order elliptic PDE

−div (A∇u) = f in Ω

u = 0 on ∂Ω .
(18)

We understand (18) in a weak sense, i.e., given f ∈ H−1(Ω), we seek a solution
u ∈ H1

0 (Ω) that satisfies∫
Ω

A∇u ·∇v dx = 〈 f ,v〉−1,1, ∀v ∈ H1
0 (Ω), (19)

where 〈·, ·〉−1,1, denotes the duality pairing between H−1(Ω) and H1
0 (Ω).

Theorem 4. For every f ∈H−1(Ω), there exists a unique weak solution u ∈H1
0 (Ω)

that fulfills
‖u‖H1(Ω) ≤C‖ f‖H−1(Ω), (20)

where the constant C only depends on Ω and α .

Proof. The existence and uniqueness is due to the Lax-Milgram Lemma. Moreover
the bound (20) immediately follows by using the fact that A is uniformly positive
definite and the Poincaré inequality [36].
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Remark 4. In general for Sobolev spaces W 1,p(Ω) with p 6= 2, we need the inf-sup
conditions to prove Theorem 4. The Banach-Nečas theorem then guarantees exis-
tence and uniqueness of u [32, Theorem 2.6]. The latter is a necessary and sufficient
condition. See also [66].

5.2 Regularity

It is imperative to understand the regularity of solution u to (19). For instance, such
an understanding allows us to develop numerical schemes with optimal rate of con-
vergence (see Section 8). It can assist us with proving rates of convergence for the
optimization algorithms [46].

Theorem 5. Let u ∈ H1
0 (Ω) be a weak solution of (19) and the coefficient matrix A

satisfies Assumption 3.

• If f ∈ L2(Ω) and Ω is a convex polytope or C1,1 domain in Rn, then u∈H2(Ω)∩
H1

0 (Ω) and there exists a constant C =C(α,β ,Ω) such that

‖u‖H2(Ω) ≤C‖ f‖L2(Ω).

• If f ∈ Lp(Ω) for 1 < p < ∞ and Ω is C1,1, then u ∈W 2,p(Ω)∩W 1,p
0 (Ω) and

there exists a constant C =C(α,β ,Ω , p) such that

‖u‖W 2,p(Ω) ≤C‖ f‖Lp(Ω).

If p > n , then u ∈C1,α(Ω̄) with α = 1−n/p.

Proof. If Ω is a convex polygonal/polyhedral domain then H2-regularity is in [39,
3.2.1.2]. For ∂Ω is C1,1 and f ∈ Lp(Ω) for any 1 < p < ∞ the result is due to [37,
Theorem 9.15]. In the case p > n, the C1,α regularity follows from W 2,p regularity
and the Sobolev embedding.

6 Linear Quadratic PDE Constrained Optimization Problem

Having some basic understanding of elliptic PDEs in hand we next apply the results
of Section 3 to a linear quadratic PDECO problem (cf. Section 6.1). In Section 6.2
we formulate it as a reduced PDECO problem only in terms of the control variable
z. This allows us to use the direct method of calculus of variations from Theorem 1
to show the existence of solution.
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6.1 Problem Formulation

Let ud ∈ L2(Ω) and za,zb ∈ L2(Ω)∪{±∞} with za < zb a.e. in Ω be given. More-
over, let λ ≥ 0 denotes the regularization parameter. Then we are interested in min-
imizing

J(u,z) =
1
2
‖u−ud‖2

L2(Ω)+
λ

2
‖z‖2

L2(Ω) (21)

subject to (in the weak form)

−div (A∇u) = z in Ω ,

u = 0 on ∂Ω ,
(22)

and the pointwise control constraints

z ∈ Zad := {v ∈ L2(Ω) : za(x)≤ v(x)≤ zb(x) , a.e. x ∈Ω}. (23)

Notice that in the case of za = −∞ and zb = ∞ we have an unconstrained case i.e.
Zad = L2(Ω).

For the above problem we have (cf. Section 3)

U = H1
0 (Ω), Y = H−1(Ω), Z = L2(Ω).

In order to understand the problem (21)-(23) similarly to (7), first we condense
the variables and write J only in terms of z. We again call this as the reduced form
and the resulting cost functional as the reduced functional. We discuss this next.

6.2 Reduced PDECO Problem

For every z ∈ Y there exists a unique solution u = u(z) ∈U to (22). As a result, we
can define the solution operator to (22) as

S : Y →U, z 7→ u(z) = S z,

which is linear and continuous. In view of the continuous embedding H1
0 (Ω) ↪→

L2(Ω) ↪→H−1(Ω) we may also consider S as a map from L2(Ω) to L2(Ω). In other
words instead of S , we consider the operator S := EuS Ez, where Ez : L2(Ω)→
H−1(Ω) and Eu : H1

0 (Ω)→ L2(Ω) denote the embedding operators that assign to
each z ∈ L2(Ω) and u ∈ H1

0 (Ω) the functions z ∈ H−1(Ω) and u ∈ L2(Ω) so that
when these new functions are restricted to L2(Ω) and H1

0 (Ω) the operator yield the
original functions, respectively. Notice that S : L2(Ω)→ L2(Ω). One of the main
advantage of using S is the fact that the adjoint operator S∗ also acts on L2(Ω)
(cf. Section 6.3). Using the solution map S we arrive at the so-called reduced cost
J : L2(Ω)→ R which is defined as
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J (z) := J(Sz,z),

and the minimization problem (21)-(23) is equivalent to the reduced problem:

min
z∈Zad

J (z). (24)

We notice that it is more convenient to analyze (24) in comparison to (21)-(23). In
fact we have the following well-posedness result.

Corollary 3. Let the following holds: (i) unconstrained case (Zad = Z) λ > 0; (ii)
either λ > 0 or Zad is bounded. Then there exists a solution to the minimization
problem (24). If in addition λ > 0 or S is injective then the solution is unique.

Proof. The proof is a consequence of Theorem 1. We will first show that J
is weakly lower semicontinuous. Notice that J (z) = J1(Sz) + J2(z) where
J1(Sz) := 1

2‖Sz−ud‖2
L2(Ω)

and J2(z) := λ

2 ‖z‖
2
L2(Ω)

. Clearly J2 is weakly lower
semicontinuous (convexity and continuity implies weak lower semicontinuity [18,
Theorem 2.23]). On the other hand due to the compact embedding of H1

0 (Ω) in
L2(Ω) we have that S : L2(Ω)→ L2(Ω) is completely continuous, i.e., if zn ⇀ z in
L2(Ω) then Szn→ Sz in L2(Ω). Thus owing to the continuity and convexity of J1
we conclude that J1 is weakly lower semicontinuous. Whence J is weakly lower
semicontinuous.

It then remains to characterize the lower γ-level set. We consider two cases.
I Unconstrained case. We replace the lower γ-level set condition by the coercivity

of J .
II Constrained case. Either replace the lower γ-level set condition by the coercivity

of J (if λ > 0) or by the closed convex bounded set Zad .
Finally uniqueness is due to strict convexity of J .

For the remainder of this section we will consider λ > 0.

6.3 First Order Optimality Conditions

We are now ready to derive the first order optimality conditions by following Sec-
tion 3.1 and the expression of the gradient of the reduced objective function. In
Section 6.4 we follow Section 3.2 and consider an alternate strategy to derive the
optimality conditions using the Lagrangian formulation.

We recall that the reduced functional is

J (z) =
1
2
‖Sz−ud‖2

L2(Ω)+
λ

2
‖z‖2

L2(Ω).

Using Examples 1 and 2 the gradient of J is given by

∇J (z) = S∗(Sz−ud)+λ z ∈ L2(Ω).
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Here we have S : L2(Ω)→ L2(Ω). The first order necessary and sufficient (due to
the convexity of J ) optimality condition (4) then becomes

(∇J (z̄),z− z̄)L2(Ω) ≥ 0 ∀z ∈ Zad . (25)

In order to efficiently evaluate ∇J (z), we introduce the so-called adjoint variable
p ∈ H1

0 (Ω) solving

−div (A∇p) = u−ud in Ω

p = 0 on ∂Ω .
(26)

We will next show that the adjoint operator S∗ : L2(Ω)→ L2(Ω) can be defined by
S∗ζ := p where p solves (26) with right hand side given by ζ . Here ζ ∈ L2(Ω) is
arbitrary. Let z ∈ L2(Ω) be an arbitrary right hand side of the state equation and the
resulting state variable is u = Sz ∈ H1

0 (Ω). By testing the equation for u with p and
vice-versa, we obtain that (z, p)L2(Ω) = (ζ ,u)L2(Ω). Since u = Sz, we deduce that
S∗ζ = p. As a result, S∗(u−ud) = p where p solves (26).

Thus the gradient computation reduces to evaluation of the following expression

∇J (z) = p+λ z ∈ L2(Ω).

Finally, we gather the first order necessary and sufficient optimality system:

ū ∈ H1
0 (Ω) :

∫
Ω

A∇ū ·∇v dx =
∫

Ω

z̄v dx ∀v ∈ H1
0 (Ω) (27a)

p̄ ∈ H1
0 (Ω) :

∫
Ω

A∇p̄ ·∇v dx =
∫

Ω

(ū−ud)v dx ∀v ∈ H1
0 (Ω) (27b)

z̄ ∈ Zad : (p̄+λ z̄,z− z̄)L2(Ω) ≥ 0, ∀z ∈ Zad . (27c)

Notice that (27) is a coupled system, namely ū in (27a) depends on the unknown
optimal control z̄ which fulfills the inequality (27c). The latter depends on the adjoint
variable p̄ that solves the adjoint equation (27b). This in turn depends on ū. We
further remark the variational inequality (27c) for the control is equivalent to the
following projection formula (see [80])

z̄(x) = PZad

{
− 1

λ
p̄(x)

}
a.e. x ∈Ω . (28)

Here for a,b ∈ R with a ≤ b, P[a,b] denotes projection of R onto [a,b], i.e.,
P[a,b](u) := min{b,max{a,u}}.
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6.4 Lagrange Method

An alternative approach to derive the first order optimality system is using the La-
grangian as described in Section 3.2. We again emphasize that even though this
approach is used formally in the following, it can be made rigorous. It provides a
systematic way of deriving the optimality system, especially for tedious problems
and this step is strongly recommended.

Introduce L : H1
0 (Ω)×Zad×H1(Ω)→ R, defined as

L(u,z, p) := J(u,z)−
∫

Ω

(A∇u ·∇p− zp) dx.

If (ū, z̄, p̄) is a stationary point then:

〈Lp(ū, z̄, p̄),h〉H−1(Ω),H1
0 (Ω) = 0 ∀h ∈ H1

0 (Ω),

〈Lu(ū, z̄, p̄),h〉H−1(Ω),H1
0 (Ω) = 0 ∀h ∈ H1

0 (Ω),

(Lz(ū, z̄, p̄),(z− z̄))L2(Ω) ≥ 0 ∀z ∈ Zad .

(29)

It is not hard to see that (29) leads to the same optimality system as in (27).

7 Semilinear Quadratic PDE Constrained Optimization Problem

The focus of the previous section was on the linear quadratic PDECO problem.
However, things are more delicate when we replace the linear PDE constraint by a
semilinear one. In this section, we provide a brief discussion of a PDECO problem
governed by a semilinear PDE.

Let Ω ⊂ Rn, with n ≥ 2, be a Lipschitz domain and the Assumption 3 holds.
Moreover, let ud ∈ L2(Ω) and za,zb ∈ L∞(Ω) with za(x) < zb(x) a.e. x ∈ Ω and
λ ≥ 0 be given. We then consider the following semilinear optimal control problem:

minJ(u,z) :=
1
2
‖u−ud‖2

L2(Ω)+
λ

2
‖z‖2

L2(Ω) (30)

subject to u ∈ L∞(Ω)∩H1
0 (Ω)) solving the weak form of

−div (A∇u)+ f (·,u) = z in Ω

u = 0 on ∂Ω
(31)

and

z ∈ Zad := {v ∈ L∞(Ω) : za(x)≤ v(x)≤ zb(x) , a.e. x ∈Ω}. (32)
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Notice the difference between the semilinear state equation (31) and the linear
state equation (22). The key difficulty in the above problem is due to the nonlinearity
introduced by f . The control bounds fulfills za,zb ∈ L∞(Ω). This is different than
the linear case where we assumed the bounds to be in L2(Ω). This choice enforces
the control z ∈ L∞(Ω) which in turn provides additional regularity for the state u as
we discuss next.

In order to establish existence of solution to the state equation (31) we make
certain assumptions on the nonlinearity f .

Assumption 6 For a function f : Ω×R→R we consider the following assumption:

f (x, ·) is odd, strictly increasing for a.e. x ∈Ω ,

f (x,0) = 0 for a.e. x ∈Ω ,

f (x, ·) is continuous for a.e. x ∈Ω ,

f (·, t) is measurable for all t ∈ R,
limt→∞ f (x, t) = ∞ for a.e. x ∈Ω .

Remark 5. The condition f (x,0) = 0 in Assumption 6 is not a restriction. If this
condition on f cannot be verified then it is enough to rewrite the equation (31) in Ω

as
−div (A∇u)+ f (·,u)− f (·,0) = z− f (·,0) in Ω .

A typical example of f that fulfills Assumption 6 is given next (cf. [10, 11]).

Example 3. Let q ∈ [1,∞) and let b : Ω → (0,∞) be a function in L∞(Ω), that is,
b(x)> 0 for a.e. x ∈Ω . Define the function f : Ω ×R→R by f (x, t) = b(x)|t|q−1t.

Theorem 7 (existence and uniqueness for semilinear PDE). Let Assumptions 3
and 6 hold. Then for every z∈ Lp(Ω) with p > n

2 there exists a unique weak solution
u ∈ L∞(Ω)∩H1

0 (Ω)) to the state equation (31) and there exists a constant C =
C(α,β ,Ω)> 0 such that

‖u‖H1(Ω)+‖u‖L∞(Ω) ≤C‖z‖Lp(Ω). (33)

Proof. The existence of solution is using the Browder-Minty theorem (cf [11,
proposition 3.2] after setting s = 1). On the other hand the L∞(Ω) regularity is by
using a technique of Stampacchia [11, Theorem 3.5], see also [2, 21].

For the above minimization problem we have (cf. Section 3)

U = H1
0 (Ω)∩L∞(Ω), Y = H−1(Ω), Z = Lp(Ω) with p > n/2.

Notice that
Zad ⊂ L∞(Ω)⊂ Z.

As a result and owing to Theorem 7 the control to state map is well defined

S : L∞(Ω)→ L∞(Ω)∩H1
0 (Ω).
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We notice that S is also well defined as a map from Z to L∞(Ω)∩H1
0 (Ω)2. Due to S

we can write the reduced problem as

min
z∈Zad

J (z) := J(S(z),z). (34)

In order to show the existence of solution to (34) typically f is assumed to be locally
Lipschitz in the second argument to fulfill the assumptions on S in Corollary 1.
This assumption was recently weakened in [11] and was replaced by the following
growth condition on f : there exists a constant c ∈ (0,1] such that

c| f (x,ξ −η)| ≤ | f (x,ξ )− f (x,η)| (35)

for a.e. x∈Ω and for all ξ ,η ∈R. Such a growth condition is fulfilled by Example 3
(cf. [11]). Under this condition we have the following existence result for (34).

Corollary 4. Let the Assumptions of Theorem 7 hold. In addition, let f fulfills the
growth condition (35) and that

f (·,w(·)) ∈ L2(Ω) for every w ∈ L∞(Ω). (36)

Then there exists a solution to (34).

Proof. Similarly to Corollary 3, the proof is again a consequence of Theorem 1.
We interpret Zad as a subset of Z which is a reflexive Banach space. However, care
must be taken to show the weak lower semicontinuity of J . One has to carefully
study the convergence of the state sequence {S(zn)}n∈N. See for instance [11, The-
orem 4.2].

Notice that the condition (36) is also fulfilled by Example 3.

Remark 6. We mention that all the results given in Corollary 4 remain true if one
replaces the growth condition (35) and (36) with the following local Lipschitz con-
tinuity condition: For all M > 0 there exists a constant LM > 0 such that f satisfies

| f (x,ξ )− f (x,η)| ≤ LM|ξ −η | (37)

for a.e. x ∈Ω and ξ ,η ∈ R with |η |, |ξ | ≤M.

For the remainder of this section we will assume that λ > 0. Before we proceed
further to derive the optimality conditions we need some additional assumptions on
f . Notice that the second order derivatives are needed if one is interested in studying
the second order sufficient conditions.

Assumption 8 We assume the following.

(i) The function f (x, ·) is k-times, with k = 1,2, continuously Gâteaux differen-
tiable for a.e. x ∈Ω .

2 Note the both choices of spaces for S are motivated by the theory of Nemytskii or superposition
operators. Care must to taken to ensure their differentiability [80, Section 4.3]
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(ii) For all M > 0 there exist a constant LM > 0 such that f satisfies (37) and∣∣∣Dk
u f (x,ξ )−Dk

u f (x,η)
∣∣∣≤ LM|ξ −η |, k = 1,2,

for a.e. x ∈ Ω and ξ ,η ∈ R with |ξ |, |η | ≤ M. Here Du denotes the partial
derivatives.

(iii) Du f (·,0) ∈ L∞(Ω).

The Assumptions 8 not only help us prove that S : L∞(Ω)→ L∞(Ω)∩H1
0 (Ω) is

twice Fréchet differentiable (using the Implicit Function Theorem) but also twice
continuous Fréchet differentiability of J .

By invoking Corollary 2 the first order necessary optimality conditions are given
as follows: For every solution z̄ of the problem (34) there exists a unique optimal
state ū = S(z̄) and an optimal adjoint state p̄ such that

ū ∈ L∞(Ω)∩H1
0 (Ω) :

∫
Ω

A∇ū ·∇v dx+
∫

Ω

f (x, ū)v dx =
∫

Ω

z̄v dx ∀v ∈ H1
0 (Ω)

p̄ ∈ H1
0 (Ω) :

∫
Ω

A∇ p̄ ·∇v dx+
∫

Ω

Du f (x, ū)p̄ dx

=
∫

Ω

(ū−ud)v dx ∀v ∈ H1
0 (Ω)

z̄ ∈ Zad : (p̄+λ z̄,z− z̄)L2(Ω) ≥ 0, ∀z ∈ Zad .

(38)

Alternatively, one can use the Lagrangian approach of Section 6.4 to derive (38).
Notice that the variational inequality in (38) again can be written using the Pro-

jection formula as

z̄(x) = PZad

{
− 1

λ
p̄(x)

}
a.e. x ∈Ω . (39)

We further remark that since J is non-convex, in general due to the semilinear
state equation, we cannot expect a global unique solution to the PDECO problem
but only a local one. This local uniqueness can be shown by studying second order
sufficient conditions. Nevertheless care must be taken to prove such a result. This
is due to the fact that the penalty term on the control in the cost functional is in
L2(Ω). However the constraints in Zad are in L∞(Ω). This leads to the so-called
L2(Ω)−L∞(Ω) norm discrepancy and should be taken into account before consid-
ering second order sufficient conditions. We refer to [80, Theorem 4.29] for details.
We further remark that the second order sufficient conditions are a useful tool to
derive the discretization error estimates [13]. A further discussion is provided in
Theorem 12.
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8 Discrete Optimal Control Problem

We will illustrate the main ideas of the finite element approximation of the PDE
constrained optimization problems in the case of linear elliptic problem with con-
trol constraints (21)-(23). First we briefly review the basics of the finite element
discretization just for the state equation. For what follows, it is sufficient to take
f ∈ L2(Ω). We consider the weak form of the equation (19),

(A∇u,∇v) = ( f ,v) ∀v ∈ H1
0 (Ω).

We partion the domain Ω into elements. For simplicity we only discuss the case
when elements are simplices. For h ∈ (0,h0]; h0 > 0, let Th denote a quasi-uniform
triangulation of Ω with mesh size h, i.e., Th = {τ} is a partition of Ω into triangles
or tetrahedrons τ of diameter hτ such that for h = maxτ hτ ,

diam(τ)≤ h≤C|τ|
1
n , ∀τ ∈Th,

where the constant C > 0 independent of h. For simplicity we assume ∪τ = Ω . Let
Vh be the set of all functions in H1

0 (Ω) that are continuous on Ω and linear on each
τ . Vh is usually called the space of conforming Lagrange piecewise linear elements.

Now we define the finite element Galerkin approximaion uh ∈ Vh of (8), as the
unique solution of

(A∇uh,∇vh) = ( f ,vh) ∀vh ∈Vh. (40)

Expanding uh in terms of basis functions, it is easy to see that (40) is equivalent
to a system of linear equations and since Vh ⊂ H1

0 (Ω) the resulting matrix is non-
singular. Notice that by construction

(A∇(u−uh),∇vh) = 0 ∀vh ∈Vh. (41)

Thus, the Galerkin solution uh is the orthogonal projection of u onto Vh with respect
to the inner-product (A·, ·). Almost immediatelly we obtain the following key result.

Lemma 1 (Céa Lemma). Let u and uh satisfity (41). Then the following estimate
holds

‖u−uh‖H1(Ω) ≤C min
χ∈Vh
‖u−χ‖H1(Ω).

The constant C depends only on ellipticity, boundedness of the matrix A, and the
domain Ω .

The above result says that the Galerkin solution is the best approximation to u from
Vh in H1(Ω)-norm up to a constant. We can use Céa Lemma to derive a priori error
estimates. Let Ih : H1(Ω)→Vh be a projection with the approximation properties

‖u− Ihu‖Hs(Ω) ≤Ch2−s‖u‖H2(Ω), s = 0,1, (42)

then from Céa Lemma immediately follows
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‖u−uh‖H1(Ω) ≤Ch‖u‖H2(Ω).

Notice that the constant C > 0 above is independent of h. The error estimates in
L2(Ω)-norm are not immediate, since the Galerkin solution does not have a property
of being best approximation in L2(Ω)-norm, nevertheless one can still establish
optimal error estimates in L2(Ω) via a duality argument, also known as a Nitsche’s
trick. This result requires H2(Ω)-regularity.

Lemma 2. Let Ω be convex or C1,1 and u and uh satisfity (41). Then there exists a
constant C independent of h such that

‖u−uh‖L2(Ω) ≤Ch min
χ∈Vh
‖u−χ‖H1(Ω).

Proof. Let e = u−uh and consider a dual problem

(A∇w,∇v) = (e,v) ∀v ∈ H1
0 (Ω).

By setting, v = u−uh, we obtain

‖e‖2
L2(Ω) = (A∇w,∇e) = (A∇(w−wh),∇e),

where the last equality is due to (41). Next using the Cauchy-Schwarz inequality
and the fact that, under given regularity of the domain ‖w‖H2(Ω) ≤C‖e‖L2(Ω), we
obtain the required result.

Combining Céa Lemma and Lemma 2, we immediately establish optimal a priori
error estimate

‖u−uh‖L2(Ω) ≤Ch2‖u‖H2(Ω).

Notice that the above estimate does require the convexity of Ω .

Corollary 5. H2 regularity also allows to express the error in terms of data. Thus
from Lemma 1 and Lemma 2 it follows

‖u−uh‖L2(Ω)+h‖u−uh‖H1(Ω) ≤Ch2‖ f‖L2(Ω).

8.1 Discrete Linear Quadratic PDE Constrained Optimization
Problem

For the remainder chapter we will assume that λ > 0. To discretize the problem we
replace the state space H1

0 (Ω) with Vh ⊂H1
0 (Ω) and the control space of admissible

functions Zad with Zad,h ⊂ Zad . In case of unconstrained control, we can choose
Zad,h = Vh. Theoretically, the mesh for the discretization of the state variable and
the mesh for the discretization of the control can be different. However having two
different meshes adds more technical difficulties for implementation. For this reason
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it is more convenient to work with the same mesh which is what we assume from
now on. Thus, the discretized problem (21)-(23) becomes

min
uh∈Vh, zh∈Zad,h

Jh(uh,zh) =
1
2
‖uh−ud‖2

L2(Ω)+
λ

2
‖zh‖2

L2(Ω) (43)

subject to

(A∇uh,∇vh) = (zh,vh) ∀vh ∈Vh. (44)

Similarly to the infinite dimensional case we define a discrete solution operator
Sh : Zad →Vh to (44) and the reduced discrete problem becomes

min
zh∈Zad,h

Jh(zh) := min
zh∈Zad,h

Jh(Shzh,zh). (45)

Similarly to the continuous problem one can show that problem (45) has a unique
solution z̄h ∈ Zad,h, the corresponding discrete optimal state is ūh = Sh(z̄h), and sim-
ilarly to the Theorem 2 the first order necessary and sufficient optimality condition
is

J ′
h(z̄h)(zh− z̄h)≥ 0, ∀zh ∈ Zad,h. (46)

8.2 Optimization problem without control constraints

In this situation Zad = L2(Ω) and Zad,h =Vh and as a result (25) and (46) reduce to
equalities

z̄ =− 1
λ

p̄, z̄h =−
1
λ

p̄h, (47)

correspondingly, and as a result the continuous and discrete PDECO problems are
equivalent to the systems of equations

ū = S(− 1
λ

p̄)

p̄ = S∗(ū−ud)

and
ūh = Sh(−

1
λ

p̄h)

p̄h = S∗h(ūh−ud).

As a result z̄, ū, p̄ ∈ H2(Ω) and we can expect second order convergence for the
optimal control in L2 norm. Indeed, one can establish the following result.

Theorem 9. Let z̄ and z̄h be optimal solutions to continuous and discrete PDECO
problems (21) and (43), respectively, without control constraints. Assume in addi-
tion that Ω is convex or C1,1. Then there exists a constant C independent of h such
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that
‖z̄− z̄h‖L2(Ω) ≤Ch2

(
‖z̄‖L2(Ω)+‖ud‖L2(Ω)

)
.

Proof. We begin by recalling the unconstrained optimality conditions λ z̄+ p̄ = 0 =
λ z̄h + p̄h, which yields (λ z̄+ p̄, z̄h− z̄) = 0 = (λ z̄h + p̄h, z̄− z̄h). Adding these last
two equalities, we arrive at

λ‖z̄− z̄h‖2
L2(Ω) = (p̄− p̄h, z̄h− z̄)L2(Ω) = (S∗(Sz̄−ud)−S∗h(Shz̄h−ud), z̄h− z̄)L2(Ω),

(48)
where in the last equality we have used the representation of p̄ and p̄h. Up on rewrit-
ing (48) we obtain

λ‖z̄− z̄h‖2
L2(Ω) = (S∗Sz̄−S∗hShz̄h, z̄h− z̄)L2(Ω)+((S∗−S∗h)ud , z̄h− z̄)L2(Ω) = I + II.

(49)
It follows from Corollary 5 that

|II| ≤Ch2‖ud‖L2(Ω)‖z̄− z̄h‖L2(Ω). (50)

It then remains to estimate I in (49). We add and subtract (S∗hShz̄, z̄h− z̄)L2(Ω) to I
and arrive at

I = ((S∗S−S∗hSh)z̄, z̄h− z̄)L2(Ω)+(Sh(z̄− z̄h),Sh(z̄h− z̄))L2(Ω)

≤ ((S∗S−S∗hSh)z̄, z̄h− z̄)L2(Ω), (51)

where we have used the fact that (Sh(z̄− z̄h),Sh(z̄h− z̄))L2(Ω) =−‖Sh(z̄− z̄h)‖2 ≤ 0.
Again adding and subtracting (S∗hSz̄, , z̄h− z̄)L2(Ω) to (51) we arrive at

|I| ≤ |((S∗−S∗h)Sz̄, z̄h− z̄)L2(Ω)+(S∗h(S−Sh)z̄, z̄h− z̄)L2(Ω)|

≤Ch2‖z̄‖L2(Ω)‖z̄− z̄h‖L2(Ω), (52)

where we have first used the triangle inequality and have estimated the first term us-
ing Corollary 5 and continuity of S : L2(Ω)→ L2(Ω): |((S∗−S∗h)Sz̄, z̄h− z̄)L2(Ω)| ≤
Ch2‖Sz̄‖L2(Ω)‖z̄− z̄h‖L2(Ω)≤Ch2‖z̄‖L2(Ω)‖z̄− z̄h‖L2(Ω). The estimate of the remain-
ing term follows again using Corollary 5 and the continuity of S∗h : L2(Ω)→ L2(Ω).
Finally, substituting the estimates of I and II from (52) and (50) in (49) we arrive at
the asserted result.

8.3 Optimization problem with control constraints

For the rest of this section we assume constant box constraints i.e. za,zb ∈ R, with
za < zb. We remind the reader that in this situation the optimal control is given by a
projection formula
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z̄(x) = PZad

{
− 1

λ
p̄(x)

}
. (53)

If the constraints are active, z̄ /∈ H2(Ω). However, we can still conclude z̄ ∈ H1(Ω)
and even z̄ ∈W 1

∞(Ω) by using [57, Theorem A.1]. In light of this, the second order
convergence can not in general be expected. There are several approaches to treat
the problem.

8.3.1 Cell-wise constant control discretization

One idea is to consider a cellwise constant discretization of the control variable, i.e.
we choose Zad,h = Zad ∩ Z0

h , where Z0
h is a space of piecewise constant functions

on the partition Th. This idea goes back to Falk [33]. Since we consider piecewise
constant discretization, only first order convergence for the control can be expected.
Indeed for such discretization one can establish the following convergence result.

Theorem 10. Let z̄ and z̄h be optimal solutions to continuous and discrete PDECO
problems (21) and (43), respectively, with control constraints (23). Let Zad,h = Zad∩
Z0

h . Assume in addition that Ω is convex or C1,1. Then there exists a constant C
independent of h such that

‖z̄− z̄h‖L2(Ω) ≤Ch
(
‖z̄‖H1(Ω)+‖ud‖L2(Ω)

)
.

Proof. First we define a projection πh : Zad → Zad ∩Z0
h by

πhv |τ=
1
|τ|

∫
τ

v dx, ∀τ ∈Th. (54)

Thus the projection πh is the orthogonal projection onto Z0
h with respect to L2-inner-

product, i.e.
(v−πhv,w)L2(Ω) = 0, w ∈ Z0

h (55)

and has the following approximation property

‖v−πhv‖L2(Ω) ≤Ch‖∇v‖L2(Ω), v ∈ H1(Ω). (56)

Then replacing z by z̄h in (25) and zh by πhz̄ in (46) we arrive at

(λ z̄+ p̄, z̄h− z̄)L2(Ω) ≥ 0, (λ z̄h + p̄h,πhz̄− z̄h)L2(Ω) ≥ 0.

Adding these inequalities, we obtain that

λ‖z̄− z̄h‖2
L2(Ω) ≤ (p̄− p̄h, z̄h− z̄)L2(Ω)+(λ z̄h + p̄h,πhz̄− z̄)L2(Ω) = I + II. (57)

The estimate of I is exactly same as in Theorem 9, i.e.,
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|I| ≤Ch2(‖z̄‖L2(Ω)+‖ud‖L2(Ω))‖z̄− z̄h‖L2(Ω)

≤Cλ h4(‖z̄‖L2(Ω)+‖ud‖L2(Ω))
2 +

λ

4
‖z̄− z̄h‖2

L2(Ω), (58)

where we have used the Young’s inequality in addition. Next we provide estimate for
II. Using the characterization of p̄h, followed by, adding and subtracting (S∗h(Shz̄−
ud),πhz̄− z̄)L2(Ω), and using the continuity of S∗h, we obtain

II = (S∗h(Shz̄h−ud),πhz̄− z̄)L2(Ω)

= (S∗hSh(z̄h− z̄),πhz̄− z̄)L2(Ω)+(S∗h(Shz̄−ud),πhz̄− z̄)L2(Ω) =: II1 + II2. (59)

To estimate II1 we use (56) and Young’s inequality to arrive at

|II1| ≤Cλ h2‖z̄‖2
H1(Ω)+

λ

4
‖z̄− z̄h‖2

L2(Ω). (60)

It then remains to estimate II2 in (59). By adding and subtracting (S∗h(Sz̄−ud),πhz̄−
z̄)L2(Ω) in II2 we obtain that

|II2|= |(S∗h(Sh−S)z̄,πhz̄− z̄)L2(Ω)+(S∗h(Sz̄−ud),πhz̄− z̄)L2(Ω)|

≤Ch3‖z̄‖H1(Ω)+ |((S
∗
h−S∗)(Sz̄−ud),πhz̄− z̄)L2(Ω)|

+ |(S∗(Sz̄−ud),πhz̄− z̄)L2(Ω)|=: II2,1 + II2,2 + II2,3, (61)

where we have used Corollary 5 and (56) to estimate the first term. Moreover, we
have added and subtracted (S∗(Sz̄− ud),πhz̄− z̄)L2(Ω) to the second term. It then
remains to estimate II2,2 and II2,3. Again using Corollary 5 and (56) we obtain that
II2,2 ≤Ch3(‖z̄‖L2(Ω)+‖ud‖L2(Ω))‖z̄‖H1(Ω). Finally, to estimate II2,3 we first recall
that S∗(Sz̄−ud) = p̄. Since πh is L2-orthogonal projection we obtain

II2,3 = (p̄−πh p̄,πhz̄− z̄)L2(Ω) ≤Ch3(‖z̄‖L2(Ω)+‖ud‖L2(Ω))‖z̄‖H1(Ω). (62)

Collecting all the estimates we arrive at the asserted result.

Comparing this result with the unconstrained case we have only first order con-
vergence. This is mainly due to the choice of the discrete control space which
does not take the full advantage of the regularity of the optimal control, namely
z̄ ∈W 1

∞(Ω) . Moreover, away from the active constraints z̄ is still in H2. Taking this
in consideration there are some alternatives to increase the order of the convergence.

8.3.2 Cell-wise linear control discretization

To improve the convergence rate of the above result we consider Zad,h = Zad ∩Vh,
i.e. the control space consists of piecewise linear functions satisfying constraints
(22). The approximation properties in this setting was investigated in a number of
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papers, for example [71, 73]. We will not provide all the details, only highlight the
main ideas. To take advantage of the regularity for z̄ discussed above, we consider
the following sets:

T 1
h = {τ ∈Th | z̄ |τ= za or z̄ |τ= zb},

which is the set of active cells,

T 2
h = {τ ∈Th | za < z̄ |τ< zb},

the set of not active cells, and the rest

T 3
h = Th\(T 1

h ∪T 2
h ).

Then under the assumption that

meas(T 3
h )≤Ch, (63)

which is valid, for example, if the boundary of the active set consists of a finite
number of rectifiable curves, one can establish the following result.

Theorem 11. Let z̄ and z̄h be optimal solutions to continuous and discrete PDECO
problems (21) and (43), respectively, with control constraints. Assume in addition
that Ω is convex or C1,1, ud ∈ Lp(Ω) for p > n and the assumptions (63) hold. Then
there exists a constant C indepedent of h such that

‖z̄− z̄h‖L2(Ω) ≤Ch
3
2

(
‖ p̄‖H2(Ω)+‖∇z̄‖L∞(Ω)

)
.

Proof. The proof of this result can be found in [72].

Remark 7 (Variational discretization). The idea of the variational discretization ap-
proach introduced by Hinze [51] is not to discretize the control variable, i.e. to
choose Zad,h = Zad . This approach does give second order convergence for the con-
trol, but requires a non-standard implementation, especially for n > 1.

8.4 Semilinear equations

Similarly to the linear case we discretize the problem with finite elements. Thus we
replace the state space H1

0 (Ω) with Vh ⊂H1
0 (Ω) and the control space of admissible

functions Zad with Zad,h ⊂ Zad . We additionally assume that za,zb ∈ R∪ {±∞},
with za < zb. In case of unconstrained control, we take za = −∞ and zb = ∞, i.e.
Zad,h =Vh. The discretized problem (30)-(32) becomes

min
uh∈Vh, zh∈Zad,h

Jh(uh,zh) =
1
2
‖uh−ud‖2

L2(Ω)+
λ

2
‖zh‖2

L2(Ω) (64)
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subject to

(A∇uh,∇vh)+( f (·,uh),vh) = (zh,vh) ∀vh ∈Vh. (65)

All of the above strategies for choosing Zad,h can be applied for the semilinear
problem as well and similar error estimates can be obtained. Of course the argu-
ments are more technical and we refer to [13, 22, 29] for details.

Theorem 12. Assume that Ω is convex domain with C1,1 boundary and let the As-
sumptions 6 and 8 are satisfied. Let z̄ be a strict local solution to (30)-(32) that
fulfills the second-order optimality condition: There exist δ > 0 and τ > 0 such that

J ′′(z̄)(z,z)≥ δ‖z‖2
L2(Ω)

holds for all z ∈ L∞(Ω) satisfying

z(x)

≥ 0 if z̄(x) = za,
≤ 0 if z̄(x) = zb,
= 0 if |λ z̄+ p̄| ≥ τ > 0.

(66)

Then:

• [13, Thm. 5.1] (Cell-wise constant control) Let Zad,h = Zad ∩Z0
h and {z̄h} be a

sequence of locally optimal piecewise constant solutions to (64)-(65) that con-
verges strongly in L2(Ω) to z̄. Then there exists a constant C independent of h
such that

‖z̄− z̄h‖L2(Ω) ≤Ch.

• [29, Thm. 4.5](Cell-wise linear control) Let Zad,h = Zad ∩Vh and {z̄h} be a
sequence of locally optimal piecewise linear solutions to (64)-(65) that converges
strongly in L2(Ω) to z̄. If in addtion (63) holds, then there exists a constant C
independent of h such that

‖z̄− z̄h‖L2(Ω) ≤Ch
3
2 .

9 Conclusion and the current state of the art

In this introductory chapter we reviewed the main ideas behind the PDECO prob-
lems and briefly mentioned numerical approximation of such problems by the finite
element method and showed some convergence results in the case of control con-
straints. However, the subject is vast with many active research directions. In this
final section let us mention some topics that we skipped and some active areas of
research that we did not touch.
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• In the above discussion we only touched problems with control constraints. How-
ever, problems with state contstraints are equally important. In contrast to the
control constraints, which basically amount to projection onto the feasible set,
the state constraints require much more care since the Lagrange multipliers are
not functions, only measures. We refer to [80, Chapter 6] for a nice introduction
on the subject. For such problems the error analysis is also more subtle and one
often has to reserve to more technical pointwise error estimates to derive optimal
order convergence. We refer to [28, 63, 64] for some recent developments of the
subject.

• All above error estimates were a priori error estimates. However, a large chunk of
the finite element literature is devoted to a posteriori error estimates, i.e. estimates
where the error between the true solution and the discrete approximated solution
is expressed in terms of computable quantities. We refer to [74, 76] for more
recent development of the subject.

• One can consider more complicated state equations or even systems, which can
be linear or nonlinear, time dependent, variational inequalities, and so on. Cur-
rently, the theory is well developed for problems constrained by linear and semi-
linear elliptic problems, but the research is very much active for nonlinear, time
dependent, and variational inequalities [60, 67].

• We only consider a quadratic cost functional in our error analysis. However other
choices maybe desired. For example, it was observed numerically, that seeking
the control from the space of regular Borel measures, forces the sparsity of opti-
mal solution, meaning that the support of solution is small. This phenomena was
analyzed for elliptic and parabolic problems in a number of papers [23, 24, 25],
however, there are still some remaining open questions.

• In all our examples we considered the distributed control, i.e. the control z was
acting in the interior of the domain. However, problems where control acts on the
boundary are important in many applications. The control can enter as Dirichlet,
Neumann, or Robin boundary condition. Because of the variational structure of
the problems, the Neumann and Robin boundary conditions naturally enter the
variational form of the state equation and as a result Neumann boundary controls
can be naturally analyzed, see [80, Chapter 2], we refer to [27, 26] for the Robin
case. Dirichlet boundary conditions do not have this property and one has to use
more sophisticated machinery to overcome technical difficulties and to derive
optimal error estimate for the optimal solution [12]. Alternatively, one can also
use the penalized Robin boundary conditions to study the Dirichlet boundary
control problems [62].
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71. A. Rösch. Error estimates for linear-quadratic control problems with control constraints. Op-
tim. Methods Softw., 21(1):121–134, 2006.
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