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Abstract. The main aim of this paper is twofold. First, we investigate fine
estimates of the discrete Green’s function and its positivity. We establish that

in two dimensions on a smooth domain the discrete Green’s function with sin-

gularity in the interior of the domain must be strictly positive throughout the
computational domain once the mesh is sufficiently refined. We also establish

novel pointwise error estimates for the discrete Green’s function that are valid

up to the boundary of the domain. Then, using these estimates we establish
a discrete Harnack inequality for piecewise linear discrete harmonic functions.

In contrast to the discrete maximum principle the result is valid for general

quasi-uniform shape regular meshes except for a condition on the layer near
the boundary. Such results may prove to be useful for the analysis of discrete

solutions of fully nonlinear problems.

1. Introduction

Let Ω ⊂ R𝑁 for 𝑁 = 2, 3 be a convex bounded domain with sufficiently smooth
boundary. Consider the Dirichlet problem for Laplace’s equation

−∆𝑢 = 0, in Ω
𝑢 = 𝑏, on 𝜕Ω.

(1)

Here we assume 𝑏 ∈ 𝐶(𝜕Ω) and 𝑏 ≥ 0. To approximate the problem we use stan-
dard piecewise linear conforming finite elements. In this paper we will investigate
positivity of the finite element solution, pointwise estimates and the positivity of
the discrete Green’s function, and the discrete Harnack inequality.

The classical Harnack inequality states that for every fixed subdomain Ω0 ⊂⊂ Ω,
there exists a constant 𝐶 depending on Ω0 so that, for any nonnegative harmonic
function 𝑢 on Ω and any two points 𝑥, 𝑦 ∈ Ω0, 𝑢(𝑥) ≤ 𝐶𝑢(𝑦). That is, any two
values of 𝑢 in the subdomain Ω0 are comparable, with the constant independent
of the particular nonnegative harmonic function. The classical Harnack inequality
was extended to elliptic equations in divergence form with bounded measurable co-
efficients by Moser [23] using the De Giorgi-Nash-Moser iteration technique. Later,
the Harnack inequality was extended to elliptic equations in non-divergence form
with bounded measurable coefficients by Krylov and Safonov [19]. There is a large
body of literature on the Harnack inequality in settings other than classical ellip-
tic or parabolic partial differential equations on R𝑁 . For example, the Harnack
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inequality appears in probability in Markov chains [22], in graph theory [3, 7], on
Riemannian manifolds [25], and even for infinite dimensional operators [4].

However, there is little work when the discretization is less structured. There are
almost no results on the Harnack inequality in the finite element literature, with
the exception of the paper of Aguilera and Caffarelli [1]. In this work, Aguilera and
Caffarelli adapted the continuous De Giorgi-Nash-Moser iteration technique to the
discrete setting and established a form of the Harnack inequality valid for elliptic
equations and piecewise linear finite element methods. Their technique requires
the discrete maximum principle and some additional geometric constraints on the
mesh. In particular, their results require that all of the off-diagonal entries of
the stiffness matrix be nonpositive (essentially requiring the stiffness matrix on a
bounded domain to be an M-matrix). Using a different technique, we establish the
Harnack inequality for piecewise linear finite element methods on general quasi-
uniform meshes, under the assumption of a mesh condition that must hold near
the boundary of the domain. We believe that, as in the continuous case, the
discrete Harnack inequality can be used to prove the Hölder estimates. Such Hölder
estimates may be valuable in the analysis of fully nonlinear elliptic problems, for
example for showing the uniform convergence of the approximate solution to the
viscosity solution. A similar program was carried out for the finite differences
method (cf. [20, 21]).

The mesh condition can be thought of (loosely) as requiring that the mesh be able
to approximate the normal derivative of the Green’s function sufficiently well. Our
approach is more in the spirit of Lawler [22] and requires sharp pointwise lower and
upper bounds of the corresponding continuous and discrete Green’s functions and
their error. The Green’s function results are new and are of independent interest.
For example, one consequence of the discrete Green’s function estimates in this
paper is that, for smooth convex domains in two dimensions, the discrete Green’s
function is eventually positive when the singularity is located in the strict interior of
the domain. This is also valid for higher order elements and non-smooth domains,
except on a thin layer near the boundary. In [13], a quasi-uniform and shape regular
mesh was constructed for which the corresponding discrete Green’s function for the
piecewise linear finite element method obtained persistent negative values, even as
the mesh size tends to zero. Positivity of the Green’s function is closely related
to the maximum principle. For the continuous problem, the maximum principle
can be regarded as a consequence of the nonnegativity of the Green’s function.
However, as the counterexample in [13] shows, the discrete Green’s function need
not be nonnegative, and nonnegativity of the discrete Green’s function is not in
general sufficient to guarantee the maximum principle (see Section 5).

In contrast to the Harnack inequality, the maximum principle is the subject of a
large body of research in the finite element literature [6, 10, 12, 17, 32]. However,
the maximum principle does not hold in general for discrete harmonic functions
without additional restrictive hypotheses on the particular finite element method
used. In fact, the classical discrete maximum principle holds essentially for piece-
wise linear elements only with certain mesh restrictions [16]. A sufficient (though
not necessary) condition that guarantees that the maximum principle holds is to
require that all of the dihedral angles in the triangulation be non-obtuse. A notable
result of Schatz [26] shows that a “weak” maximum principle (also known as the
Agmon-Miranda principle) holds asymptotically for general quasi-uniform meshes
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in two space dimensions. When considered in perspective with the result of Schatz,
our results are perhaps less unexpected.

The rest of the paper is organized as follows. In Section 2, we introduce the
problem and state preliminaries, including the definitions of the various Green’s
functions that appear throughout. In Section 3, we review some well-known point-
wise estimates of the continuous Green’s function in Lemma 3.1, and a lesser-known
pointwise lower bound on the Green’s function in Lemma 3.3. In Section 4, we prove
pointwise error estimates for the discrete Green’s function which are valid up to
the boundary of the domain in Theorem 4.5. At the end of Section 4, we deduce
Theorem 4.6, a positivity result for the discrete Green’s function in two dimensions
when the singularity is located in the interior of the domain. In Section 5, we
use the error estimates on the discrete Green’s function to deduce a Harnack-type
inequality for the discrete Green’s function. Using a representation formula for
discrete harmonic functions in terms of the discrete Green’s function allows us to
extend the Harnack-type inequality for the discrete Green’s function to Theorem
5.6, a Harnack inequality for discrete harmonic functions. Finally, in Section 6 we
provide some numerical examples concerning the positivity of the discrete Green’s
function. We show that the discrete Green’s function may be negative in the interior
of the domain if the mesh is not sufficiently refined.

2. Preliminaries

Throughout this paper, we adopt standard Sobolev space and finite element no-
tation, and we use freely definitions, such as shape regularity and quasi-uniformity,
and results, such as super-approximation and inverse estimates, from the finite
element literature (see, for instance, [9] and [5]).

Let 0 < ℎ < 1 and {𝒯ℎ} be a quasi-uniform and shape regular family of trian-
gulations of size ℎ for a polygonal computational domain Ωℎ ⊂ Ω approximating Ω
with 𝑑𝑖𝑠𝑡𝑥∈𝜕Ω(𝑥, 𝜕Ωℎ) ≤ 𝐶ℎ2 and as a result |Ω∖Ωℎ| ≤ 𝐶ℎ2. Denote by 𝑉ℎ(Ωℎ) the
set of all continuous functions on Ωℎ that are linear (affine) when restricted to each
triangle in 𝒯ℎ, and define 𝑉 0

ℎ (Ωℎ) = {𝑣 ∈ 𝑉ℎ(Ωℎ) : 𝑣|𝜕Ωℎ
= 0}. After extension by

zero such functions can be considered as being in 𝑊 1
∞(Ω).

Let {𝜑𝑖}𝑛+𝑚
𝑖=1 be a standard nodal basis for 𝑉ℎ(Ωℎ), where the nodes 𝑥𝑖 for

𝑖 ∈ {1, . . . , 𝑛} are interior nodes, and 𝑥𝑗 for 𝑗 ∈ {𝑛+ 1, . . . , 𝑛+𝑚} are boundary
nodes.

We define 𝑢ℎ ∈ 𝑉ℎ(Ωℎ) to be the solution of the problem

(∇𝑢ℎ,∇𝜒)Ωℎ
= 0, ∀𝜒 ∈ 𝑉 0

ℎ (Ωℎ),
𝑢ℎ = 𝐼ℎ𝑏, on 𝜕Ωℎ,

(2)

where the interpolant 𝐼ℎ𝑏 is given by

𝐼ℎ𝑏 =
𝑛+𝑚∑︁

𝑗=𝑛+1

𝑏(𝑥𝑗)𝜑𝑗 .

A function satisfying (1) is said to be a harmonic function on Ω, and a function
satisfying (2) is said to be a discrete harmonic function on Ωℎ.

We also require functions that are discrete harmonic on subdomains. For 𝐷 ⊂
Ωℎ, let 𝑉ℎ(𝐷) be the set of functions on 𝐷 that are the restrictions of functions
in 𝑉ℎ(Ωℎ), and define 𝑉 0

ℎ (𝐷) = {𝜒 ∈ 𝑉ℎ : supp(𝜒) ⊂ 𝐷 ∩ Ωℎ}. A function
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𝑢ℎ ∈ 𝑉ℎ(Ωℎ) is said to be discrete harmonic on 𝐷 if

(∇𝑢ℎ,∇𝜒)𝐷 = 0, ∀𝜒 ∈ 𝑉 0
ℎ (𝐷).(3)

One way to represent the solution of (1) is by use of the Green’s function. The
(continuous) Green’s function with singularity at 𝑧 is the function 𝐺𝑧(𝑥) given by

(4)
−∆𝐺𝑧 = 𝛿𝑧, in Ω,

𝐺𝑧 = 0, on 𝜕Ω,

where 𝛿𝑧 is the Dirac delta function at 𝑧. We will also use the notation 𝐺(𝑥, 𝑧) and
𝐺𝑧(𝑥) interchangeably (and similarly for the various other Green’s functions which
appear) depending on context.

The discrete Green’s function with singularity at 𝑧 is the function 𝐺𝑧
ℎ(𝑥) ∈

𝑉 0
ℎ (Ωℎ) satisfying

(5) (∇𝐺𝑧
ℎ,∇𝜒)Ωℎ

= 𝜒(𝑧) ∀𝜒 ∈ 𝑉 0
ℎ (Ωℎ).

In the analysis we will also need a regularized Green’s function. Let 𝛿𝑧 ≥ 0
denote a smooth delta function supported in an element 𝜏0 containing 𝑧 with the
property

(6) (𝛿𝑧, 𝜒)Ωℎ
= (𝛿𝑧, 𝜒)𝜏0 = 𝜒(𝑧), ∀𝜒 ∈ 𝑉ℎ(Ωℎ).

An explicit construction of such a function is given for example in Appendix A of
[29]. In addition we also have, for 𝐶 independent of 𝑧,

(7) ‖𝛿𝑧‖𝑊 𝑠
𝑝 (𝜏0) ≤ 𝐶ℎ−𝑠−𝑁(1− 1

𝑝 ), 1 ≤ 𝑝 ≤ ∞, 𝑠 = 0, 1.

Thus in particular ‖𝛿𝑧‖𝐿1(Ω) ≤ 𝐶, ‖𝛿𝑧‖𝐿2(Ω) ≤ 𝐶ℎ−𝑁/2, and ‖𝛿𝑧‖𝐿∞(Ω) ≤ 𝐶ℎ−𝑁 .
Using 𝛿𝑧 we define a regularized Green’s function 𝐺̃𝑧(𝑥) by

(8)
−∆𝐺̃𝑧 = 𝛿𝑧, in Ω,

𝐺̃𝑧 = 0, on 𝜕Ω.
.

Notice that 𝐺𝑧
ℎ = 𝑅ℎ𝐺̃

𝑧 = 𝑅ℎ𝐺
𝑧, where 𝑅ℎ𝑢 is the Ritz projection of a function 𝑢

onto 𝑉 0
ℎ (Ωℎ) defined by

(∇𝑅ℎ𝑢,∇𝜒)Ωℎ
= (∇𝑢,∇𝜒)Ωℎ

, ∀𝜒 ∈ 𝑉 0
ℎ (Ωℎ).

3. The Continuous Green’s Function

We will require some results for the continuous Green’s function and its deriva-
tives that are essential in our analysis. The proof of the following result for general
second order elliptic equations can be found in [18].

Lemma 3.1. Let 𝐺(𝑥, 𝑦) denote the Green’s function of the Laplace equation on
Ω ⊂ R𝑁 . Then the following estimates hold,

|𝐺(𝑥, 𝑦)| ≤
{︂
𝐶(1 + |ln |𝑥− 𝑦||), 𝑁 = 2,
𝐶|𝑥− 𝑦|2−𝑁 , 𝑁 ≥ 3,(9a)

|∇𝛼
𝑥∇𝛽

𝑦𝐺(𝑥, 𝑦)| ≤ 𝐶|𝑥− 𝑦|2−𝑁−|𝛼|−|𝛽|, |𝛼|+ |𝛽| ≥ 1.(9b)

Remark 3.2. The smoothness of Ω is only required for |𝛼| > 2 or/and |𝛽| > 2 in
(9b). The estimates (9a) and (9b) for |𝛼| ≤ 1 and |𝛽| ≤ 1 are known to hold for
general convex domains for any 𝑁 ≥ 1 (cf. [14, 15]).

We will also need a lower bound on the continuous Green’s function.
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Lemma 3.3. Let Ω0 ⊂⊂ Ω. Then there exists a constant 𝐶 so that for all 𝑥 ∈ Ω0

and 𝑧 ∈ Ω, we have 𝐺(𝑥, 𝑧) ≥ 𝐶𝜌(𝑧, 𝜕Ω), where 𝜌(𝐴,𝐵) = 𝑑𝑖𝑠𝑡(𝐴,𝐵), the distance
between sets (or points) 𝐴 and 𝐵.

Proof. For 𝑁 = 2, by Theorem 6.23 of [8], there exists 𝐶 > 0 such that

𝐶 ln
(︂

1 +
𝜌(𝑥, 𝜕Ω)𝜌(𝑧, 𝜕Ω)

|𝑥− 𝑧|2

)︂
≤ 𝐺(𝑥, 𝑧).

Because Ω is bounded, |𝑥 − 𝑧|−2 is bounded below by a positive constant inde-
pendent of 𝑥 and 𝑧, and because Ω0 ⊂⊂ Ω, we have that 𝜌(𝑥, 𝜕Ω) is bounded
below by a positive constant independent of 𝑥 ∈ Ω0. Therefore, we have the lower
bound 𝐶 ln (1 + 𝐶𝜌(𝑧, 𝜕Ω)) ≤ 𝐺(𝑥, 𝑧). Because Ω is a bounded domain, 𝜌(𝑧, 𝜕Ω) is
bounded above by a constant independent of 𝑥 ∈ Ω, so that we may find 𝐶 ′ > 0
such that 𝐶 ′𝜌(𝑧, 𝜕Ω) ≤ 𝐺(𝑥, 𝑧) for all 𝑥 ∈ Ω0 and 𝑧 ∈ Ω.

For 𝑁 ≥ 3, by Theorem 1 of [33], there exists a constant 𝐶 > 0 such that

𝐺(𝑥, 𝑧) ≥

{︃
𝐶|𝑥− 𝑧|2−𝑁 if |𝑥− 𝑧| ≤ max (𝜌(𝑥, 𝜕Ω), 𝜌(𝑧, 𝜕Ω))/2
𝐶|𝑥− 𝑧|−𝑁𝜌(𝑥, 𝜕Ω)𝜌(𝑧, 𝜕Ω) if |𝑥− 𝑧| > max (𝜌(𝑥, 𝜕Ω), 𝜌(𝑧, 𝜕Ω))/2.

First, note again that because Ω is bounded, the factors |𝑥− 𝑧|2−𝑁 and |𝑥− 𝑧|−𝑁

are bounded below by a positive constant independent of 𝑥, 𝑧 ∈ Ω. Therefore, if
|𝑥−𝑧| ≤ max (𝜌(𝑥, 𝜕Ω), 𝜌(𝑧, 𝜕Ω))/2, there exists a positive constant 𝐶 independent
of 𝑥, 𝑧 ∈ Ω for which 𝐺(𝑥, 𝑧) ≥ 𝐶, and because Ω is bounded, 𝐺(𝑥, 𝑧) ≥ 𝐶 ′𝜌(𝑧, 𝜕Ω).
For the case where 𝑥 ∈ Ω0 and 𝑧 ∈ Ω with |𝑥− 𝑧| > max (𝜌(𝑥, 𝜕Ω), 𝜌(𝑧, 𝜕Ω))/2,
because 𝜌(𝑥,Ω) is bounded below by a positive constant independent of 𝑥 ∈ Ω0,
we again obtain the lower bound 𝐺(𝑥, 𝑧) ≥ 𝐶 ′𝜌(𝑧, 𝜕Ω) for some positive constant
𝐶 ′. �

Remark 3.4. Lemma 3.3 is the only place in the paper that requires smoothness
of the domain Ω. If Ω is less smooth but the estimate

𝐺(𝑥, 𝑧) ≥ 𝐶𝜌2−𝜀(𝑧, 𝜕Ω), for some 𝜀 > 0,

still holds, then the main results of the paper are still true and the proofs require
only minor modifications.

4. Pointwise Error Estimates for the Green’s Functions

To derive the desired pointwise estimates for 𝐺ℎ − 𝐺 we require several error
estimates in the 𝐿∞ norm for the error 𝑢−𝑢ℎ between the solution 𝑢 of the elliptic
problem and the Ritz projection 𝑢ℎ = 𝑅ℎ𝑢 of the solution. Although we will use
the results only for the piecewise linear case (i.e. 𝑟 = 2), the results in this section
are valid for 𝑉ℎ(Ωℎ) replaced by piecewise polynomials of degree 𝑟 − 1 for 𝑟 ≥ 2.
In the results below

𝑟 =
{︂

1, 𝑟 = 2
0, 𝑟 > 2.

The first result is Theorem 5.1 from [28], which states that the error for Ω ⊂ R𝑁

smooth is almost optimal in the 𝐿∞(Ωℎ) norm.

Theorem 4.1 (Schatz-Wahlbin 1982). For ℎ sufficiently small there exists a con-
stant 𝐶 independent of ℎ such that

‖𝑢− 𝑢ℎ‖𝐿∞(Ωℎ) ≤ 𝐶ℓ𝑟ℎ inf
𝜒∈𝑉 0

ℎ (Ωℎ)
‖𝑢− 𝜒‖𝐿∞(Ωℎ),
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where ℓℎ := | lnℎ|.

The second result is Theorem 5.1 from [27], a localized version of the above
theorem on interior domains.

Theorem 4.2 (Schatz-Wahlbin 1977). Suppose 𝐷 ⊂⊂ 𝐷𝑑 ⊂⊂ Ω, where 𝐷𝑑 = {𝑥 ∈
Ω : 𝑑𝑖𝑠𝑡(𝑥,𝐷) ≤ 𝑑}, with 𝑑 ≥ 𝑐ℎ. Let 𝑡 be a nonnegative integer and let 1 ≤ 𝑝 ≤ ∞.
Then there exists a constant 𝐶 independent of ℎ and 𝑑 such that

‖𝑢− 𝑢ℎ‖𝐿∞(𝐷) ≤ 𝐶ℓ𝑟ℎ inf
𝜒∈𝑉ℎ(Ωℎ)

‖𝑢− 𝜒‖𝐿∞(𝐷𝑑) + 𝐶𝑑−𝑡−𝑁/𝑝‖𝑢− 𝑢ℎ‖𝑊−𝑡
𝑝 (𝐷𝑑),

where ℓℎ := | lnℎ|.

We will also require a version of Theorem 4.2 valid up to the boundary. To
establish this, first we will need Proposition 3.1 from [11], which is also valid for
smooth domains.

Proposition 4.3. Let 𝐷4 ⊂ 𝐷3 ⊂ 𝐷2 ⊂ 𝐷1 ⊂ 𝐷 ⊂ Ωℎ with 𝑑𝑖𝑠𝑡(𝐷𝑖, 𝜕𝐷𝑖−1 ∖
𝜕Ωℎ) ≥ 𝑑, and similarly for 𝐷1 and 𝐷. There is a constant 𝐶 such that for each
𝜒 ∈ 𝑉ℎ(𝐷) there exists an 𝜂 ∈ 𝑉 0

ℎ (𝐷1) with 𝜂 ≡ 𝜒 on 𝐷2 and

‖∇(𝜒− 𝜂)‖𝐿2(𝐷) ≤ 𝐶(‖∇𝜒‖𝐿2(𝐷∖𝐷4) + 𝑑−1‖𝜒‖𝐿2(𝐷∖𝐷4)).

The preceding three results enable us to prove the following theorem.

Theorem 4.4. Let Ω ⊂ R𝑁 , 𝑁 = 2, 3 be a smooth domain and let 𝐷 ⊂ 𝐷𝑑 ⊂ Ωℎ,
where 𝐷𝑑 = {𝑥 ∈ Ωℎ : 𝑑𝑖𝑠𝑡(𝑥,𝐷) ≤ 𝑑}. Then there exists a constant 𝐶 independent
of ℎ such that

‖𝑢− 𝑢ℎ‖𝐿∞(𝐷) ≤ 𝐶ℓ𝑟ℎ inf
𝜒∈𝑉ℎ(Ωℎ)

‖𝑢− 𝜒‖𝐿∞(𝐷𝑑) + 𝐶𝑑−𝑁/2‖𝑢− 𝑢ℎ‖𝐿2(𝐷𝑑).

Proof. The proof is an adaptation of the proof of Theorem 1 from [11]. It is sufficient
to consider the case of concentric balls 𝐵𝑚𝑑(𝑥0), 𝑚 ∈ R+, intersecting Ωℎ for 𝑥0 an
arbitrary point in 𝐷. By a covering argument (cf. [24], Thm. 5.1) the proof can
be extended to general subdomains 𝐷 ⊂ 𝐷𝑑 ⊂ Ωℎ. In what follows we will use the
abbreviation 𝑚𝐷 := 𝐵𝑚𝑑(𝑥0)∩Ωℎ and put 𝑒 := 𝑢− 𝑢ℎ. Let 𝜔 be a smooth cut-off
function with the properties 𝜔 ≡ 1 on 𝐷, supp(𝜔) ⊂ 2𝐷, and |∇𝜔| ≤ 𝐶𝑑−1. Let
𝑢̃ := 𝜔𝑢. Define 𝑢̃ℎ := 𝑅ℎ𝑢̃ to be the Ritz projection of 𝑢̃ onto 𝑉 0

ℎ (Ωℎ). Then

(10) |𝑒(𝑥0)| ≤ |(𝑢̃− 𝑢̃ℎ)(𝑥0)|+ |(𝑢̃ℎ − 𝑢ℎ)(𝑥0)|.
By Theorem 4.1 the first term on the right hand side of (10) can be estimated as

|(𝑢̃− 𝑢̃ℎ)(𝑥0)| ≤ ‖𝑢̃− 𝑢̃ℎ‖𝐿∞(Ωℎ) ≤ 𝐶ℓ𝑟ℎ‖𝑢̃‖𝐿∞(Ωℎ) ≤ 𝐶ℓ𝑟ℎ‖𝑢‖𝐿∞(2𝐷).

Let 𝜓ℎ := 𝑢̃ℎ − 𝑢ℎ. Notice that 𝜓ℎ is discrete harmonic on 𝐷; we do not consider
the properties of this function outside of 𝐷. The rest of the proof is devoted to
establishing that

|(𝑢̃ℎ − 𝑢ℎ)(𝑥0)| ≤ 𝐶(ℓ𝑟ℎ‖𝑢‖𝐿∞(2𝐷) + 𝑑−𝑁/2‖𝑢ℎ‖𝐿2(2𝐷)).

By Proposition 4.3 there exists 𝜂ℎ ∈ 𝑉 0
ℎ ( 3

4𝐷) such that 𝜂ℎ ≡ 𝜓ℎ on 1
2𝐷 and

(11) ‖∇𝜂ℎ‖𝐿2( 3
4 𝐷) ≤ 𝐶(‖∇𝜓ℎ‖𝐿2( 7

8 𝐷) + 𝑑−1‖𝜓ℎ‖𝐿2( 7
8 𝐷)).

Let 𝐺̃𝑥0 be the regularized Green’s function defined as in (8) and recall that 𝐺𝑥0
ℎ

is the Ritz projection of 𝐺̃𝑥0 onto 𝑉 0
ℎ (Ωℎ). Then,

𝜓ℎ(𝑥0) = 𝜂ℎ(𝑥0) = (𝛿𝑥0 , 𝜂ℎ)Ωℎ
= (∇𝐺̃𝑥0 ,∇𝜂ℎ)Ωℎ

= (∇𝐺𝑥0
ℎ ,∇𝜂ℎ)Ωℎ

.
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Also by Proposition 4.3, there exists 𝜁ℎ ∈ 𝑉 0
ℎ ( 1

2𝐷) such that 𝜁ℎ ≡ 𝐺𝑥0
ℎ on 1

4𝐷 and

‖∇(𝐺𝑥0
ℎ − 𝜁ℎ)‖𝐿2( 3

4 𝐷) ≤ 𝐶(‖∇𝐺𝑥0
ℎ ‖𝐿2( 7

8 𝐷∖ 1
4 𝐷) + 𝑑−1‖𝐺𝑥0

ℎ ‖𝐿2( 7
8 𝐷∖ 1

4 𝐷)).

Recalling that 𝜂ℎ is supported on 3
4𝐷 and discrete harmonic in 1

2𝐷 and using (11),
we have

(12)

𝜓ℎ(𝑥0) = (∇(𝐺𝑥0
ℎ − 𝜁ℎ),∇𝜂ℎ) 3

4 𝐷 + (∇𝜁ℎ,∇𝜂ℎ) 3
4 𝐷

= (∇(𝐺𝑥0
ℎ − 𝜁ℎ),∇𝜂ℎ) 3

4 𝐷

≤ ‖∇(𝐺𝑥0
ℎ − 𝜁ℎ)‖𝐿2( 3

4 𝐷)‖∇𝜂ℎ‖𝐿2( 3
4 𝐷)

≤ 𝐶(‖∇𝐺𝑥0
ℎ ‖𝐿2( 7

8 𝐷∖ 1
4 𝐷) + 𝑑−1‖𝐺𝑥0

ℎ ‖𝐿2( 7
8 𝐷∖ 1

4 𝐷))

× (‖∇𝜓ℎ‖𝐿2( 7
8 𝐷) + 𝑑−1‖𝜓ℎ‖𝐿2( 7

8 𝐷)).

Next we need Lemma 9.2 from [30], that says that for any discrete Harmonic func-
tion, i.e. for any 𝑣ℎ ∈ 𝑉 0

ℎ (𝐷) that satisfies (5), there holds

(13) ‖∇𝑣ℎ‖𝐿2(𝐷) ≤ 𝐶𝑑−1‖𝑣ℎ‖𝐿2(𝐷𝑑) ≤ 𝐶𝑑−2‖𝑣ℎ‖𝐻−1
< (𝐷𝑑),

where

‖𝑣ℎ‖𝐻−1
< (𝐷𝑑) = sup

𝑤∈𝐻1(Ω),
𝑤=0 on Ω∖𝐷𝑑

(𝑣ℎ, 𝑤)𝐷𝑑

‖𝑤‖𝐻1(𝐷𝑑)
.

Using that 𝜓ℎ is discrete harmonic on 𝐷, the triangle inequality, and the fact that
𝑢 = 𝑢̃ on 𝐷, we have

(14)

‖∇𝜓ℎ‖𝐿2( 7
8 𝐷) + 𝑑−1‖𝜓ℎ‖𝐿2( 7

8 𝐷) ≤ 𝐶𝑑−1‖𝜓ℎ‖𝐿2(𝐷)

≤ 𝐶𝑑−1
(︀
‖𝑢− 𝑢ℎ‖𝐿2(𝐷) + ‖𝑢̃− 𝑢̃ℎ‖𝐿2(𝐷)

)︀
≤ 𝐶𝑑−1

(︁
‖𝑒‖𝐿2(𝐷) + ℎℓ𝑟ℎ𝑑

𝑁/2‖𝑢‖𝐿∞(2𝐷)

)︁
,

where in the last step we have used Hölder’s inequality and Theorem 4.1 for ‖𝑢̃−
𝑢̃ℎ‖𝐿2(𝐷), i.e.

‖𝑢̃− 𝑢̃ℎ‖𝐿2(𝐷) ≤ 𝐶𝑑𝑁/2‖𝑢̃− 𝑢̃ℎ‖𝐿∞(𝐷) ≤ 𝐶𝑑𝑁/2ℓ𝑟ℎ‖𝑢̃‖𝐿∞(𝐷)

≤ 𝐶𝑑𝑁/2ℓ𝑟ℎ‖𝑢‖𝐿∞(2𝐷).

Now we turn to ‖∇𝐺𝑥0
ℎ ‖𝐿2( 7

8 𝐷∖ 1
4 𝐷)+𝑑−1‖𝐺𝑥0

ℎ ‖𝐿2( 7
8 𝐷∖ 1

4 𝐷). Using that𝐺𝑥0
ℎ is discrete

harmonic away from 𝑥0, from (13) we have

(15)
‖∇𝐺𝑥0

ℎ ‖𝐿2( 7
8 𝐷∖ 1

4 𝐷) + 𝑑−1‖𝐺𝑥0
ℎ ‖𝐿2( 7

8 𝐷∖ 1
4 𝐷) ≤ 𝐶𝑑−1‖𝐺𝑥0

ℎ ‖𝐿2(𝐷∖ 1
8 𝐷)

≤ 𝐶𝑑−2‖𝐺𝑥0
ℎ ‖𝐻−1

< (𝐷∖ 1
8 𝐷).

For 𝑁 = 2 we apply the first inequality in (15). By the Sobolev embedding theorem
(𝑊 1

1 →˓ 𝐿2),
‖𝐺𝑥0

ℎ ‖𝐿2(𝐷∖ 1
8 𝐷) ≤ 𝐶‖𝐺𝑥0

ℎ ‖𝑊 1
1 (𝐷∖ 1

8 𝐷).

Note that the Sobolev embedding constant appearing in the inequality above is
domain independent. To verify this, we may scale the domain 𝐷 to a unit-sized
domain 𝐷̃ by introducing a new variable 𝑦 = 𝑥/𝑑. Then it is easy to show that for
any general function 𝑉 (𝑦) = 𝑣(𝑦𝑑) we have

(16) ‖∇𝑠𝑉 ‖𝐿𝑞(𝐷̃) = 𝑑𝑠−𝑁/𝑞‖∇𝑠𝑣‖𝐿𝑞(𝐷), 𝑠 = 0, 1.



8 LEYKEKHMAN AND PRUITT

Thus if 𝐷∖ 1
8𝐷 is scaled to a subset of a fixed unit-sized annulus and 𝐺𝑥0

ℎ is extended
by zero in this annulus if 𝐷 abuts 𝜕Ω, by using (16) we can see that this constant
is indeed independent of 𝑑.

For 𝑁 = 3 we use the second inequality in (15). Then,

‖𝐺𝑥0
ℎ ‖𝐻−1

< (𝐷∖ 1
8 𝐷) = sup

𝑣∈𝐻1(Ω),

𝑣=0 on Ω∖(𝐷∖ 1
8 𝐷)

(𝐺𝑥0
ℎ , 𝑣)𝐷∖ 1

8 𝐷

‖𝑣‖𝐻1(𝐷∖ 1
8 𝐷)

.

Since by Hölder’s inequality and the Sobolev embedding 𝑊 1
1 →˓ 𝐿3/2 and 𝐻1 →˓ 𝐿6

we have

(𝐺𝑥0
ℎ , 𝑣)𝐷∖ 1

8 𝐷 ≤𝐶‖𝐺𝑥0
ℎ ‖𝐿3/2(𝐷∖ 1

8 𝐷)‖𝑣‖𝐿3(𝐷∖ 1
8 𝐷)

≤𝐶𝑑1/2‖𝐺𝑥0
ℎ ‖𝐿3/2(𝐷∖ 1

8 𝐷)‖𝑣‖𝐿6(𝐷∖ 1
8 𝐷)

≤𝐶𝑑1/2‖𝐺𝑥0
ℎ ‖𝑊 1

1 (𝐷∖ 1
8 𝐷)‖𝑣‖𝐻1(𝐷∖ 1

8 𝐷),

and as a result

(17) ‖𝐺𝑥0
ℎ ‖𝐻−1

< (𝐷∖ 1
8 𝐷) ≤ 𝐶𝑑1/2‖𝐺𝑥0

ℎ ‖𝑊 1
1 (𝐷∖ 1

8 𝐷).

Again the constant 𝐶 in the above inequality is independent of 𝑑.
By the triangle inequality and Lemma 5.3 in [28],

‖𝐺𝑥0
ℎ ‖𝑊 1

1 (𝐷∖ 1
8 𝐷) ≤ ‖𝐺

𝑥0
ℎ − 𝐺̃𝑥0‖𝑊 1

1 (Ωℎ) + ‖𝐺̃𝑥0‖𝑊 1
1 (𝐷∖ 1

8 𝐷) ≤ 𝐶ℎℓ𝑟ℎ + ‖𝐺̃𝑥0‖𝑊 1
1 (𝐷∖ 1

8 𝐷).

Since for some fixed 𝑐 > 0, we have that 𝑑𝑖𝑠𝑡(𝑥, supp(𝛿𝑥0)) ≥ 𝑐𝑑 for all 𝑥 ∈ 𝐷∖ 1
8𝐷,

we have from Lemma 3.1 that for any such 𝑥,

|∇𝐺̃𝑥0(𝑥)| =
⃒⃒⃒⃒∫︁

𝜏0

∇𝑥𝐺(𝑥, 𝑦)𝛿𝑥0(𝑦)𝑑𝑦
⃒⃒⃒⃒
≤ 𝐶𝑑1−𝑁 .

As a result,
‖𝐺̃𝑥0‖𝑊 1

1 (𝐷∖ 1
8 𝐷) ≤ 𝐶𝑑𝑁‖𝐺̃𝑥0‖𝑊 1

∞(𝐷∖ 1
8 𝐷) ≤ 𝐶𝑑.

Collecting the above estimates, we thus have that

(18) ‖∇𝐺𝑥0
ℎ ‖𝐿2( 7

8 𝐷∖ 1
4 𝐷) + 𝑑−1‖𝐺𝑥0

ℎ ‖𝐿2( 7
8 𝐷∖ 1

4 𝐷) ≤ 𝐶𝑑1−𝑁/2.

Collecting (18) and (14) into (12) yields

|𝑒(𝑥0)| ≤ 𝐶
(︁
ℓ𝑟ℎ‖𝑢‖𝐿∞(2𝐷) + 𝑑−𝑁/2‖𝑒‖𝐿2(2𝐷)

)︁
.

We complete the proof of Theorem 4.4 by inserting 𝑢− 𝜒 and 𝑢ℎ − 𝜒 for 𝑢 and 𝑢ℎ

and writing 𝐷 instead of 2𝐷. �

As an application of Theorem 4.2 and Theorem 4.4 we have the following result
for the piecewise linear case, 𝑟 = 2.

Theorem 4.5. Let 𝑥, 𝑦 ∈ Ω with |𝑥− 𝑦| ≥ 𝑑 with 𝐵𝑑(𝑥) ⊂⊂ Ω. Then there exists
a constant 𝐶 independent of ℎ, 𝑥, 𝑦 and 𝑑 such that

|𝐺𝑥
ℎ(𝑦)−𝐺𝑥(𝑦)| ≤ 𝐶ℓℎℎ

2𝑑−𝑁 , 𝑁 = 2, 3,

where ℓℎ = | lnℎ|.
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Proof. The proof follows the lecture notes of L.B. Wahlbin [31]. Since the case
𝑦 ∈ Ω∖Ωℎ is trivial, we may assume that 𝑦 ∈ Ωℎ. Let 𝐵𝑑(𝑥) ⊂⊂ Ω and 𝐺𝑥 be the
continuous Green’s function with singularity at 𝑥 and 𝐺𝑥

ℎ be the discrete Green’s
function. For any 𝑦 ∈ Ωℎ, |𝑥− 𝑦| ≥ 𝑑, by Theorem 4.4, we have

|𝐺𝑥(𝑦)−𝐺𝑥
ℎ(𝑦)| ≤ 𝐶ℓℎ inf

𝜒∈𝑉 0
ℎ (Ωℎ)

‖𝐺𝑥 − 𝜒‖𝐿∞(𝐵𝑑/4(𝑦)∩Ωℎ)

+ 𝐶𝑑−𝑁/2‖𝐺𝑥 −𝐺𝑥
ℎ‖𝐿2(𝐵𝑑/4(𝑦)∩Ωℎ).

Since 𝐺𝑥 is smooth away from the singularity we may take 𝜒 = 𝐼ℎ𝐺
𝑥. Using the

approximation theory and Green’s function estimates we obtain

‖𝐺𝑥 − 𝜒‖𝐿∞(𝐵𝑑/4(𝑦)∩Ωℎ) ≤ 𝐶ℎ2‖𝐺𝑥‖𝑊 2
∞(𝐵𝑑/4(𝑦)∩Ωℎ) ≤ 𝐶ℎ2𝑑−𝑁 .

In the last step we have used that (cf. [18])

|∇2𝐺𝑥(𝑧)| ≤ 𝐶|𝑥− 𝑧|−𝑁 ≤ 𝐶𝑑−𝑁 , ∀𝑧 ∈ 𝐵𝑑/4(𝑦) ∩ Ωℎ.

Thus we only need to estimate 𝑑−𝑁/2‖𝐺𝑥 −𝐺𝑥
ℎ‖𝐿2(𝐵𝑑/4(𝑦)∩Ωℎ). By duality

‖𝐺𝑥 −𝐺𝑥
ℎ‖𝐿2(𝐵𝑑/4(𝑦)∩Ωℎ) = sup

𝜙∈𝐶∞0 (𝐵𝑑/4(𝑦)∩Ωℎ)

‖𝜙‖
𝐿2≤1

(𝐺𝑥 −𝐺𝑥
ℎ, 𝜙)𝐵𝑑/4(𝑦)∩Ωℎ

.

For each such 𝜙, let 𝜓 solve
−∆𝜓 = 𝜙, in Ω,

𝜓 = 0, on 𝜕Ω,

and 𝜓ℎ = 𝑅ℎ𝜓. Then
(𝐺𝑥 −𝐺𝑥

ℎ, 𝜙)𝐵𝑑/4(𝑦)∩Ωℎ
= (𝐺𝑥 −𝐺𝑥

ℎ,−∆𝜓)Ω = (∇(𝐺𝑥 −𝐺𝑥
ℎ),∇𝜓)Ω

= (∇(𝐺𝑥 −𝐺𝑥
ℎ),∇(𝜓 − 𝜓ℎ))Ω

= (∇𝐺𝑥,∇(𝜓 − 𝜓ℎ))Ω
= −(∆𝐺𝑥, 𝜓 − 𝜓ℎ)Ω = 𝜓(𝑥)− 𝜓ℎ(𝑥).

Because 𝐵𝑑(𝑥) ⊂⊂ Ω, we can apply Theorem 4.2, to obtain

(19) |𝜓(𝑥)− 𝜓ℎ(𝑥)| ≤ 𝐶ℓℎ‖𝜓 − 𝜒‖𝐿∞(𝐵𝑑/4(𝑥)) + 𝐶𝑑−𝑁/2‖𝜓 − 𝜓ℎ‖𝐿2(𝐵𝑑/4(𝑥)).

By the approximation theory

‖𝜓 − 𝜒‖𝐿∞(𝐵𝑑/4(𝑥)) ≤ 𝐶ℎ2‖𝜓‖𝑊 2
∞(𝐵𝑑/4(𝑥)).

Now using the Green’s function representation and properties of the Green’s func-
tion we have for 𝑧 ∈ 𝐵𝑑/4(𝑥) that

|∇2𝜓(𝑧)| =

⃒⃒⃒⃒
⃒
∫︁

𝐵𝑑/4(𝑦)∩Ωℎ

∇2
𝑧𝐺

𝑧(𝑠)𝜙(𝑠)𝑑𝑠

⃒⃒⃒⃒
⃒

≤ 𝐶

∫︁
𝐵𝑑/4(𝑦)∩Ωℎ

|𝜙(𝑠)|
|𝑧 − 𝑠|𝑁

𝑑𝑠 ≤ 𝐶𝑑−𝑁‖𝜙‖𝐿1(𝐵𝑑/4(𝑦)∩Ω ≤ 𝐶𝑑−𝑁/2,

where we have used that 𝑑𝑖𝑠𝑡(𝐵𝑑/4(𝑦), 𝐵𝑑/4(𝑥)) ≥ 𝑑/2. Thus we conclude that

(20) ‖𝜓 − 𝜒‖𝐿∞(𝐵𝑑/4(𝑥)) ≤ 𝐶ℎ2𝑑−𝑁/2.

To estimate the term involving ‖𝜓 − 𝜓ℎ‖𝐿2(𝐵𝑑/4(𝑥)), we use a global argument. By
𝐻2 regularity,

(21) ‖𝜓−𝜓ℎ‖𝐿2(𝐵𝑑/4(𝑥)) ≤ ‖𝜓−𝜓ℎ‖𝐿2(Ω) ≤ 𝐶ℎ2‖𝜓‖𝐻2(Ω) ≤ 𝐶ℎ2‖𝜙‖𝐿2(Ω) ≤ 𝐶ℎ2.
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Combining estimates (20) and (21), we obtain

𝑑−𝑁/2‖𝐺𝑥 −𝐺𝑥
ℎ‖𝐿2(𝐵𝑑/4(𝑦)∩Ωℎ) ≤ 𝐶ℓℎℎ

2𝑑−𝑁 .

This concludes the proof of the theorem. �

4.1. On the Positivity of 𝐺ℎ in 2D for piecewise linear elements. An ex-
ample in [13] shows that on general meshes the discrete Green’s function may have
persistent negative values for all ℎ. For these meshes, both the singularity and
the node at which a negative value is obtained are both a distance 𝑂(ℎ) from the
boundary. Our next result shows that in two dimensions the values of the discrete
Green’s function for piecewise linear elements must eventually be positive if the
singularity is a distance 𝑂(1) from the boundary.

Theorem 4.6. Suppose 𝐷 ⊂⊂ Ω ⊂⊂ R2 is smooth. Then there exists ℎ0 > 0 such
that for all 0 < ℎ ≤ ℎ0, we have 𝐺𝑥0

ℎ (𝑥) > 0 for all 𝑥 ∈ 𝑖𝑛𝑡 Ωℎ and 𝑥0 ∈ 𝐷.

It is sufficient to consider the case when𝐷 = 𝐵𝑑(𝑥0) with 𝑑 ≥ 𝑐ℎ and 𝑑𝑖𝑠𝑡(𝜕𝐵𝑑, 𝜕Ω) ≥
𝑑0, for some fixed but arbitrary 𝑑0. The case of general 𝐷 ⊂⊂ Ω follows by us-
ing a covering argument. Let 𝜏0 be a triangle in 𝒯ℎ containing 𝑥0. Let 𝛿𝑥0 be a
regularized delta function supported in 𝜏0, with properties (7).

Let 𝐺̃𝑥0 be the regularized Green’s function as in (8). The first lemma shows that
near the singularity the regularized Green’s function cannot be uniformly bounded
in ℎ.

Lemma 4.7. There exists a constant 𝐶 independent of ℎ and 𝑥0 such that

( ̃︀𝐺𝑥0 , 𝛿𝑥0) ≥ 𝐶(| lnℎ|+ 1).

Proof. Using that 𝐺𝑥0(𝑥) ≥ 𝐶 |ln |𝑥− 𝑥0|| for 𝑥 sufficiently close to 𝑥0, we have

̃︀𝐺𝑥0(𝑥0) =
∫︁

𝜏0

𝐺(𝑥0, 𝑥)𝛿𝑥0(𝑥)𝑑𝑥 ≥ 𝐶(| lnℎ|+ 1).

Since ‖𝛿𝑥0‖𝐿1(𝜏0) = 1 there exists a ball 𝐵𝑐1ℎ(𝑥̄) of radius 𝑐1ℎ centered at 𝑥̄ ∈ 𝜏0
(not necessarily 𝑥̄ = 𝑥0), where 𝛿𝑥0 ≥ 𝑐2ℎ

−2, for some 𝑐1, 𝑐2 > 0. Using the
monotonicity of the logarithm and that 𝑑𝑖𝑎𝑚(𝜏0) ≤ ℎ, we have

|ln |𝑥− 𝑥0|| ≥ |ln (|𝑥− 𝑥̄|+ |𝑥̄− 𝑥0|)| ≥ |ln (|𝑥− 𝑥̄|+ ℎ)| .

Switching to polar coordinates |𝑥− 𝑥̄| = 𝜌, we obtain

( ̃︀𝐺𝑥0 , 𝛿𝑥0) ≥ 𝑐2ℎ
−2

∫︁
𝐵𝑐1ℎ(𝑥̄)

̃︀𝐺(𝑥, 𝑥0)𝑑𝑥 = 𝐶ℎ−2

∫︁ 𝑐1ℎ

0

𝜌 |ln (𝜌+ ℎ)| 𝑑𝜌 ≥ 𝐶(| lnℎ|+1).

�

The next lemma is a similar estimate for the discrete Green’s function.

Lemma 4.8. There exist a constant 𝐶 independent of ℎ and 𝑥0 and ℎ0 > 0 such
that for all ℎ ≤ ℎ0,

𝐺𝑥0
ℎ (𝑥0) ≥ 𝐶(| lnℎ|+ 1).
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Proof.

𝐺𝑥0
ℎ (𝑥0) = (𝐺𝑥0

ℎ , 𝛿𝑥0)Ωℎ
= (∇𝐺𝑥0

ℎ ,∇𝐺𝑥0
ℎ )Ωℎ

= ‖∇ ̃︀𝐺𝑥0‖2𝐿2(Ωℎ) −
(︁
‖∇ ̃︀𝐺𝑥0‖2𝐿2(Ωℎ) − ‖∇𝐺

𝑥0
ℎ ‖

2
𝐿2(Ωℎ)

)︁
= ( ̃︀𝐺𝑥0 , 𝛿𝑥0)Ω − (∇( ̃︀𝐺𝑥0 −𝐺𝑥0

ℎ ),∇( ̃︀𝐺𝑥0 +𝐺𝑥0
ℎ ))Ωℎ

= ( ̃︀𝐺𝑥0 , 𝛿𝑥0)Ω − ‖∇( ̃︀𝐺𝑥0 −𝐺𝑥0
ℎ )‖2𝐿2(Ωℎ).

From Lemma 4.7
( ̃︀𝐺𝑥0 , 𝛿𝑥0)Ω ≥ 𝐶(| lnℎ|+ 1).

On the other hand, using the best approximation properties and 𝐻2 regularity for
smooth (convex) domains we have

‖∇( ̃︀𝐺𝑥0 −𝐺𝑥0
ℎ )‖𝐿2(Ωℎ) ≤ ‖∇( ̃︀𝐺𝑥0 − 𝐼ℎ ̃︀𝐺𝑥0)‖𝐿2(Ωℎ) ≤ 𝐶ℎ‖∇2 ̃︀𝐺𝑥0‖𝐿2(Ωℎ)

≤ 𝐶ℎ‖𝛿‖𝐿2(𝜏0) ≤ 𝐶ℎℎ−1 ≤ 𝐶.

Thus for ℎ0 small enough we have the lemma. �

Lemma 4.9. There exists a constant 𝐶 independent of ℎ and 𝑥0 such that

‖∇𝐺𝑥0
ℎ ‖𝐿∞(Ωℎ) ≤ 𝐶ℎ−1.

Proof. From estimate (2.5) in [2], we have

‖∇𝐺𝑥0
ℎ ‖𝐿∞(Ωℎ) ≤ 𝐶‖∇𝐺̃𝑥0‖𝐿∞(Ωℎ) + 𝐶ℎ‖∇𝐺̃𝑥0‖𝐿∞(Ω∖Ωℎ).

Using the Green’s function representation and properties of 𝛿𝑥0 , for any 𝑧 ∈ Ω we
have

|∇𝐺̃𝑥0(𝑧)| =
⃒⃒⃒⃒∫︁

𝜏0

∇𝑧𝐺(𝑧, 𝑦)𝛿𝑥0(𝑦)𝑑𝑦
⃒⃒⃒⃒
≤ 𝐶ℎ−2

∫︁
𝜏0

𝑑𝑦

|𝑧 − 𝑦|
≤ 𝐶ℎ−2

∫︁
𝜏0

𝑑𝑦

|𝑥0 − 𝑦|
≤ 𝐶ℎ−1.

�

Now we are ready to prove Theorem 4.6.

Proof. Let 𝐾 and 𝐶𝐾 be the constants 𝐶7 and 𝐶 from estimate (6.3) in Theoreom
6.1 in [27], respectively. In addition let ℎ0 > 0 be small enough such that for all
ℎ ≤ ℎ0

𝐶𝐾 ln (𝐾| lnℎ|1/2)
𝐾2| lnℎ|

≤ 1
2

min
𝑥∈Ω

𝑑𝑖𝑠𝑡(𝑥,𝜕Ω)≥𝑑0

𝐺𝑥0(𝑥)

and
ℎ− 𝐶3ℎ

2| lnℎ| ≥ 1
2
ℎ,

where 𝐶3 is the constant from Theorem 4.5. We now consider several cases.
Case 1. |𝑥 − 𝑥0| ≤ 𝐾ℎ| lnℎ|1/2. Then 𝐺𝑥0

ℎ (𝑥) > 0 in view of Lemmas 4.8 and
4.9 since a discrete function can not go from negative values to positive values of
order | lnℎ| in 𝐾| lnℎ|1/2 many steps of size one.

Case 2. 𝐾ℎ| lnℎ|1/2 ≤ |𝑥 − 𝑥0| and 𝑑𝑖𝑠𝑡(𝑥, 𝜕Ω) ≥ 𝑑0. For this case we use
Theorem 6.1 from [27] for 𝑟 = 2, which states that for 𝑥, 𝑦 ∈ Ω0, where Ω0 ⊂⊂ Ω
and |𝑥− 𝑦| ≥ 𝐾ℎ, there holds

(22) |𝐺𝑥(𝑦)−𝐺𝑥
ℎ(𝑦)| ≤ 𝐶𝐾ℎ

2

|𝑥− 𝑦|2
ln

(︂
|𝑥− 𝑦|
ℎ

)︂
.
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Adopting the notation 𝑤 = |𝑥−𝑥0|/ℎ, the upper bound from (22) becomes 𝐶𝐾 ln 𝑤
𝑤2 .

Because 𝐾ℎ| lnℎ|1/2 ≤ |𝑥 − 𝑥0|, we must have 𝑤 ≥ 𝐾| lnℎ|1/2. For ℎ sufficiently
small, the maximum of 𝐶𝐾 ln 𝑤

𝑤2 on the interval 𝑤 ≥ 𝐾| lnℎ|1/2 occurs at the left
endpoint. Therefore, we have that

|𝐺𝑥0(𝑥)−𝐺𝑥0
ℎ (𝑥)| ≤ 𝐶𝐾ℎ

2

(𝐾ℎ| lnℎ|1/2)2
ln (𝐾| lnℎ|1/2) =

𝐶𝐾 ln (𝐾| lnℎ|1/2)
𝐾2| lnℎ|

.

Thus in this case in view of the choice of ℎ0,

𝐺𝑥0
ℎ (𝑥) = 𝐺𝑥0(𝑥)− (𝐺𝑥0(𝑥)−𝐺𝑥0

ℎ (𝑥)) ≥ 1
2
𝐺𝑥0(𝑥) > 0.

Case 3. 𝑑𝑖𝑠𝑡(𝑥, 𝜕Ω) ≤ 𝑑0 . Let 𝑥𝑗 be any interior node such that 𝑑𝑖𝑠𝑡(𝑥𝑗 , 𝜕Ω) ≤
𝑑0. Since in this case |𝑥𝑗 − 𝑥0| = 𝑂(1), we have by Theorem 4.5

𝐺𝑥0
ℎ (𝑥𝑗) = 𝐺𝑥0(𝑥𝑗)− (𝐺𝑥0(𝑥𝑗)−𝐺𝑥0

ℎ (𝑥𝑗)) ≥ 𝐶ℎ− 𝐶3ℎ
2| lnℎ| ≥ ̃︀𝐶ℎ.

The estimate 𝐺𝑥0(𝑥𝑗) ≥ 𝐶ℎ in the second to last step above follows from Lemma
3.3 (and the symmetry of the Green’s function), as all interior nodes are a distance
of at least 𝑂(ℎ) from the boundary. Combining all three cases and interpolating
between nodes we have a proof of Theorem 4.6. �

Remark 4.10. The order of the polynomials plays no role in the proofs of Lemmas
4.7-4.9, and cases 1 and 2 in the proof of Theorem 4.6. Thus, 𝐺𝑥0

ℎ (𝑥) > 0 as ℎ→ 0
for polynomials of all orders at nodes away from the boundary. The proof only relies
on the fact that the discrete Green’s function is of order | lnℎ| at the singularity but
its derivatives are of order ℎ−1 at most. This discrepancy does not hold in three or
higher dimensions. It would be interesting to see if a similar result holds in higher
dimensions.

Remark 4.11. The above result can be thought of as some kind of an asymp-
totic interior maximum principle in 2D, although positivity of the discrete Green’s
function alone should not be enough to guarantee a maximum principle without an
assumption on the boundary stiffness matrix 𝐻, defined in the next section.

5. Discrete Harnack Inequality

In this section, we prove a discrete form of the Harnack inequality for piecewise
linear finite elements in two and three dimensions under the hypothesis that the
mesh is well-behaved near the boundary. We must first adopt a representation for
discrete harmonic functions using the discrete Green’s function.

Let 𝑢ℎ be a discrete harmonic function (i.e. 𝑢ℎ solves (2)). We may expand 𝑢ℎ

in the nodal basis as

𝑢ℎ(𝑥) =
𝑛∑︁

𝑖=1

𝛼𝑖𝜑𝑖(𝑥) +
𝑛+𝑚∑︁

𝑗=𝑛+1

𝛼𝑗𝜑𝑗(𝑥),

where the first sum is over the interior nodes and the second sum is over the
boundary nodes.

The solution to the problem may then be represented in matrix form by

𝑈 = −𝐴−1𝐻𝐵.

Here 𝑈 represents the solution 𝑢ℎ at the interior nodes, with

𝑈 = (𝑢ℎ(𝑥1), . . . , 𝑢ℎ(𝑥𝑛))⊤ ∈ R𝑛.
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The matrix 𝐴 ∈ R𝑛×𝑛 is the (interior) stiffness matrix, with entries given by
𝐴𝑖𝑗 = (∇𝜑𝑖,∇𝜑𝑗)Ωℎ

for 𝑖, 𝑗 ∈ {1, . . . , 𝑛}. The matrix 𝐻 ∈ R𝑛×𝑚 is the bound-
ary stiffness matrix, with entries given by 𝐻𝑗𝑘 = (∇𝜑𝑗 ,∇𝜑𝑘)Ωℎ

for 𝑗 ∈ {1, . . . , 𝑛}
and 𝑘 ∈ {𝑛+ 1, . . . , 𝑛+𝑚}. The vector 𝐵 contains the boundary data, with
𝐵 = (𝑏(𝑥𝑛+1), . . . , 𝑏(𝑥𝑛+𝑚))⊤ ∈ R𝑚.

By reinterpreting the matrix multiplication as a sum, we have the representation

𝑢ℎ(𝑥𝑖) = −
𝑛∑︁

𝑗=1

𝑚∑︁
𝑘=1

𝐴−1
𝑖𝑗 𝐻𝑗𝑘𝐵𝑘.(23)

We also have that 𝐴−1
𝑖𝑗 = 𝐺ℎ(𝑥𝑗 , 𝑥𝑖), because the value of the discrete Green’s

function at an interior node is given by the corresponding entry of the inverse
stiffness matrix. Note that, by the symmetry of the stiffness matrix, the discrete
Green’s function is symmetric at the nodes. For more detail on this representation,
see, for instance, [13].

Let 𝑁̃(𝑥𝑘) denote the set of all neighboring nodes to 𝑥𝑘, i.e. the set of all other
nodes that are vertices of a triangle of which 𝑥𝑘 is itself a vertex. Using the small
support of the nodal basis functions, we can rearrange and rewrite the sum in (23)
as

𝑢ℎ(𝑥𝑖) = −
𝑛+𝑚∑︁

𝑘=𝑛+1

∑︁
𝑥𝑗∈𝑁̃(𝑥𝑘)

𝐺ℎ(𝑥𝑗 , 𝑥𝑖) (∇𝜑𝑗 ,∇𝜑𝑘)Ωℎ
𝑏(𝑥𝑘).(24)

To derive the discrete Harnack inequality, we make the following assumption on
the boundary stiffness matrix 𝐻:

Assumption 5.1. For every triangulation in {𝒯ℎ}, the associated boundary stiff-
ness matrix 𝐻 must satisfy 𝐻 ≤ 0, i.e. (∇𝜑𝑖,∇𝜑𝑗)Ωℎ

≤ 0 for all 𝑖 ∈ {1, . . . , 𝑛}
and 𝑗 ∈ {𝑛+ 1, . . . , 𝑛+𝑚}.

Remark 5.2. This assumption can be (loosely) interpreted as requiring that the
mesh be able to approximate the normal derivative of the continuous Green’s func-
tion properly. This assumption implies the maximum principle if the discrete
Green’s function is known to be nonnegative. In two dimensions, this is equiva-
lent to the following edge condition: for every edge in the triangulation with one
node on the boundary of Ω and one node in the interior of Ω, the sum of the angles
opposite the edge is at most 𝜋. For more detail, and the relationship between this
condition and the discrete maximum principle, see [13], where an explicit example
is constructed that produces negative values of the discrete Green’s function for all
ℎ > 0 when this condition is violated.

As a consequence of Theorem 4.5, we obtain the following comparison between
the discrete Green’s function and the continuous Green’s function.

Lemma 5.3. Suppose Ω0 ⊂⊂ Ω1 ⊂⊂ Ω . Then there exist ℎ0 > 0 and a constant
𝐶* such that for all 0 < ℎ ≤ ℎ0, if 𝑥 ∈ Ω0 and 𝑧 ∈ Ω∖Ω1, the estimate

|𝐺(𝑥, 𝑧)−𝐺ℎ(𝑥, 𝑧)| ≤ 𝐶*ℎ
2| lnℎ|

holds.

From this result, we obtain a Harnack-type inequality for the discrete Green’s
function.
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Lemma 5.4. Suppose Ω0 ⊂⊂ Ω. Let 0 < 𝑐1 < 𝑐2 be positive constants. Then there
exist ℎ0 > 0 and a constant 𝐶 > 0 independent of ℎ such that, for all 0 < ℎ ≤ ℎ0

and for all 𝑥, 𝑦 ∈ Ω0 and all 𝑧 ∈ Ω with 𝑐1ℎ ≤ 𝑑𝑖𝑠𝑡(𝑧, 𝜕Ω) ≤ 𝑐2ℎ, we have

𝐺𝑧
ℎ(𝑥) ≥ 𝐶𝐺𝑧

ℎ(𝑦).

Proof. For ℎ sufficiently small, by the smoothness of the boundary of Ω and the
shape regularity and quasi-uniformity of {𝒯ℎ}, we have that there exist constants
𝑐′1 and 𝑐′2, independent of ℎ, such that 𝑧 ∈ Ωℎ and 𝑐1ℎ ≤ 𝑑𝑖𝑠𝑡(𝑧, 𝜕Ωℎ) ≤ 𝑐2ℎ implies
𝑧 ∈ Ω and 𝑐′1ℎ ≤ 𝑑𝑖𝑠𝑡(𝑧, 𝜕Ω) ≤ 𝑐′2ℎ.

Let 𝑐3 be the constant 𝐶 in Lemma 3.3, and let ℎ0 > 0 be so small that the
conclusion of Lemma 5.3 holds, and such that 𝐶*ℎ2| lnℎ| ≤ 𝑐3ℎ/2 for all 0 < ℎ ≤
ℎ0. Because 𝐺𝑧(𝑥) is a harmonic function in 𝑥 away from the singularity at 𝑧,
by the Harnack inequality for harmonic functions there exists 𝐶0 > 0 such that
𝐺𝑧(𝑥) ≥ 𝐶0𝐺

𝑧(𝑦) for all 𝑥, 𝑦 ∈ Ω0.
Then if 0 < ℎ ≤ ℎ0, for arbitrary 𝑥 ∈ Ω0 and 𝑧 satisfying 𝑐1ℎ ≤ 𝑑𝑖𝑠𝑡(𝑧, 𝜕Ω) ≤

𝑐2ℎ, by Lemma 5.3 we have

−𝐶*ℎ2| lnℎ|+𝐺(𝑥, 𝑧) ≤ 𝐺ℎ(𝑥, 𝑧) ≤ 𝐺(𝑥, 𝑧) + 𝐶*ℎ
2| lnℎ|.

Because 𝐶*ℎ2| lnℎ| ≤ 𝑐3ℎ/2 ≤ 𝐺(𝑥, 𝑧)/2, we obtain

1
2
𝐺(𝑥, 𝑧) ≤ 𝐺ℎ(𝑥, 𝑧) ≤ 2𝐺(𝑥, 𝑧)(25)

Using the classical Harnack inequality for the continuous Green’s function away
from the singularity, we have

𝐺ℎ(𝑥, 𝑧) ≥ 1
2
𝐺(𝑥, 𝑧) ≥ 𝐶0

2
𝐺(𝑦, 𝑧) ≥ 𝐶0

4
𝐺ℎ(𝑦, 𝑧),(26)

where 𝐶0 is independent of ℎ sufficiently small. �

Combining the representation in (24), the assumption that the boundary stiffness
matrix satisfies 𝐻 ≤ 0, and the Harnack-type inequality for the discrete Green’s
function in Lemma 5.4, we obtain the nodal Harnack inequality for discrete har-
monic functions.

Theorem 5.5. Suppose Ω0 ⊂⊂ Ω. Then there exists ℎ0 > 0 and a constant 𝐶 > 0
such that for all 0 < ℎ ≤ ℎ0, and for all discrete harmonic functions 𝑢ℎ satisfying
𝑢ℎ(𝑥) ≥ 0 for 𝑥 ∈ 𝜕Ω, and for all nodes 𝑥*, 𝑦* ∈ Ω0, we have

𝑢ℎ(𝑥*) ≥ 𝐶𝑢ℎ(𝑦*).(27)

Proof. By the shape regularity and quasi-uniformity of {𝒯ℎ}, and the smoothness
of 𝜕Ω, there exist positive constants 𝑐1 and 𝑐2, independent of 𝑥𝑘, 𝑥𝑗 and ℎ for ℎ
sufficiently small, so that for all nodes 𝑥𝑘 ∈ 𝜕Ωℎ and for all nodes 𝑥𝑗 ∈ 𝑁̃(𝑥𝑘), we
have 𝑐1ℎ ≤ 𝑑𝑖𝑠𝑡(𝑥𝑗 , 𝜕Ω) ≤ 𝑐2ℎ.

Therefore, by Lemma 5.4 and the symmetry of 𝐺ℎ, for all nodes 𝑥*, 𝑦* ∈ Ω0, we
have
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𝑢ℎ(𝑥*) =
𝑛+𝑚∑︁

𝑘=𝑛+1

∑︁
𝑥𝑗∈𝑁̃(𝑥𝑘)

𝐺ℎ(𝑥𝑗 , 𝑥*)
(︁
− (∇𝜑𝑗 ,∇𝜑𝑘)Ωℎ

)︁
𝑏(𝑥𝑘)

=
𝑛+𝑚∑︁

𝑘=𝑛+1

∑︁
𝑥𝑗∈𝑁̃(𝑥𝑘)

𝐺ℎ(𝑥*, 𝑥𝑗)
(︁
− (∇𝜑𝑗 ,∇𝜑𝑘)Ωℎ

)︁
𝑏(𝑥𝑘)

≥ 𝐶

𝑛+𝑚∑︁
𝑘=𝑛+1

∑︁
𝑥𝑗∈𝑁̃(𝑥𝑘)

𝐺ℎ(𝑦*, 𝑥𝑗)
(︁
− (∇𝜑𝑗 ,∇𝜑𝑘)Ωℎ

)︁
𝑏(𝑥𝑘)

≥ 𝐶

𝑛+𝑚∑︁
𝑘=𝑛+1

∑︁
𝑥𝑗∈𝑁̃(𝑥𝑘)

𝐺ℎ(𝑥𝑗 , 𝑦*)
(︁
− (∇𝜑𝑗 ,∇𝜑𝑘)Ωℎ

)︁
𝑏(𝑥𝑘)

≥ 𝐶𝑢ℎ(𝑦*).

�

As a corollary, by interpolating at nodal points we obtain a Harnack inequality
for piecewise linear finite elements valid for all points in Ω.

Theorem 5.6. Suppose Ω0 ⊂⊂ Ω1 ⊂⊂ Ω. Then there exists ℎ0 > 0 and a constant
𝐶 > 0, depending on Ω0, Ω1, such that for all 0 < ℎ ≤ ℎ0 and for all discrete
harmonic functions 𝑢ℎ satisfying 𝑢ℎ(𝑥) ≥ 0 for 𝑥 ∈ 𝜕Ω, and for all 𝑥, 𝑦 ∈ Ω0, we
have

𝑢ℎ(𝑥) ≥ 𝐶𝑢ℎ(𝑦).(28)

6. Numerical Results

In this section we provide some numerical examples concerning the positivity
of the discrete Green’s function. Since we only look at the values of the Green’s
functions in the interior of the domain, which corresponds to the cases 1 and 2 in
the proof of Theorem 4.6, the smoothness of Ω is not required and we restrict our
numerical examples to polygonal domains. These examples show that one cannot
remove the asymptotic nature of Theorem 4.6, due to the fact that the discrete
Green’s function obtains negative values in the interior of the domain if the mesh
is not sufficiently refined.

We let the domain Ω under consideration be a thin rhombus in the plane with
vertices at (−1, 0), (1, 0), (0, tan 𝜋

40 ) and (0,− tan 𝜋
40 ), and let Ω0 ⊂⊂ Ω be a smaller

rhombus with vertices at (− 1
2 , 0), ( 1

2 , 0), (0, 1
2 tan 𝜋

40 ), (0,− 1
2 tan 𝜋

40 ). The smaller
angle of each rhombus is then 𝜋

20 . We triangulate Ω by dividing each side into 2𝑝

segments of equal length, and use these to subdivide Ω into 22𝑝 smaller congruent
rhombuses. We then split each of these smaller rhombuses along either the main or
smaller diagonal. We will consider four different triangulations constructed in this
fashion. In the figures, we depict these meshes for the subdivision of each side of
the original rhombus into eight segments. The first (Mesh 1), depicted in Figure
1 (left), is obtained by dividing all of the rhombuses along their smaller diagonal.
Note that this triangulation is a Delaunay triangulation, unlike the other three
types of meshes under consideration. The second (Mesh 2), depicted in Figure 1
(right), is obtained by dividing half the layers of rhombuses along each diagonal,
with the inner layers along the main diagonal, and the outer layers along the smaller
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diagonal. The third (Mesh 3), depicted in Figure 2 (left), is obtained by dividing
only the outermost layer along the smaller diagonal, but all of the inner layers along
the main diagonal. The fourth (Mesh 4), depicted in Figure 2 (right), is obtained
by dividing all of the layers along the main diagonal. Note that the small angle of
the rhombus is exaggerated for visual clarity.

Mesh 1 Mesh 2

Figure 1. Mesh 1 with all layers divided along the smaller diag-
onal and Mesh 2 with outer layers divided along the smaller diag-
onal

Mesh 3 Mesh 4

Figure 2. Mesh 3 with one outer layer divided along the smaller
diagonal and Mesh 4 with all layers divided along the main diagonal

For computational convenience, we place the singularity of the discrete Green’s
function at the origin; similar results hold for other placements of the singularity
within Ω0. Table 1 depicts min

𝑥∈Ω0
𝐺ℎ(𝑥,0) for the number of nodes placed along each

side of Ω. (We have taken the number of nodes along each side to be one more than
a power of two, so that the number of segments on each side is a power of two.)
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Table 1. min
𝑥∈Ω0

𝐺ℎ(𝑥,0) for each mesh

Degrees of freedom Mesh 1 Mesh 2 Mesh 3 Mesh 4
52 3.173e-05 -1.808e-03 -1.808e-03 4.559e-03
92 4.084e-06 4.445e-04 -7.326e-03 1.678e-03
172 8.626e-07 -2.020e-03 -5.455e-03 -1.642e-03
332 4.126e-07 -2.542e-03 -3.940e-03 -2.451e-03
652 3.247e-07 -2.407e-03 -2.945e-03 -2.386e-03
1292 3.043e-07 -1.071e-03 -9.773e-04 -1.067e-03
2572 2.993e-07 -9.374e-06 1.584e-08 -9.347e-06
5132 2.980e-07 1.200e-07 1.989e-07 1.201e-07
10252 2.977e-07 2.483e-07 2.709e-07 2.483e-07
20492 2.976e-07 2.850e-07 2.907e-07 2.850e-07
40972 2.976e-07 2.944e-07 2.959e-07 2.944e-07

Because Mesh 1 is Delaunay, the discrete Green’s function is non-negative regard-
less of the size of ℎ. For the three non-Delaunay meshes, for large ℎ, the discrete
Green’s function with singularity at 0 may assume negative values for 𝑥 ∈ Ω0,
but upon refining the mesh, the discrete Green’s function with singularity in Ω0

becomes non-negative for all 𝑥 ∈ Ω0.

7. Conclusion and open problems

In this paper we have established some sharp pointwise discrete Green’s func-
tion estimates. In particular, we showed in two space dimensions on a smooth
that the discrete Green’s function on any quasi-unform shape-regular mesh is non-
negative if the singularity is in the interior and the mesh is sufficiently refined.
As a consequence of the discrete Green’s function estimate, we establish a dis-
crete Harnack inequality for discrete Harmonic functions under some rather mild
mesh restrictions. There are a number of related open questions that have not
yet been addressed. These include, for instance, the qualitative behavior of the
discrete Green’s function, particularly in dimensions higher than two. Does The-
orem 4.6 hold for the discrete Green’s function in higher dimensions, or can the
discrete Green’s function obtain persistent negative values even if the singularity is
far from the boundary? Another direction for investigation may include the exten-
sion of the Harnack inequality to the inhomogeneous case and to parabolic or more
general elliptic equations on non-smooth domains.
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