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Abstract. The integral fractional Laplacian of order s ∈ (0, 1) is a nonlocal operator. It is known that
solutions to the Dirichlet problem involving such an operator exhibit an algebraic boundary singularity

regardless of the domain regularity. This, in turn, deteriorates the global regularity of solutions and

as a result the global convergence rate of the numerical solutions. For finite element discretizations,
we derive local error estimates in the Hs-seminorm and show optimal convergence rates in the interior

of the domain by only assuming meshes to be shape-regular. These estimates quantify the fact that

the reduced approximation error is concentrated near the boundary of the domain. We illustrate our
theoretical results with several numerical examples.

1. Introduction

In this work we consider finite element discretizations of the problem

(1.1)

{
(−∆)su = f in Ω,

u = 0 in Ωc := Rd \ Ω,

where Ω ⊂ Rd is a bounded domain and (−∆)s is the integral fractional Laplacian of order s ∈ (0, 1),

(1.2) (−∆)su(x) := Cd,s p.v.

ˆ
Rd

u(x)− u(y)

|x− y|d+2s
dy.

The normalization constant Cd,s =
22ssΓ(s+ d

2 )
πd/2Γ(1−s) makes the integral in (1.2), calculated in the principal

value sense, coincide with the Fourier definition of (−∆)su. It is well understood that, even if the data
is smooth (for example, if ∂Ω ∈ C∞ and f ∈ C∞(Ω)), then the unique solution to (1.1) develops an
algebraic singularity near ∂Ω (cf. Example 2.2). This is in stark contrast with the classical Laplacian
equation.

Nevertheless, in such a case one expects the solution to be locally smooth in Ω, and thus the discretiza-
tion error to be smaller in the interior of the domain. Our main result (Theorem 5.3) is a quantitative
estimate of the fact that the finite element error is concentrated around ∂Ω.

The fractional Laplacian (1.2) is a nonlocal operator: computing (−∆)su(x) requires the values of u
at points arbitrarily far away from x. Nonlocality is also reflected in the variational formulation of (1.1):

the natural space in which the problem is set is the zero-extension fractional Sobolev space H̃s(Ω), and
the norm therein is not subadditive with respect to domain partitions. Furthermore, it is not possible

to localize the inner product in H̃s(Ω), because functions with supports arbitrarily far away from each
other may have nonzero Hs-inner product. This is also in stark contrast with the local case (i.e., with
the inner product in H1(Ω)), and makes the development of local estimates for such a nonlocal problem
a more delicate matter, especially in the case of general shape–regular meshes. This is the main purpose
of this paper.
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In recent years, there has been significant progress in the numerical analysis and implementation of
(1.1) and related fractional-order problems. Finite element discretizations provide naturally the best
approximation in the energy norm. A priori convergence rates in the energy norm for approximations
using piecewise linear basis functions on either quasi-uniform or graded meshes were derived in [2]; similar
results, but regarding convergence in H1(Ω) in case s > 1/2, were obtained in [7]. The use of adaptive
schemes and a posteriori error estimators has been studied in [3, 20, 23, 32, 36]. A non-conforming
discretization, based on a Dunford-Taylor representation was proposed and analyzed in [6]. We refer to
[5, 8] for further discussion on these methods. In contrast, the analysis of finite difference schemes typically
leads to error estimates in the L∞(Ω)-norm under regularity assumptions that cannot be guaranteed in
general [16, 17, 26].

The rest of the paper is organized as follows. In Section 2, we review the fractional-order spaces and
the regularity of solutions to (1.1) in either standard and weighted Sobolev spaces. In Section 3, we
describe our finite element discretization, review basic energy based error estimates, and combine such
estimates with Aubin-Nitsche techniques to derive novel convergence rates in L2-norm. In Section 4, we
provide a proof of Caccioppoli estimate for the continuous problem. In Section 5, which is the central part
of the paper, we combine Caccioppoli estimates and superapproximation techniques, to obtain interior
error estimates with respect to Hs-seminorms. At the end of this section we show some applications of
our interior error estimates. In particular, we discuss the convergence rates of the finite element error
in the interior of the domain with respect to smoothness of the domain and the right hand side in the
case of quasi-uniform and graded meshes. The results are summarized in Tables 1 and 2. Finally, several
numerical examples at the end of the paper illustrate the theoretical results from Section 5.

2. Variational formulation and regularity

In this section, we briefly discuss important features of fractional-order Sobolev spaces that are in-
strumental for our analysis. Furthermore, we consider regularity properties of the solution to (1.1) and
review some negative results that lead to the use of certain weighted spaces, in which the weight com-
pensates the singular behavior of the gradient of the solution near the boundary of the domain. Having
regularity estimates in such weighted spaces at hand, we shall be able to increase the convergence rates
by constructing a priori graded meshes.

2.1. Sobolev spaces. Sobolev spaces of order s ∈ (0, 1) provide the natural setting for the variational
formulation of (1.1). More precisely, we consider Hs(Rd) to be the set of L2-functions v : Rd → R such
that

(2.1) |v|Hs(Rd) :=

(
Cd,s

2

ˆ
Rd

ˆ
Rd

|v(x)− v(y)|2

|x− y|d+2s
dx dy

)1/2

<∞,

where Cd,s is taken as in (1.2). Clearly, these are Hilbert spaces; we shall denote by (·, ·)s the bilinear
form that gives rise to the fractional-order seminorms, namely,

(2.2) (v, w)s :=
Cd,s

2

ˆ
Rd

ˆ
Rd

(v(x)− v(y))(w(x)− w(y))

|x− y|d+2s
dx dy.

For the variational formulation of (1.1), we need the zero-extension spaces

H̃s(Ω) := {v ∈ Hs(Rd) : supp(v) ⊂ Ω},

for which the form (·, ·)s becomes an inner product. Moreover, if v, w ∈ H̃s(Ω), then integration in (2.2)

takes place in (Rd×Rd)\(Ωc×Ωc). We shall denote the H̃s(Ω)-norm by ‖v‖H̃s(Ω) := (v, v)
1/2
s = |v|Hs(Rd),

and remark that the L2-norm of v is not needed because a Poincaré inequality holds in the zero-extension
Sobolev spaces.

Fractional-order Sobolev spaces can be equivalently defined through interpolation of integer-order
spaces; remarkably, if one suitably normalizes the standard K-functional, then the norm equivalence
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constants can be taken to be independent of s [29, Lemma 3.15 and Theorem B.9]. Although the constant
Cd,s in (2.1) is fundamental in terms of continuity of Sobolev seminorms as s → 0, 1, we shall omit it
whenever s is fixed. For simplicity of notation, throughout this paper we shall adopt the convention
H0(Ω) = L2(Ω).

Let H−s(Ω) denote the dual space to H̃s(Ω), and 〈·, ·〉 be their duality pairing. Because of (2.2) it

follows that if v ∈ H̃s(Ω) then (−∆)sv ∈ H−s(Ω) and

(v, w)s = 〈(−∆)sv, w〉, ∀w ∈ H̃s(Ω).

This integration by parts formula motivates the following weak formulation of (1.1): given f ∈ H−s(Ω),

find u ∈ H̃s(Ω) such that

(2.3) (u, v)s = 〈f, v〉 ∀v ∈ H̃s(Ω).

Because this formulation can be cast in the setting of the Lax-Milgram Theorem, existence and uniqueness
of weak solutions, and stability of the solution map f 7→ u, are straightforward.

2.2. Sobolev regularity. The Lax-Milgram Theorem guarantees the well-posedness of (2.3) in H̃s(Ω)
if f ∈ H−s(Ω). A subsequent question is what additional regularity does u inherit for smoother f . For
the sake of finite element analysis, here we shall focus on Sobolev regularity estimates.

By now it is well understood that for smooth domains Ω and data f , solutions to (1.1) develop an
algebraic singular layer of the form (cf. for example [25])

(2.4) u(x) ≈ dist(x, ∂Ω)s,

that limits the smoothness of solutions. Indeed, if u is locally smooth in Ω but behaves as (2.4), then one
cannot guarantee that u belongs to Hs+1/2(Ω); actually, in general u /∈ Hs+1/2(Ω) (see Example 2.2).

We now quote a recent result [9], that characterizes regularity of solutions in terms of Besov norms.
Its proof follows a technique introduced by Savaré [34], that consists in combining the classical Nirenberg
difference quotient method with suitably localized translations and exploiting certain convexity properties.

Theorem 2.1 (regularity on Lipschitz domains). Let Ω be a bounded Lipschitz domain, s ∈ (0, 1) and

f ∈ Hr(Ω) for some r ∈ (−s, 0]. Then, the solution u to (1.1) belongs to the Besov space Bs+γ2,∞ (Ω), where

γ = min{s+ r, 1/2}, with

‖u‖Bs+γ2,∞(Ω) ≤ C(Ω, d, s, γ)‖f‖Hr(Ω).

Consequently, by an elementary embedding, we deduce

(2.5) ‖u‖Hs+γ−ε(Ω) ≤
C(Ω, d, s, γ)

ε
‖f‖Hr(Ω) ∀ε > 0.

There are two conclusions to be drawn from the previous result. In first place, assuming the domain
to be Lipschitz is optimal, in the sense that if Ω was a C∞ domain then no further regularity could
be inferred. Thus, reentrant corners play no role on the global regularity of solutions: the boundary
behavior (2.4) dominates any point singularities that could originate from them; we refer to [22] for
further discussion on this point. In second place, in general the smoothness of the right hand side

cannot make solutions any smoother than ∩ε>0H̃
s+1/2−ε(Ω). The expansion (2.4) holds in spite of the

smoothness of f near ∂Ω. We illustrate these two points with a well-known example [21].

Example 2.2 (limited regularity). Let Ω = B(0, 1) ⊂ Rd and f ≡ 1. Then, the solution to (1.1) is

(2.6) u(x) =
Γ(d2 )

22sΓ(d+2s
2 )Γ(1 + s)

(1− |x|2)s+,

where t+ = max{t, 0}. Therefore, u ∈ ∩ε>0H̃
s+1/2−ε(Ω).
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We also point out a limitation in the technique of proof in Theorem 2.1 from [9] that is related to the
example above. Namely, in case s < 1/2 and f ∈ Hr(Ω) for some r > 0, solutions are expected to be
smoother than just H2s(Ω); however, one cannot derive such higher regularity estimates from Theorem
2.1. For smooth domains (i.e., ∂Ω ∈ C∞), the following estimate holds [35]:

(2.7) f ∈ Hr(Ω), −s ≤ r < 1/2− s ⇒ u ∈ H̃2s+r(Ω).

2.3. Regularity in weighted Sobolev spaces. By developing a fractional analog of the Krylov bound-
ary Harnack method, Ros-Oton and Serra [33] obtained a fine characterization of boundary behavior of
solutions to (1.1) and derived Hölder regularity estimates. In order to exploit these estimates and apply
them in a finite element analysis, reference [2] introduced certain weighted Sobolev spaces, where the
weight is a power of the distance to ∂Ω. Let

δ(x) := dist(x, ∂Ω), δ(x, y) := min{δ(x), δ(y)}.

Then, for k ∈ N ∪ {0} and γ ≥ 0, we consider the norm

(2.8) ‖v‖2Hkγ (Ω) =

ˆ
Ω

|v(x)|2 +
∑
|β|≤k

|∂βv(x)|2
 δ(x)2γdx

and define Hk
γ (Ω) and H̃k

γ (Ω) as the closures of C∞(Ω) and C∞0 (Ω), respectively, with respect to the
norm (2.8).

Next, for t = k + s, with k ∈ N ∪ {0} and s ∈ (0, 1), and γ ≥ 0, we consider

‖v‖2Htγ(Ω) := ‖v‖2Hkγ (Ω) + |v|2Htγ(Ω), |v|2Htγ(Ω) :=

ˆ
Ω

ˆ
Ω

|∇kv(x)−∇kv(y)|2

|x− y|d+2s
δ(x, y)2γ dy dx

and the associated space Ht
γ(Ω) :=

{
v ∈ Hk

γ (Ω): ‖v‖Htγ(Ω) <∞
}
.

In analogy with the notation for their unweighted counterparts, we define zero-extension weighted
Sobolev spaces by

(2.9) H̃t
γ(Ω) := {v ∈ Ht

γ(Rd) : v = 0 a.e. in Ωc}, ‖v‖2
H̃tγ(Ω)

:= ‖v‖2
H̃kγ (Ω)

+ |v|2Htγ(Rd).

We have the following regularity estimate in the scale (2.9) [2, Proposition 3.12], [5, Formula (3.6)].

Theorem 2.3 (weighted Sobolev estimate). Let Ω be a bounded, Lipschitz domain satisfying the exterior
ball condition, s ∈ (0, 1), f ∈ Cβ(Ω) for some β ∈ (0, 2− 2s), γ ≥ 0, t < min{β + 2s, γ + s+ 1/2} and u

be the solution of (2.3). Then, it holds that u ∈ H̃t
γ(Ω) and

‖u‖H̃tγ(Ω) ≤
C(Ω, d, s)√

(β + 2s− t) (1 + 2(γ + s− t))
‖f‖Cβ(Ω).

Remark 2.4 (optimal parameters). In finite element applications of Theorem 2.3, discussed in Section 3,
we will design graded meshes with a grading dictated by γ. The optimal choice of parameters t and γ
depends on both the smoothness of the right hand side f ∈ Cβ(Ω) and the dimension d of the space. We
illustrate this now: let d ≥ 2, s < d

2(d−1) , β = d
2(d−1) − s, and ε > 0 be sufficiently small, and choose

t = s+ d
2(d−1) − εd and γ = 1

2(d−1) − ε, to obtain the optimal regularity estimate

‖u‖H̃tγ(Ω) ≤
C(Ω, d, s)

ε
‖f‖Cβ(Ω).

In contrast, if s ≥ d
2(d−1) , we set β to be any positive number and take t, γ as above to arrive at

‖u‖H̃tγ(Ω) ≤
C(Ω, d, s, β)√

ε
‖f‖Cβ(Ω).
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Remark 2.5 (exterior ball condition). Taking into account the results from [22], the exterior ball condition
could be relaxed. Nevertheless, because the analysis of effects of reentrant corners is beyond our purposes,
we leave such an assumption on Ω.

3. Finite Element Discretization

We next consider finite element discretizations of (2.3) by using piecewise linear continuous functions.
Let h0 > 0; for h ∈ (0, h0], we let Th denote a triangulation of Ω, i.e., Th = {T} is a partition of Ω into
simplices T of diameter hT . We assume the family {Th}h>0 to be shape-regular, namely,

σ := sup
h>0

max
T∈Th

hT
ρT

<∞,

where hT = diam(T ) and ρT is the diameter of the largest ball contained in T . As usual, the subindex h
denotes the element size, h = maxT∈Th hT ; moreover, we take elements to be closed sets.

We shall also need a smooth mesh function h(x), which is locally comparable with the element size.
Note that shape-regularity yields |∇h| ≤ C(σ) (cf. [31, Lemma 5.1]), and thus

(3.1) |h(x)− h(y)| ≤ C(σ)|x− y|, ∀x, y ∈ Ω.

Let Nh be the set of interior vertices of Th, N be its cardinality , and {ϕi}Ni=1 the standard piecewise
linear Lagrangian basis, with ϕi associated to the node xi ∈ Nh. With this notation, the set of discrete
functions is

Vh :=

{
v ∈ C0(Ω): v =

N∑
i=1

viϕi

}
.

It is clear that Vh ⊂ H̃s(Ω) for all s ∈ (0, 1) and therefore we have a conforming discretization.

3.1. Interpolation and inverse estimates. Fractional-order seminorms are not subadditive with re-
spect to domain decompositions; therefore, some caution must be exercised when localizing them. With
the goal of deriving interpolation estimates, we define the star (or patch) of a set A ∈ Ω by

SA :=
⋃
{T ∈ Th : T ∩A 6= ∅} .

Given T ∈ Th, the star ST of T is the first ring of T and the star SST of ST is the second ring of T . The
star of the node xi ∈ Nh is Si := supp(ϕi).

We have the following localization estimate [18, 19].

(3.2) |v|2Hs(Ω) ≤
∑
T∈Th

[ˆ
T

ˆ
ST

|v(x)− v(y)|2

|x− y|d+2s
dy dx+

C(d, σ)

sh2s
T

‖v‖2L2(T )

]
∀v ∈ Hs(Ω).

This inequality shows that to estimate fractional seminorms over Ω, it suffices to compute integrals over
the set of patches {T ×ST }T∈Th plus local zero-order contributions. In addition, if these L2 contributions
have vanishing means over elements –as is often the case whenever v is an interpolation error– a Poincaré
inequality allows one to estimate them in terms of local Hs-seminorms. Thus, one can prove the following
local quasi-interpolation estimates (see, for example, [2, 10, 12]).

Proposition 3.1 (local interpolation estimates). Let T ∈ Th, s ∈ (0, 1), t ∈ (s, 2], and Πh be a suitable
quasi-interpolation operator. If v ∈ Ht(SST ), then

(3.3)

ˆ
T

ˆ
ST

|(v −Πhv)(x)− (v −Πhv)(y)|2

|x− y|d+2s
dy dx ≤ C h2(t−s)

T |v|2Ht(SST ),
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where C = C(Ω, d, s, σ, t). Moreover, considering the weighted Sobolev scale (2.9), it holds that for all
v ∈ Ht

γ(SST ),

(3.4)

ˆ
T

ˆ
ST

|(v −Πhv)(x)− (v −Πhv)(y)|2

|x− y|d+2s
dy dx ≤ Ch2(t−s−γ)

T |v|2Htγ(SST ).

For the purpose of this paper, we shall make use of a variant of (3.2). Even though the fractional-
order norms can be localized, it is clear that the Hs-inner product of two arbitrary functions cannot: it
suffices to consider two positive functions with supports sufficiently far from each other. The following
observation is due to Faermann [19, Lemma 3.1]. Since we use it extensively, we reproduce it here for
completeness.

Lemma 3.2 (symmetry). For any v, w ∈ L1(Ω) and ρ : R+ → R+ bounded, there holds∑
T∈Th

ˆ
T

ˆ
ScT

v(y)w(x) ρ(|x− y|)dydx =
∑
T∈Th

ˆ
T

ˆ
ScT

v(x)w(y) ρ(|x− y|)dydx.

Proof. Let χA be the characteristic function of the set A. Using Fubini’s Theorem, we equivalently write∑
T∈Th

ˆ
T

ˆ
ScT

v(y)w(x)ρ(|x− y|)dydx =

ˆ
Ω

v(y)ψ(y)dy =
∑
T ′∈Th

ˆ
T ′
v(y)ψ(y)dy,

where

ψ(y) :=
∑
T∈Th

χScT (y)

ˆ
T

w(x)ρ(|x− y|)dx.

Let’s fix T ′ ∈ Th. Since χScT (y) = 1 a.e. y ∈ T ′ provided T ⊂ ScT ′ and χScT (y) = 0 otherwise, we deduce

ψ(y) =

ˆ
Sc
T ′

w(x)ρ(|x− y|)dx.

This yields the desired identity. �

Proposition 3.3 (equivalent fractional inner product). Let v, w ∈ Hs(Ω). Then, it holds that

(v, w)Hs(Ω) =
∑
T∈Th

[ˆ
T

ˆ
ST

(v(x)− v(y))(w(x)− w(y))

|x− y|d+2s
dy dx+ 2

ˆ
T

ˆ
ScT

v(x) (w(x)− w(y))

|x− y|d+2s
dy dx

]
.

Proof. It suffices to write

(v, w)Hs(Ω) =
∑
T∈Th

[ˆ
T

ˆ
ST

(v(x)− v(y))(w(x)− w(y))

|x− y|d+2s
dydx+

ˆ
T

ˆ
ScT

(v(x)− v(y))(w(x)− w(y))

|x− y|d+2s
dydx

]

and notice that ∑
T∈Th

ˆ
T

ˆ
ScT

v(x)w(x)

|x− y|d+2s
dy dx =

∑
T∈Th

ˆ
T

ˆ
ScT

v(y)w(y)

|x− y|d+2s
dy dx,

and ∑
T∈Th

ˆ
T

ˆ
ScT

v(x)w(y)

|x− y|d+2s
dy dx =

∑
T∈Th

ˆ
T

ˆ
ScT

v(y)w(x)

|x− y|d+2s
dy dx

in view of Lemma 3.2 (symmetry) with ρ(t) = t−d−2sχ[ρmin,∞)(t), where ρmin = minT∈Th ρT and we
recall that ρT is the diameter of the largest ball contained in T . This completes the proof. �
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Remark 3.4 (fractional inner product on subdomains). Proposition 3.3 is also valid for any subdomain
D ⊂ Ω, i.e.

(v, w)Hs(D) =
∑
T∈Th

[ˆ
T∩D

ˆ
ST∩D

(v(x)− v(y))(w(x)− w(y))

|x− y|d+2s
dy dx

+ 2

ˆ
T∩D

ˆ
ScT∩D

v(x) (w(x)− w(y))

|x− y|d+2s
dy dx

]
.

Next, we write some inverse estimates that we shall use in what follows. By using standard scaling
arguments, one can immediately derive the estimate

(3.5) ‖vh‖Ht(T ) ≤ Cinvhs−tT ‖vh‖Hs(T ), ∀vh ∈ Vh, 0 ≤ s ≤ t ≤ 1.

Let η : Ω → R be a fixed smooth function. We shall also need the following variant of (3.5) with t = 1,
whose proof follows immediately because the space ηVh is finite dimensional:

(3.6) |ηvh|H1(ST ) ≤ Chs−1
T |ηvh|Hs(ST ) ∀vh ∈ Vh, T ∈ Th, 0 ≤ s ≤ 1.

3.2. Energy-norm error estimates. The discrete counterpart of (2.3) reads: find uh ∈ Vh such that

(3.7) (uh, vh)s = 〈f, vh〉 ∀vh ∈ Vh.

Subtracting (3.7) from (2.3) we get Galerkin orthogonality

(3.8) (u− uh, vh)s = 0 ∀vh ∈ Vh.

The best approximation property

(3.9) ‖u− uh‖H̃s(Ω) = min
vh∈Vh

‖u− vh‖H̃s(Ω)

follows immediately. Consequently, in view of the regularity estimates of u discussed in Section 2, the only
ingredient missing to derive convergence rates in the energy norm is some global interpolation estimate.
Even though the bilinear form (·, ·)s involves integration over Ω × Rd, it is possible to prove that the
corresponding energy norm ‖ · ‖H̃s(Ω) is bounded in terms of fractional-order norms ‖ · ‖Hs(Ω) on Ω by

resorting to fractional Hardy inequalities (see [2]).

Therefore, for quasi-uniform meshes, if s 6= 1/2 one can simply combine (3.2) and (3.3) with a fractional
Hardy inequality [24, Theorem 1.4.4.4] to replace ‖ · ‖H̃s(Ω) by ‖ · ‖Hs(Ω) [2, 10] and obtain

(3.10) ‖v −Πhv‖H̃s(Ω) ≤ C(Ω, d, s, σ, t)ht−s|v|Ht(Ω) ∀v ∈ Ht(Ω).

In case s = 1/2, one cannot apply a fractional Hardy inequality. Instead, one may exploit the precise
blow-up of the Hardy constant of H1/2+ε(Ω) as ε ↓ 0 to deduce [2, §3.4], [10, Theorem 4.1]

(3.11) ‖v −Πhv‖H̃s(Ω) ≤
C(Ω, d, s, σ, t)

ε
ht−s−ε|v|Ht(Ω) ∀v ∈ Ht(Ω), ε ∈ (0, t− s).

Alternatively, one could derive either (3.10) or (3.11) by simply interpolating standard global L2 and H1

estimates. However, if we aim to exploit Theorem 2.3 (weighted Sobolev estimate), then we require a
suitable mesh refinement near the boundary of Ω. For that purpose, following [24, Section 8.4] we now
let the parameter h represent the local mesh size in the interior of Ω, and assume that, besides being
shape-regular, the family {Th} is such that there is a number µ ≥ 1 such that for every T ∈ Th,

(3.12) hT ≤ C(σ)

{
hµ, if T ∩ ∂Ω 6= ∅,

hdist(T, ∂Ω)(µ−1)/µ, if T ∩ ∂Ω = ∅.
This construction yields a total number of degrees of freedom (see [4, 10])

(3.13) N = dimVh ≈


h−d, if µ < d

d−1 ,

h−d| log h|, if µ = d
d−1 ,

h(1−d)µ, if µ > d
d−1 .
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Thus, if µ ≤ d
d−1 the interior mesh size h and the dimension N of Vh satisfy the optimal relation

h ' N−1/d (up to logarithmic factors if µ = d
d−1 ). As anticipated in Remark 2.4 (optimal parameters),

the weight γ in Theorem 2.3 (weighted Sobolev estimate) needs to be related to the parameter µ, which
satisfies (3.12). To do so, we combine (3.2) with either (3.4) or (3.3), depending on whether SST intersects

∂Ω or not, to find the relation γ = (t − s)
(
µ−1
µ

)
for t ∈ (s, 2]. If s 6= 1/2, it suffices to use a fractional

Hardy inequality to replace ‖ · ‖H̃s(Ω) by ‖ · ‖Hs(Ω) [2, 10] and obtain

(3.14) ‖v −Πhv‖H̃s(Ω) ≤

{
Cht−s|v|Htγ(Ω) if s 6= 1/2,

C
ε h

t−s−ε|v|Htγ(Ω) if s = 1/2,

for all v ∈ Ht
γ(Ω) with a constant that depends on Ω, d, s, σ, t and γ. On the other hand, if s = 1/2,

we choose γ = (t − s)
(
µ−1
µ

)
− ε, where ε > 0 is sufficiently small, and exploit the explicit blow-up of

the Hardy constant of H1/2+ε(Ω) as ε ↓ 0, as we did earlier with (3.11), to derive the second estimate in
(3.14). We point out that (3.14) does not follow by interpolation of global estimates.

We gather the energy error estimates for quasi-uniform and graded meshes in a single theorem.

Theorem 3.5 (global energy-norm convergence rates). Let Ω ⊂ Rd be a bounded Lipschitz domain, and
u denote the solution to (2.3) and denote by uh ∈ Vh the solution of the discrete problem (3.7), computed
over a mesh Th consisting of elements with maximum diameter h. If f ∈ L2(Ω), then we have

(3.15) ‖u− uh‖H̃s(Ω) ≤ C(Ω, d, s, σ)hα| log h|1+κ ‖f‖L2(Ω),

where α = min{s, 1
2} and κ = 1 if s = 1/2 and zero otherwise. Additionally, if Ω satisfies an exterior

ball condition, let β > 0 be such that

(3.16) β ≥
{

2− 2s if d = 1,
d

2(d−1) − s if d ≥ 2,
and µ =

{
2− s if d = 1,

d
d−1 if d ≥ 2.

Then, if f ∈ Cβ(Ω), and the family {Th} satisfies (3.12) with µ as above, we have

(3.17) ‖u− uh‖H̃s(Ω) ≤ C(Ω, s, σ)

{
h2−s| log h|κ‖f‖Cβ(Ω) if d = 1,

h
d

2(d−1) | log h|1+κ‖f‖Cβ(Ω) if d ≥ 2.

In terms of the number of degrees of freedom N , the estimate above reads

(3.18) ‖u− uh‖H̃s(Ω) ≤ C(Ω, s, σ)

{
N−(2−s)(logN)κ‖f‖Cβ(Ω) if d = 1,

N−
1

2(d−1) (logN)
1

2(d−1)
+1+κ‖f‖Cβ(Ω) if d ≥ 2.

Proof. If s 6= 1/2, we combine (3.9), (3.10) with Theorem 2.1 (regularity in Lipschitz domains) with r = 0
to obtain

(3.19) ‖u− uh‖H̃s(Ω) ≤ Ch
α−ε|u|Hs+α−ε(Ω) ≤ C

hα−ε

ε
‖f‖L2(Ω).

In case s = 1/2, instead of (3.10) we use (3.11) with the same ε as in (2.5) to get

(3.20) ‖u− uh‖H̃s(Ω) ≤
C

ε
hα−2ε|u|Hs+α−ε(Ω) ≤ C

hα−2ε

ε2
‖f‖L2(Ω).

Moreover, coupling (3.9), (3.14) and Theorem 2.3 (weighted Sobolev estimate) with t = 2−ε and γ = 2−s
if d = 1 and t = s+ d

2(d−1) − εd and γ = 1
2(d−1) − ε if d ≥ 2 yields for s 6= 1/2

(3.21) ‖u− uh‖H̃s(Ω) ≤ Ch
t−s|u|Htγ(Ω) ≤

{
Ch2−s−ε‖f‖Cβ(Ω) if d = 1,

C
ε h

d
2(d−1)

−εd‖f‖Cβ(Ω) if d ≥ 2,

and analogous estimates hold if s = 1/2. Upon taking ε = | log h|−1, we end up with (3.15) and (3.17),
as asserted. Inequality (3.18) follows by the choice of µ and (3.13). �
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Remark 3.6 (exponents of logarithms). In case s ≥ d
2(d−1) , which can only happen if d ≥ 3, the exponents

of logarithms in Theorem 3.5 can actually be reduced by a factor of 1/2 (see discussion in Remark 2.4).

Remark 3.7 (optimality). The convergence rates derived in Theorem 3.5 are theoretically optimal for
shape-regular elements. Nevertheless, because we deal with continuous piecewise linear basis functions,

one would expect convergence rate −(2−s)
d with respect to N . It is remarkable that such a rate can only be

achieved if d = 1 upon grading meshes according to (3.12). For dimensions d ≥ 2, anisotropic meshes are
required in order to obtain optimal convergence rates. This limitation stems from the algebraic singular
layer (2.4) and becomes more apparent as d increases, but comparison of (3.15) and (3.17) shows that in
all cases graded meshes improve the convergence rates with respect to N .

We also point out that setting the grading parameter to be µ > d
d−1 would lead to a higher rate in

(3.17) in terms of the interior mesh size h. However, the resulting rate in (3.18) would be the same as for
µ = d

d−1 (up to logarithmic factors) but the finite element matrix would turn out to be worse conditioned.

3.3. L2-norm error estimates. Upon invoking new regularity estimates for data f ∈ L2(Ω), we now
perform a standard Aubin-Nitsche duality argument to derive novel convergence rates in L2(Ω). We
distinguish between quasi-uniform and graded meshes.

Proposition 3.8 (convergence rates in L2(Ω) for quasi-uniform meshes). Let Ω be a bounded Lipschitz
domain. If f ∈ L2(Ω), then for all 0 < s < 1 we have

(3.22) ‖u− uh‖L2(Ω) ≤ Ch2α| log h|2(1+κ)‖f‖L2(Ω),

where α = min{s, 1
2} and κ = 1 if s = 1/2 and zero otherwise.

Proof. Let e = u − uh be the error, and let φ be the solution to (2.3) with e instead of the right hand
side f . Then, the Galerkin orthogonality (3.8) and the Cauchy-Schwarz inequality yield

‖e‖2L2(Ω) = (φ, e)s = (φ−Πhφ, e)s ≤ ‖φ−Πhφ‖H̃s(Ω)‖e‖H̃s(Ω),

where Πh is a quasi-interpolation operator satisfying (3.10) if s 6= 1/2 or (3.11) if s = 1/2. Combining
these estimates with (2.5), we deduce

(3.23) ‖φ−Πhφ‖H̃s(Ω) .
hα−(1+κ)ε

εκ
‖φ‖Hs+α−ε(Ω) .

hα−(1+κ)ε

ε1+κ
‖e‖L2(Ω) ∀ε > 0.

This, in conjunction with the energy error estimates (3.19) and (3.20), implies

‖e‖L2(Ω) .
h2(α−(1+κ)ε)

ε2(1+κ)
‖f‖L2(Ω).

Finally, taking ε = | log h|−1 gives rise to (3.22). �

In Proposition 3.8, the assumption f ∈ L2(Ω) is made in order to apply Theorem 2.1 (regularity on
Lipschitz domains). Stronger estimates are valid provided Ω is smooth.

Lemma 3.9 (further regularity). Let ∂Ω ∈ C∞ and f ∈ Hr(Ω) for some r ≥ −s. If γ = min{s+r, 1/2},
α = min{s, 1/2} and κ = 1 if s = 1/2 and zero otherwise, then there holds

(3.24) ‖u− uh‖H̃s(Ω) ≤ Ch
γ | log h|1+κ‖f‖Hr(Ω), ‖u− uh‖L2(Ω) ≤ Chα+γ | log h|2(1+κ)‖f‖Hr(Ω).

Proof. Use the regularity result from [25, Theorem 7.1] (which coincides with (2.7) if s < 1/2) in the
proofs of Theorem 3.5 and Proposition 3.8. �

As discussed in Sections 2.2 and 3.2, we obtain a finer characterization of the boundary behavior of
solutions by using weighted spaces, and we can take advantage of this by constructing suitably graded
meshes. In such a case, the same standard argument as above, but using (3.21) instead of (3.19), leads
to the following estimate.
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Proposition 3.10 (convergence rates in L2(Ω) for graded meshes). Let Ω ⊂ Rd be a bounded Lipschitz
domain satisfying an exterior ball condition, f ∈ Cβ(Ω) and the family {Th} satisfy (3.12), where β and
µ are taken according to (3.16). Then, it holds that

(3.25) ‖u− uh‖L2(Ω) ≤ C(Ω, s, σ)

{
h2−s+α| log h|1+2κ‖f‖Cβ(Ω) if d = 1,

h
d

2(d−1)
+α| log h|2(1+κ)‖f‖Cβ(Ω) if d ≥ 2,

where α = min{s, 1/2} and κ = 1 if s = 1/2 and zero otherwise. In terms of the number of degrees of
freedom N , the estimate above reads

‖u− uh‖L2(Ω) ≤ C(Ω, s, σ)

{
N−(2−s+α)(logN)1+2κ‖f‖Cβ(Ω) if d = 1,

N−
α
d−

1
2(d−1) (logN)

α
d+ 1

2(d−1)
+2(1+κ)‖f‖Cβ(Ω) if d ≥ 2.

Remark 3.11 (sharpness of the L2-estimates). Combining Galerkin orthogonality (3.8) with (2.3), and
applying the Cauchy-Schwarz inequality, we immediately obtain

‖u− uh‖2H̃s(Ω)
= (u− uh, u)s = (u− uh, f)0 ≤ ‖u− uh‖L2(Ω)‖f‖L2(Ω),

from which we deduce that

(3.26) ‖u− uh‖L2(Ω) ≥
‖u− uh‖2H̃s(Ω)

‖f‖L2(Ω)
.

If we knew that the error bound (3.15) were sharp in the sense that ‖u−uh‖H̃s(Ω) ' h
α| log h|1+κ‖f‖L2(Ω),

a reasonable assumption in practice unless u ∈ Vh [28], then we would obtain from (3.22) and (3.26)

(3.27) ‖u− uh‖L2(Ω) ' h2α| log h|2(1+κ)‖f‖L2(Ω).

We point out that a similar consideration cannot be made if we inspect weighted estimates. Indeed,
let us assume d ≥ 2 and meshes are graded with parameter µ = d

d−1 ; similar considerations are valid if

the meshes are graded differently. If (3.17) were sharp, then we could only deduce

h
d

(d−1) | log h|2(1+κ)
‖f‖2

Cβ(Ω)

‖f‖L2(Ω)
. ‖u− uh‖L2(Ω) . h

d
2(d−1)

+α| log h|2(1+κ)‖f‖Cβ(Ω),

and α = min{s, 1/2} < d
2(d−1) . The issue here is that Theorem 2.3 (weighted Sobolev estimate) does not

yield a regularity estimate in terms of L2-norms of the data. Therefore, we still need to use (3.23), that
is based on the unweighted estimate (2.5) of Theorem 2.1 (regularity on Lipschitz domains).

4. Caccioppoli estimate

The following result is well-known for usual harmonic functions. For the fractional Laplacian (1.2)
it can be found, for example, in [13] (see also [11, 15, 27]). We present a proof below, because for our
purposes it is crucial to trace the dependence of the constants on the radius R and the exact form of the
global term. Moreover, it turns out that the technique of proof will be instrumental in Section 5.

Lemma 4.1 (Caccioppoli estimate). Let BR denote a ball of radius R centered at x0 ∈ Ω. If u ∈ Hs(Rd)
is a function satisfying

´
BcR

|u(x)|
(|x−x0|+R)d+2s dx < ∞ and (u, v)s = 0 for all v ∈ Hs(Rd) supported in BR,

then there exists a constant C independent of R such that

(4.1) |u|2Hs(BR/2) ≤
C

R2s
‖u‖2L2(BR) + CRd+2s

(ˆ
BcR

|u(x)|
|x− x0|d+2s

dx

)2

.
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Proof. Let η : Rd → [0, 1] be a smooth cut-off function with the following properties:

η ≡ 1 in BR/2(4.2a)

η ≡ 0 in Bc3R/4(4.2b)

|∇η| ≤ CR−1.(4.2c)

Thus,

0 =
(
u, η2u

)
s

=

ˆ
Rd

ˆ
Rd

(u(x)− u(y))(η2(x)u(x)− η2(y)u(y))

|x− y|d+2s
dydx = I1 + I2,

where

I1 :=

ˆ
BR

ˆ
BR

(u(x)− u(y))(η2(x)u(x)− η2(y)u(y))

|x− y|d+2s
dydx,

I2 := 2

ˆ
BR

ˆ
BcR

(u(x)− u(y))(η2(x)u(x)− η2(y)u(y))

|x− y|d+2s
dydx.

Using the identity

(u(x)− u(y))(η2u(x)− η2u(y)) = [η(x)u(x)− η(y)u(y)]2 − u(x)u(y)[η(x)− η(y)]2,

we obtain I1 = |ηu|2Hs(BR) − I11, where

I11 =

ˆ
BR

ˆ
BR

u(x)u(y)[η(x)− η(y)]2

|x− y|d+2s
dydx.

In view of of (4.2c), we have |η(x)− η(y)| ≤ CR−1|x− y| and, applying the Cauchy-Schwarz inequality,
we deduce

I11 ≤
C

R2

ˆ
BR

ˆ
BR

|u(x)||u(y)|
|x− y|d−2+2s

dydx ≤ C

R2

ˆ
BR

ˆ
BR

|u(x)|2

|x− y|d−2+2s
dydx ≤ C

R2s
‖u‖2L2(BR),

because the kernel |x− y|−d+2−2s is integrable on {x = y} and using polar coordinates ρ = |x− y| yields
ˆ
BR

dy

|x− y|d−2+2s
≤ c
ˆ R

0

ρ1−2sdρ = cR2−2s.

Next, since η is supported in B3R/4, according to (4.2b), and bounded by 1, we have

I2 = 2

ˆ
BR

ˆ
BcR

(u(x)− u(y))η2(x)u(x)

|x− y|d+2s
dydx ≤ 2

ˆ
B3R/4

|u(x)|
ˆ
BcR

|u(x)− u(y)|
|x− y|d+2s

dydx ≤ I21 + I22,

with

I21 :=2

ˆ
B3R/4

(
|u(x)|2

ˆ
BcR

dy

|x− y|d+2s

)
dx

I22 :=2

ˆ
B3R/4

(
|u(x)|

ˆ
BcR

|u(y)|
|x− y|d+2s

dy

)
dx.

Using that dist(B3R/4, B
c
R) = R/4, and integrating in polar coordinates, we deduceˆ
BcR

dy

|x− y|d+2s
≤ C

ˆ ∞
R/4

ρ−1−2sdρ = CR−2s ∀x ∈ B3R/4,

and as a consequence

I21 ≤
C

R2s
‖u‖2L2(BR).
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To estimate I22, we first observe that for all x ∈ B3R/4 and y ∈ BcR, we have

R < |y − x0| ≤ |x− x0|+ |y − x| ≤
3R

4
+ |y − x| ≤ 3

4
|y − x0|+ |y − x| ⇒ 1

4
|y − x0| ≤ |y − x|.

Utilizing now the Hölder’s inequality, in conjunction with the Young’s inequality, yields

I22 ≤ ‖u‖L1(BR) sup
x∈B3R/4

ˆ
BcR

|u(y)|
|x− y|d+2s

dy

≤ CRd/2‖u‖L2(BR)

ˆ
BcR

|u(y)|
|y − x0|d+2s

dy

≤ C

R2s
‖u‖2L2(BR) + CRd+2s

(ˆ
BcR

|u(y)|
|y − x0|d+2s

dy

)2

.

Combining the estimates above, we obtain

|ηu|2Hs(BR) ≤
C

R2s
‖u‖2L2(BR) + CRd+2s

(ˆ
BcR

|u(y)|
|y − x0|d+2s

dy

)2

.

The estimate (4.1) follows because

|u|2Hs(BR/2) ≤ |ηu|
2
Hs(BR),

due to (4.2a). This concludes the proof. �

5. Local energy estimates

In this section we derive error estimates in local Hs-seminorms. For that purpose, we first develop a
local superapproximation theory in fractional norms and afterwards combine it with the techniques used
in the derivation of the Caccioppoli estimate (4.1).

Here we consider the usual nodal interpolation operator Ih : C0(Ω)→ Vh, which satisfies

(5.1) |v − Ihv|W j,p(T ) ≤ Chk−j |v|Wk,p(T ), ∀v ∈W k,p(T ), 1 ≤ p ≤ ∞, j ≤ k ≤ 2, k >
d

p
.

5.1. Superapproximation. Superapproximation is an essential tool in local energy finite element error
estimates [30]. Below we adapt the ideas from [14], which lead to improved superapproximation estimates
applicable to a general class of meshes. Similarly to [14], we require only shape-regularity.

Let η ∈ C2(Ω), vh ∈ Vh. It turns out that the function

(5.2) ψ := η2vh − Ih(η2vh)

is smaller than expected in various norms, a property called superapproximation [30]. To see this, we
let T ∈ Th be arbitrary and combine (5.1) with the fact that vh is linear on T , to obtain the following
Lp-type superapproximation estimate for ψ in (5.2) and any 1 ≤ p ≤ ∞:

(5.3)
‖ψ‖Lp(T ) + hT |ψ|W 1,p(T ) ≤ Ch2

T |η2vh|W 2,p(T )

≤ Ch2
T

(
‖∇2η‖L∞(T )‖vh‖Lp(T ) + ‖∇η‖L∞(T )‖∇(ηvh)‖Lp(T ) + ‖∇η‖2L∞(T )‖vh‖Lp(T )

)
.

These estimates suffice for second order elliptic problems. However, for fractional problems we need to
account for the fact that the Hs-norm is nonlocal. We embark on this endeavor now upon first examining
stars ST and next interior balls

BR := B(x0, R) ⊂ Ω, hR := max
T∈ΛR

hT , ΛR := {T ∈ Th : T ∩BR 6= ∅}.

In this setting, η is a suitable localization function, namely η ∈ C∞(Ω) is the cut-off function of (4.2):

(5.4) 0 ≤ η ≤ 1, η ≡ 1 in BR/2, η ≡ 0 in Bc3R/4, |∇kη| ≤ CR−k (k ≥ 1).
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Lemma 5.1 (superapproximation in Hs(ST )). Let T ∈ Th, 0 ≤ s ≤ 1, and η satisfy (5.4). For any
vh ∈ Vh and ψ given by (5.2), there is a constant C depending on shape-regularity of Th such that

(5.5) |ψ|Hs(ST ) ≤ C
hT
R
|ηvh|Hs(ST ) + C

h2−s
T

R2
‖vh‖L2(ST ).

Proof. Since the norms involved in (5.3) are local, and the size of ST is proportional to hT because Th
is shape-regular, we realize that (5.3) is also valid in ST . This leads to the desired estimate for s = 0, 1.
For s ∈ (0, 1), we apply space interpolation theory to (5.3) over ST to infer that

(5.6) |ψ|Hs(ST ) ≤ C
h2−s
T

R
‖∇(ηvh)‖L2(ST ) + C

h2−s
T

R2
‖vh‖L2(ST ).

We finally resort to (3.6), namely ‖∇(ηvh)‖L2(ST ) . h
s−1
T |∇(ηvh)|Hs(ST ), to finish the proof. �

Lemma 5.2 (superapproximation in Hs(BR)). Let hR satisfy 16hR ≤ R and let 0 ≤ s ≤ 1. For any
vh ∈ Vh and ψ given in (5.2), there exists a constant C depending on shape-regularity of Th such that

(5.7) |ψ|Hs(BR) ≤ CR−s‖vh‖L2(BR).

Proof. If s = 0, 1, then the estimate follows immediately from (5.3), the additivity of squares of integer-
order L2-norms with respect to domain partitions, the inverse inequality (3.6) and the fact that hR ≤ R.

For s ∈ (0, 1), we make use of (3.2) to obtain

|ψ|2Hs(BR) ≤
∑
T∈ΛR

(ˆ
T

ˆ
ST

|ψ(x)− ψ(y)|2

|x− y|d+2s
dydx+

C

h2s
T

‖ψ‖2L2(T )

)
≤
∑
T∈ΛR

(
|ψ|2Hs(ST ) +

C

h2s
T

‖ψ‖2L2(T )

)
.

We point out that if x ∈ T ∈ ΛR and y ∈ ST , then |x− y| ≤ 2hR ≤ 1
8R. Therefore, we observe that

|x− x0| ≤
7

8
R ⇒ |y − x0| ≤ |x− x0|+ |y − x| ≤ R ⇒ ST ⊂ BR;

otherwise,

|x− x0| ≥
7

8
R ⇒ |y − x0| ≥ |x− x0| − |y − x| ≥

3

4
R.

In particular, since y is allowed to be any element vertex on ST , the latter implies that

(5.8) ψ
∣∣
ST
≡ 0 ∀T ∈ ΛR \ Λ7R/8.

We thus realize that the only T ’s that matter in the sum above are those T ∈ Λ7R/8, whence

|ψ|2Hs(BR) ≤
∑

T∈Λ7R/8

(
|ψ|2Hs(ST ) +

C

h2s
T

‖ψ‖2L2(T )

)
.

To estimate each term on the right-hand side we exploit the property that ST ⊂ BR for all T ∈ Λ7R/8.
For the first term, we also employ (5.6), together with (3.6) with s = 0 and (5.4). For the second term
we resort to (5.3) for p = 2 together with (3.6) for s = 0. In both cases, we get∑

T∈Λ7R/8

(
|ψ|2Hs(ST ) +

C

h2s
T

‖ψ‖2L2(T )

)
≤ C

∑
T∈Λ7R/8

(h2−2s
T

R2
+
h4−2s
T

R4

)
‖vh‖2L2(ST ) ≤

C

R2s
‖vh‖2L2(BR).

The desired estimate follows immediately. �
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5.2. Local Energy Estimates. Recall that the finite element solution to (2.3) satisfies (3.7), which
gives the Galerkin orthogonality relation (3.8). In order to localize such relation, given a subdomain
D ⊂ Ω, we define Vh(D) as the space of continuous piecewise linear functions restricted to D. We will
derive error estimates for a function ũh ∈ Vh that satisfies the local Galerkin orthogonality relation

(5.9) (u− ũh, vh)s = 0, ∀vh ∈ Vh(BR).

Theorem 5.3 (local energy error estimate). Let u ∈ H̃s(Ω) and ũh ∈ Vh satisfy (5.9). If 16hR ≤ R,
then there exists a constant C depending on shape regularity such that for any vh ∈ Vh,

|u− ũh|2Hs(BR/2) ≤ C|u− vh|
2
Hs(BR) +

C

R2s
‖u− vh‖2L2(BR) + CRd+2s

(ˆ
BcR

|u(x)− vh(x)|
|x− x0|d+2s

dx

)2

+
C

R2s
‖u− ũh‖2L2(BR) + CRd+2s

(ˆ
BcR

|u(x)− ũh(x)|
|x− x0|d+2s

dx

)2

.

Proof. To simplify the notation, we assume that BR = B(0, R) is centered at the origin, i.e. we take
x0 = 0. We point out that it is sufficient to establish

|ũh|2Hs(BR/2) ≤ C|u|
2
Hs(BR) +

C

R2s
‖u‖2L2(BR) + CRd+2s

(ˆ
BcR

|u(x)|
|x|d+2s

dx

)2

+
C

R2s
‖ũh‖2L2(BR) + CRd+2s

(ˆ
BcR

|ũh(x)|
|x|d+2s

dx

)2

.

In fact, the assertion then would follow by writing u− ũh = (u− vh) + (vh − ũh) and using the triangle
inequality and the fact that the finite element method is invariant on Vh. We argue along the lines of
Lemma 4.1 (Caccioppoli estimate). We divide the proof into several steps.

Step 1: Decomposing the Hs-seminorm. Let η ∈ C∞(Ω) be as in (5.4). Recalling the definition (5.2) of
ψ = η2ũh − Ih(η2ũh), whence ψ = 0 in Bc7R/8, and using the local Galerkin orthogonality (5.9), we have

(5.10)

(
ũh, η

2ũh
)
s

=
(
ũh, Ih(η2ũh)

)
s

+ (ũh, ψ)s

=
(
u, Ih(η2ũh)

)
s

+ (ũh, ψ)s

=
(
u, η2ũh

)
s
− (u, ψ)s + (ũh, ψ)s .

In the same fashion as in the proof of Lemma 4.1, we have(
ũh, η

2ũh
)
s

= |ηũh|2Hs(BR) −
ˆ
BR

ˆ
BR

ũh(x)ũh(y)[η(x)− η(y)]2

|x− y|d+2s
dydx

+ 2

ˆ
BR

ˆ
BcR

(ũh(x)− ũh(y))η2(x)ũh(x)

|x− y|d+2s
dydx.

Invoking (5.10) we thus obtain the decomposition |ηũh|2Hs(BR) =
∑5
k=1 Ik, where

(5.11)

I1 :=

ˆ
BR

ˆ
BR

ũh(x)ũh(y)[η(x)− η(y)]2

|x− y|d+2s
dydx,

I2 :=− 2

ˆ
BR

ˆ
BcR

(ũh(x)− ũh(y))η2(x)ũh(x)

|x− y|d+2s
dydx,

I3 :=
(
u, η2ũh

)
s
, I4 := − (u, ψ)s , I5 := (ũh, ψ)s .
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Step 2: Bounding I1 + I2. Proceeding exactly as in the proof of Lemma 4.1, we arrive at

(5.12) I1 + I2 ≤
C

R2s
‖ũh‖2L2(BR) + CRd+2s

(ˆ
BcR

|ũh(x)|
|x|d+2s

dx

)2

.

Step 3: Bounding I3. Using the definition of Hs-inner product, we write I3 = I31 + I32 with

I31 :=

ˆ
BR

ˆ
BR

[u(x)− u(y)] [η2(x)ũh(x)− η2(y)ũh(y)]

|x− y|d+2s
dydx,

I32 :=2

ˆ
BR

ˆ
BcR

[u(x)− u(y)] [η2(x)ũh(x)− η2(y)ũh(y)]

|x− y|d+2s
dydx.

In light of the identity

η2(x)ũh(x)− η2(y)ũh(y) = η(x)[η(x)ũh(x)− η(y)ũh(y)] + η(y)[η(x)− η(y)]ũh(y),

we obtain

I31 =

ˆ
BR

ˆ
BR

[u(x)− u(y)]η(x)[η(x)ũh(x)− η(y)ũh(y)]

|x− y|d+2s
dydx

+

ˆ
BR

ˆ
BR

[u(x)− u(y)]η(y)[η(x)− η(y)]ũh(y)

|x− y|d+2s
dydx

≤ |u|Hs(BR)|ηũh|Hs(BR) +
C

R

ˆ
BR

ˆ
BR

|u(x)− u(y)| |ũh(y)|
|x− y|d−1+2s

dydx,

where in the last step we used that |η| ≤ 1 and |η(x)−η(y)| ≤ CR−1|x−y| according to (5.4). Employing
the Cauchy-Schwarz inequality, we estimate

ˆ
BR

ˆ
BR

|u(x)− u(y)| |ũh(y)|
|x− y|d−1+2s

dydx ≤

√ˆ
BR

ˆ
BR

|u(x)− u(y)|2
|x− y|d+2s

dydx

√ˆ
BR

ˆ
BR

|ũh(y)|2
|x− y|d−2+2s

dydx

≤ CR1−s|u|Hs(BR)‖ũh‖L2(BR).

In the last step above we used that the kernel |x − y|d−2+2s is integrable at {x = y}, and combined
Fubini’s theorem with integration in polar coordinates, to deduceˆ

BR

dx

|x− y|d−2+2s
≤ C

ˆ 2R

0

ρd−1−d+2−2sdρ = CR2−2s ∀y ∈ BR.

As a result, the Young’s inequality yields

I31 ≤ Cε|u|2Hs(BR) + ε|ηũh|2Hs(BR) +
C

R2s
‖ũh‖2L2(BR),

where ε > 0 is a number to be chosen.

To deal with I32 we proceed similarly to the estimate of I2 in the proof of Lemma 4.1. Since |η| ≤ 1
and η = 0 on Bc3R/4, in view of (5.4), we thus get

I32 ≤ 2

ˆ
B3R/4

|ũh(x)|
ˆ
BcR

|u(x)− u(y)|
|x− y|d+2s

dydx ≤ I321 + I322

with

I321 := 2

ˆ
B3R/4

(
|u(x)| · |ũh(x)|

ˆ
BcR

dy

|x− y|d+2s

)
dx,

I322 := 2

ˆ
B3R/4

(
|ũh(x)|

ˆ
BcR

|u(y)|
|x− y|d+2s

dy

)
dx.
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Consequently, integrating in polar coordinatesˆ
BcR

dy

|x− y|d+2s
≤ C

ˆ ∞
R/4

ρ−1−2sdρ =
C

R2s
∀x ∈ B3R/4,

and using the Cauchy-Schwarz inequality, leads to

I321 ≤ CR−2s‖ũh‖L2(BR)‖u‖L2(BR) ≤ CR−2s‖ũh‖2L2(BR) + CR−2s‖u‖2L2(BR).

By the Hölder’s inequality and the fact that 1
4 |y| ≤ |x− y| for all x ∈ B3R/4 and y ∈ BcR, we have

I322 ≤ ‖ũh‖L1(BR) sup
x∈B3R/4

ˆ
BcR

|u(y)|
|x− y|d+2s

dy

≤ CRd/2‖ũh‖L2(BR)

ˆ
BcR

|u(y)|
|y|d+2s

dy

≤ C

R2s
‖ũh‖2L2(BR) + CRd+2s

(ˆ
BcR

|u(y)|
|y|d+2s

dy

)2

.

Collecting the estimates above, we deduce

(5.13) I3 ≤ ε|ηũh|2Hs(BR) +Cε|u|2Hs(BR) +
C

R2s
‖u‖2L2(BR) +

C

R2s
‖ũh‖2L2(BR) +CRd+2s

(ˆ
BcR

|u(y)|
|y|d+2s

dy

)2

.

Step 4: Bounding I4. Using that ψ = 0 on BcR yields the splitting I4 = I41 + I42 with

I41 := −
ˆ
BR

ˆ
BR

[u(x)− u(y)][ψ(x)− ψ(y)]

|x− y|d+2s
dydx, I42 := −2

ˆ
BR

ˆ
BcR

[u(x)− u(y)]ψ(x)

|x− y|d+2s
dydx.

Employing (5.7) and the Young’s inequality, we obtain

I41 ≤ |u|Hs(BR)|ψ|Hs(BR) ≤ C|u|2Hs(BR) +
C

R2s
‖ũh‖2L2(BR).

We handle I42 similarly to I32, namely we write I42 ≤ I421 + I422 with

I421 := 2

ˆ
B3R/4

(
|u(x)| |ψ(x)|

ˆ
BcR

dy

|x− y|d+2s

)
dx, I422 := 2

ˆ
B3R/4

(
|ψ(x)|

ˆ
BcR

|u(y)|
|x− y|d+2s

dy

)
dx.

Again utilizing (5.7) with s = 0, the Cauchy-Schwarz and Young’s inequalities, we arrive at

I421 ≤
C

R2s
‖u‖L2(BR)‖ψ‖L2(BR) ≤

C

R2s
‖u‖2L2(BR) +

C

R2s
‖ũh‖2L2(BR),

Since 1
4 |y| ≤ |x− y| for all x ∈ B3R/4 and y ∈ BcR as in Step 3, invoking the Hölder’s inequality and (5.7)

with s = 0, we have

I422 ≤ 2‖ψ‖L1(BR) sup
x∈B3R/4

ˆ
BcR

|u(y)|
|x− y|d+2s

dy

≤ CRd/2‖ψ‖L2(BR)

ˆ
BcR

|u(y)|
|y|d+2s

dy

≤ CRd/2‖ũh‖L2(BR)

ˆ
BcR

|u(y)|
|y|d+2s

dy

≤ C

R2s
‖ũh‖2L2(BR) + CRd+2s

(ˆ
BcR

|u(y)|
|y|d+2s

dy

)2

.
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Combining the estimates above, we obtain

(5.14) I4 ≤ C|u|2Hs(BR) +
C

R2s
‖u‖2L2(BR) +

C

R2s
‖ũh‖2L2(BR) + CRd+2s

(ˆ
BcR

|u(y)|
|y|d+2s

dy

)2

.

Step 5: Bounding I5. We will treat I5 differently from I4, because it contains ũh in place of u, which
causes serious challenges on shape-regular meshes. Using that ψ = 0 on BcR, we split I5 = I51 + I52 with

I51 :=

ˆ
BR

ˆ
BR

[ũh(x)− ũh(y)][ψ(x)− ψ(y)]

|x− y|d+2s
dydx, I52 := 2

ˆ
BR

ˆ
BcR

[ũh(x)− ũh(y)]ψ(x)

|x− y|d+2s
dydx.

Recalling Remark 3.4 (fractional inner product on subdomains), we split the integral over BR × BR
into sums over (T ∩ BR) × (ST ∩ BR) and (T ∩ BR) × (ScT ∩ BR) for T ∈ ΛR, and use the fact that´
ScT
|x− y|−d−2sdy ≤ Ch−2s

T for every x ∈ T , to end up with

I51 ≤
∑
T∈ΛR

[(ˆ
T∩BR

ˆ
ST∩BR

|ũh(x)− ũh(y)|2

|x− y|d+2s
dydx

)1/2(ˆ
T∩BR

ˆ
ST∩BR

|ψ(x)− ψ(y)|2

|x− y|d+2s
dydx

)1/2

+
C

h2s
T

ˆ
T∩BR

|ũh(x)||ψ(x)|dx+ 2

ˆ
T∩BR

ˆ
ScT∩BR

|ũh(x)||ψ(y)|
|x− y|d+2s

dydx

]
≤ I511 + I512 + I513,

with

I511 :=
∑

T∈Λ7R/8

|ũh|Hs(ST )|ψ|Hs(ST ),

I512 :=
∑

T∈Λ7R/8

C

h2s
T

ˆ
T

|ũh(x)||ψ(x)|dx,

I513 := 2
∑
T∈ΛR

ˆ
T∩BR

ˆ
ScT

|ũh(x)||ψ(y)|
|x− y|d+2s

dydx.

Above, we have used (5.8) in the definition of I511 and exploited the fact that ψ = 0 on Bc7R/8 in the defini-

tion of I512. We next apply the local inverse inequality (3.5) in conjunction with the superapproximation
estimate (5.5) to deduce

I511 :=
∑

T∈Λ7R/8

|ũh|Hs(ST )|ψ|Hs(ST )

≤ C
∑

T∈Λ7R/8

‖ũh‖L2(ST )

(h1−s
T

R
|ηũh|Hs(ST ) +

h2−2s
T

R2
‖ũh‖L2(ST )

)
≤ ε|ηũh|2Hs(BR) +

Cε
R2s
‖ũh‖2L2(BR),

because 16hT ≤ R and
∑
T∈Λ7R/8

|v|2Hs(ST ) ≤ C(σ)|v|2Hs(BR) for all v ∈ Hs(BR), the latter due to the

uniformly bounded overlap of stars ST in the shape-regular mesh Th. The upper bound for I512 is similar,
but to obtain it we instead apply the superapproximation estimate (5.3) with p = 2, the inverse inequality
(3.6) and Young’s inequality

I512 ≤ C
∑

T∈Λ7R/8

1

h2s
T

‖ũh‖L2(T )‖ψ‖L2(T )

≤ C
∑

T∈Λ7R/8

‖ũh‖L2(ST )

(h1−s
T

R
|ηũh|Hs(ST ) +

h2−2s
T

R2
‖ũh‖L2(ST )

)
≤ ε|ηũh|2Hs(BR) +

Cε
R2s
‖ũh‖2L2(BR).

The remaining term I513 is rather tricky and reveals the nonlocal nature of our problem. Manipulating
I513 is the most delicate and innovative part of the proof. To keep notation short, we set TR := T ∩BR,
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and ScT,R := ScT ∩B7R/8. We recall that ψ = 0 in Bc7R/8 and rewrite I513 as

I513 = 2
∑
T∈ΛR

∑
T ′⊂ScT,R

ˆ
TR

|ũh(x)|
ˆ
T ′

|ψ(y)|
|x− y|d+2s

dydx

≤ C
∑
T∈ΛR

∑
T ′⊂ScT,R

‖ũh‖L1(TR)‖ψ‖L1(T ′) d(T, T ′)−d−2s,

where d(T, T ′) denotes the distance between elements T and T ′. We make use of the superapproximation
estimate (5.3) with p = 1 to infer that I513 ≤ I5131 + I5132 where

I5131 := C
∑
T∈ΛR

∑
T ′⊂ScT,R

‖ũh‖L1(TR)‖ũh‖L1(T ′) d(T, T ′)−d−2s h
2
T ′

R2

I5132 := C
∑
T∈ΛR

∑
T ′⊂ScT,R

‖ũh‖L1(TR)‖∇(ηũh)‖L1(T ′) d(T, T ′)−d−2s h
2
T ′

R
.

The first term I5131 is problematic. We rewrite it again in integral form upon invoking the meshsize
function h(y), which is locally equivalent to the element meshsize, namely h(y) ≈ hT ′ for all y ∈ T ′:

I5131 ≤ CR−2
∑
T∈ΛR

ˆ
TR

|ũh(x)|
ˆ
ScT,R

h(y)2|ũh(y)|
|x− y|d+2s

dydx

≤ CR−2
∑
T∈ΛR

[ˆ
TR

|ũh(x)|2
ˆ
ScT,R

h(y)2

|x− y|d+2s
dydx+

ˆ
TR

ˆ
ScT,R

h(y)2|ũh(y)|2

|x− y|d+2s
dydx

]
.

The first term does not scale correctly unless the meshsize is quasi-uniform, a restriction on Th that is
too severe for us to assume. It is here that we resort to the Lipschitz property (3.1) of h(y), valid for
shape-regular Th, and integrate in polar coordinates |x− y| = ρ, to compute for x ∈ T ∈ ΛRˆ

ScT,R

h(y)2

|x− y|d+2s
dy ≤ C

ˆ
ScT∩BR

h(x)2 + C|x− y|2

|x− y|d+2s
dy ≤ C

ˆ R

ChT

h(x)2 + ρ2

ρd+2s
ρd−1dρ ≤ CR2−2s,

whence

R−2
∑
T∈ΛR

ˆ
TR

|ũh(x)|2
ˆ
ScT,R

h(y)2

|x− y|d+2s
dydx ≤ C

R2s

∑
T∈ΛR

ˆ
TR

|ũh(x)|2dx ≤ C

R2s
‖ũh‖2L2(BR).

On the other hand, resorting to Lemma 3.2 (symmetry), we have∑
T∈ΛR

ˆ
TR

ˆ
ScT,R

h(y)2|ũh(y)|2

|x− y|d+2s
dydx ≤

∑
T∈Th

ˆ
T

ˆ
ScT

h(y)2|ũh(y)|2χBR(y)χBR(x)

|x− y|d+2s
dydx

=
∑
T∈Th

ˆ
T

ˆ
ScT

h(x)2|ũh(x)|2χBR(x)χBR(y)

|x− y|d+2s
dydx

=
∑
T∈Th

ˆ
T

h(x)2|ũh(x)|2χBR(x)

ˆ
ScT

χBR(y)

|x− y|d+2s
dydx,

where χBR denotes the characteristic function of BR. Sinceˆ
ScT

χBR(y)

|x− y|d+2s
dy ≤ C

ˆ R

ChT

ρ−1−2sdρ ≤ Ch−2s
T ∀x ∈ T,

h(x) ≈ hT for all x ∈ T and 16hT ≤ R, we see that∑
T∈ΛR

ˆ
TR

ˆ
ScT,R

h(y)2|ũh(y)|2

|x− y|d+2s
dydx ≤ C

∑
T∈Th

h2−2s
T

ˆ
T

χBR(x)|ũh(x)|2dx ≤ CR2−2s‖ũh‖2L2(BR).
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Collecting the preceding estimates for I5131, we realize that

I5131 ≤ CR−2s‖ũh‖2L2(BR).

We handle I5132 similarly to I5131, namely

I5132 ≤ CR−1
∑
T∈ΛR

ˆ
TR

|ũh(x)|
ˆ
ScT,R

h(y)2|∇(ηũh)(y)|
|x− y|d+2s

dydx

≤ CεR−2
∑
T∈ΛR

ˆ
TR

ˆ
ScT,R

|ũh(x)|2h(y)2

|x− y|d+2s
dydx+ Cε

∑
T∈ΛR

ˆ
TR

ˆ
ScT,R

h(y)2|∇(ηũh)(y)|2

|x− y|d+2s
dydx

≤ CεR−2s‖ũh‖2L2(BR) + Cε
∑
T∈ΛR

ˆ
TR

ˆ
ScT,R

h(y)2|∇(ηũh)(y)|2

|x− y|d+2s
dydx,

since the first term was already estimated in I5131. For the other term in the right hand side, we proceed
exactly as with the second term in I5131, thereby exploiting again Lemma 3.2 (symmetry) and combining
it with the inverse-type estimate (3.6), to obtain

C ε
∑
T∈ΛR

ˆ
TR

ˆ
ScT,R

h(y)2|∇(ηũh)(y)|2

|x− y|d+2s
dydx ≤ C ε

∑
T∈Th

h2−2s
T |ηũh|2H1(T ) ≤ C ε |ηũh|

2
Hs(BR).

Combining the estimates for I511, I512, I513 we deduce that

I51 ≤ CεR−2s‖ũh‖2L2(BR) + C ε |ηũh|2Hs(BR).

It only remains to bound I52, which is exactly the same as I42 but with u replaced by ũh. Hence,
proceeding similarly to the estimate for I42, we readily arrive at

I52 ≤
C

R2s
‖ũh‖2L2(BR) + CRd+2s

(ˆ
BcR

|ũh(y)|
|y|d+2s

dy

)2

.

This together with the previous estimate yields

(5.15) I5 ≤ Cε|ηũh|2Hs(BR) +
Cε
R2s
‖ũh‖2L2(BR) + CRd+2s

(ˆ
BcR

|ũh(y)|
|y|d+2s

dy

)2

.

Step 6: Conclusion. Inserting the bounds (5.12), (5.13), (5.14) and (5.15) into (5.11), we deduce that

|ηũh|2Hs(BR) ≤ Cε|u|
2
Hs(BR) +

C

R2s
‖u‖2L2(BR) + CRd+2s

(ˆ
BcR

|u(x)|
|x|d+2s

dx

)2

+ Cε|ηũh|2Hs(BR) +
Cε
R2s
‖ũh‖2L2(BR) + CRd+2s

(ˆ
BcR

|ũh(x)|
|x|d+2s

dx

)2

,

for all ε > 0. We now set ε to be such that the factor multiplying |ηũh|2Hs(BR) in the right hand side

equals 1
2 and kick that term back to the left hand side, to obtain

|ηũh|2Hs(BR) ≤ Cε|u|
2
Hs(BR) +

C

R2s
‖u‖2L2(BR) + CRd+2s

(ˆ
BcR

|u(x)|
|x|d+2s

dx

)2

+
Cε
R2s
‖ũh‖2L2(BR) + CRd+2s

(ˆ
BcR

|ũh(x)|
|x|d+2s

dx

)2

.

The asserted estimate finally follows because |ũh|2Hs(BR/2) ≤ |ηũh|
2
Hs(BR). �
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We can derive explicit local Hs-convergence rates by combining Theorem 5.3 with the convergence
estimates from Section 3. We explore this next.

5.3. Applications to interior error estimates. Theorem 5.3 (local energy error estimate) gives us
new ways to examine the behavior of the numerical error and, more importantly, check the sharpness of
known estimates. Bounding the low order terms in Theorem 5.3 by global L2-terms, we get the following
immediate consequence of Theorem 5.3.

Corollary 5.4 (local error estimate). Let u ∈ Hs(Ω) be the solution of (2.3) and uh be the finite element
solution of (3.7). Then there is a constant C depending on shape regularity such that

|u− uh|Hs(BR/2) ≤ C inf
vh∈Vh

(
|u− vh|Hs(BR) +

1

Rs
‖u− vh‖L2(Ω)

)
+

C

Rs
‖u− uh‖L2(Ω).

Proof. We apply Theorem 5.3 to u−uh, which clearly satisfies the local Galerkin orthogonality condition
(5.9). The proof then follows from the Cauchy-Schwarz inequality and integration in polar coordinates

Rd+2s

(ˆ
BcR

w(x)

|x− x0|d+2s
dx

)2

≤ Rd+2s‖w‖2L2(Ω)

ˆ
BcR

1

|x− x0|2d+4s
dx

≤ CRd+2s‖w‖2L2(Ω)

ˆ ∞
R

ρd−1

ρ2d+4s
dρ =

C

R2s
‖w‖2L2(Ω),

for w = |u− vh| and w = |u− uh|. This concludes the proof. �

Since ‖u − Πhu‖L2(Ω) ≤ C‖u − uh‖L2(Ω) generically, Corollary 5.4 shows that the interior Hs-error

consists of a local approximation error in the Hs-norm and a global L2-Galerkin error that accounts for
pollution from the rest of the domain. We observe that this estimate is similar to local estimates for second
order elliptic problems [14, 30], except that the L2-terms are now global. This is a mild manifestation of
the nonlocal nature of (1.1). We examine below the extreme cases of quasi-uniform and graded meshes.

Since the polynomial degree of Vh is 1, no error estimate can be of order larger than 2 and exploit
regularity of u beyond H2 regardless of mesh structure. With this in mind, we let f ∈ Hr(Ω) for
0 ≤ r ≤ 2− 2s, which leads to the local H2s+r

loc -regularity of u and the local approximation error

(5.16) inf
vh∈Vh

|u− vh|Hs(BR) ≤ Chs+r‖f‖Hr(Ω).

In order to compare with the global Hs-estimate of Theorem 3.5 (global energy-norm convergence rates),
we consider below the best scenario of maximal interior regularity, namely the case where the rate s+ r
in (5.16) is sufficiently large s+ r ≥ 1, so that the local Hs-rate is dictated by the global L2-error.

Quasi-uniform meshes. Combining (5.16) with the estimates of Proposition 3.8 (convergence rates in
L2(Ω) for quasi-uniform meshes) and Lemma 3.9 (further regularity) of Section 3.3, we obtain

|u− uh|Hs(BR/2) ≤ Chs+r‖f‖Hr(Ω) +

{
Ch2α| log h|2‖f‖L2(Ω) for Ω Lipschitz

Chα+γ | log h|2‖f‖Hr(Ω) for Ω smooth,

where α = min{s, 1
2}, and γ = min{s+r, 1

2}. We summarize these estimates in Table 1 (up to logarithmic
factors). Compared with Theorem 3.5 (global energy-norm convergence rates)

(5.17) ‖u− uh‖H̃s(Ω) ≤ Ch
min{s,1/2}| log h| ‖f‖L2(Ω),

we see that all interior Hs-rates of Table 1 are improvements over the global rate of (5.17).

Graded meshes. Section 3 shows that graded meshes satisfying (3.12) are able to compensate for the
singular boundary layer for Lipschitz domains satisfying the exterior ball condition and smooth right-
hand sides. Even though the next discussion is valid for any dimension d, for the sake of clarity and
because our numerical experiments in Section 6 are carried out for d = 2, we shall focus on this case.
Moreover, we assume s 6= 1/2, for otherwise additional logarithmic factors arise in our estimates below.
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Ω-smooth Ω-Lipschitz

s ≤ 1/2 hs+1/2 h2s

s > 1/2 h h

Table 1. Order of convergence (up to logarithmic factors) for interior error estimates
|u− uh|Hs(BR/2) on quasi-uniform meshes for f ∈ Hr(Ω), r ≥ 0, and s+ r ≥ 1.

We set µ = 2 and β = 1− s in Theorem 3.5 (global energy-norm convergence rates) and Proposition 3.10
(convergence rates in L2(Ω) for graded meshes) to establish the global rates of convergence

(5.18) ‖u− uh‖H̃s(Ω) ≤ Ch| log h| ‖f‖C1−s(Ω), ‖u− uh‖L2(Ω) ≤ Chmin{1+s,3/2}| log h|2 ‖f‖C1−s(Ω).

In contrast, Theorem 5.3 (local energy error estimate) in conjunction with the global L2-norm estimate
in (5.18) for f ∈ C1−s(Ω) ∩Hr(Ω), 0 ≤ r ≤ 2− 2s, gives the local Hs-estimate

|u− uh|Hs(BR/2) ≤ Chs+r‖f‖Hr(Ω) + Chmin{1+s,3/2}| log h|2‖f‖C1−s(Ω).

We now compare with the globalHs-estimate in (5.18). We again assume that the interior rate s+r ≤ 2−s
is sufficiently large, the upper bound caused by the polynomial degree 1, to write

|u− uh|Hs(BR/2) ≤ Chmin{1+s,2−s}| log h|2 ‖f‖C1−s(Ω).

We thus see an overall improvement hmin{s,1−s} over (5.18). We summarize these results in Table 2.

Ω-smooth or Lipschitz with exterior ball condition
s ≤ 1/2 hs+1

s > 1/2 h2−s

Table 2. Order of convergence (up to logarithmic factors) for interior error estimates
|u − uh|Hs(BR/2) on graded meshes with parameter µ = 2 for f ∈ Hr(Ω) ∩ C1−s(Ω),
r ≥ 0, and s+ r ≤ 2− s sufficiently large.

We conclude with a comparison between quasi-uniform and graded meshes for smooth data (domain
and right-hand side). Tables 1 and 2 show that graded meshes yield an improvement of order h1/2 for all
s ≤ 1/2, whereas the improvement is of order h1−s for s > 1/2. Therefore, such an improvement is valid
for all 0 < s < 1 but becomes less significant in the limit s→ 1 of classical diffusion.

6. Numerical experiments

In this section we present some numerical experiments in a two-dimensional domain that illustrate
the sharpness of our theoretical estimates. These experiments were performed with the aid of the code
documented in [1]; we also refer to [1] for details on the implementation. Some discussion about the
construction of graded meshes satisfying (3.12) can be found in [2].

In all of the experiments below we set Ω = B(0, 1) ⊂ R2 and f ≡ 1, so that we have an explicit solution
at hand (cf. Example 2.2). This corresponds to smooth data (both domain and right-hand side) and
the discussion of Section 5.3 applies. We computed errors with respect to the dimension N of the finite
element spaces Vh because N = #Dofs is a measure of complexity. In view of (3.13) with µ = 2, we
always have the relation N ≈ h−2 for both quasi-uniform and graded meshes, the latter up to logarithmic
terms. Therefore, the rates of convergence of Section 5.3 can be expressed in terms of N as follows

(6.1) hβ ≈ N−β/2,
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for appropriate exponents β > 0. We next explore computationally our error estimates in Section 3.3 for
both the global L2-norm and local Hs-seminorm.

6.1. Global L2-norm error estimates. We start with quasi-uniform meshes and s = 0.5, 0.6, 0.7, 0.8, 0.9.
Our findings are summarized in Figure 1: in all cases, we see good agreement with the linear convergence
rate β = 1 predicted by Proposition 3.8 for s ≥ 1/2, or equivalently N−1/2 according to (6.1). Since the

exact solution satisfies u ∈ ∩ε>0H̃
s+1/2−ε(Ω), we infer that the L2-interpolation error obeys the inequal-

ity ‖u− Ihu‖L2(Ω) ≤ Chs+1/2| log h|. Interestingly, the finite element error ‖u− uh‖L2(Ω) ≤ Ch| log h|2 is
of lower order for s > 1/2, which turns out to be consistent with (3.27).

Figure 1. Global L2-errors for the finite element solution to Example 2.2 over quasi-
uniform meshes with s = 0.5, 0.6, 0.7, 0.8, 0.9. The decay rate N−1/2, which is of lower
order than the interpolation error, is consistent with (3.22) for s ≥ 1/2.

We next consider approximations using meshes graded that satisfy (3.12) with µ = 2. By Proposition
3.10, we expect a convergence rate of order N−min{1/2+s/2,3/4}, according to (6.1). In Figure 2 we display
the computational rates of convergence for s = 0.2, 0.4, 0.6, 0.8, which are in good agreement with theory.

Figure 2. Global L2-errors for the finite element solution to Example 2.2 over graded
meshes with µ = 2 and s = 0.2, 0.4, 0.6, 0.8. The computational decay rates are consistent
with the theoretical prediction N−min{1/2+s/2,3/4} of (3.25).

6.2. Local Hs-norm error estimates. We next explore the sharpness of our local error estimates
derived in Section 5 and summarized in Tables 1 and 2. More precisely, we find computational rates
of convergence in Hs(B(0, 0.3)), namely the ball of radius 0.3 centered at the origin, upon evaluating
|Ihu− uh|Hs(B(0,0.3)) via the same techniques used when building the stiffness matrix. This is because

|u− uh|Hs(B(0,0.3)) ≤ |u− Ihu|Hs(B(0,0.3)) + |Ihu− uh|Hs(B(0,0.3))
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and the first term in the right hand side above is of higher order than the second for the locally smooth
function u of (2.6). We display the errors in Hs(B(0, 0.3)) for s = 0.2, 0.4, 0.6, 0.8 in Figures 3 and 4 for
quasi-uniform and graded meshes, respectively. We observe good agreement with the theoretical rates
N−min{1/4+s/2,1/2} of Table 1 and N−min{1/2+s/2,1−s/2} of Table 2 in each case.

Figure 3. Errors in Hs(B(0, 0.3)) for the finite element solution to Example 2.2 over
quasi-uniform meshes with s = 0.2, 0.4, 0.6, 0.8. Computational rates are consistent with
the theoretical rates N−min{1/4+s/2,1/2} of Table 1.

Figure 4. Errors in Hs(B(0, 0.3)) for the finite element solution to Example 2.2 over
graded uniform meshes with µ = 2 and s = 0.2, 0.4, 0.6, 0.8. Computational rates are
consistent with the theoretical rates N−min{1/2+s/2,1−s/2} of Table 2.

Finally we emphasize that, according to our discussion in Section 3.2, the global Hs-errors decay
with rate N−1/4 (for uniform meshes) and N−1/2 (for graded meshes); see (3.24) and (3.17). It can be
seen from our numerical experiments that in all cases the finite element solutions converge with higher
order in Hs(B(0, 0.3)). Therefore, these experiments illustrate that the finite element error is effectively
concentrated around ∂Ω.
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