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Abstract

The aim of this paper is to investigate commutative properties of a large family of discontinuous
Galerkin (DG) methods applied to optimal control problems governed by the advection-diffusion equa-
tions. To compute numerical solutions of PDE constrained optimal control problems there are two main
approaches: optimize-then-discretize and discretize-then-optimize. These two approaches do not always
coincide and may lead to substantially different numerical solutions. The methods for which these two
approaches do coincide we call commutative. In the theory of single equations, there is a related notion of
adjoint or dual consistency. In this paper we classify DG methods both in primary and mixed forms and
derive necessary conditions that can be used to develop new commutative methods. Numerical examples
reveal that in the context of PDE constrained optimal control problems a special care needs to be taken to
compute the solutions. For example, choosing non-commutative methods and discretize-then-optimize
approach may result in a badly behaved numerical solution.
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1 Introduction

We start our investigation of commutative properties of discontinuous Galerkin methods in contents of the
following model problem:

min
1
2

∫︁
Ω

(𝑦(𝑥)− ̂︀𝑦(𝑥))2𝑑𝑥+
𝛼

2

∫︁
Ω
𝑢2(𝑥)𝑑𝑥 (1.1)
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subject to second order advection-diffusion equation

∇ · (−𝜀∇𝑦(𝑥) + 𝛽(𝑥)𝑦(𝑥)) + 𝑟(𝑥)𝑦(𝑥) = 𝑓(𝑥) + 𝑢(𝑥), 𝑥 ∈ Ω, (1.2a)

𝑦(𝑥) = 𝑔𝐷(𝑥), 𝑥 ∈ Γ𝐷, (1.2b)

𝜀
𝜕

𝜕n
𝑦(𝑥) = 𝑔𝑁 (𝑥), 𝑥 ∈ Γ𝑁 . (1.2c)

Here Γ𝐷 ̸= ∅ is the Dirichlet and Γ𝑁 is the Neumann part of the boundary, such that Γ = Γ𝐷 ∪ Γ𝑁 and
Γ𝐷 ∩ Γ𝑁 = ∅; 𝛽, 𝑓, 𝑔𝐷, 𝑔𝑁 , 𝑟, ̂︀𝑦 are given functions, 𝜀 > 0, 𝛼 > 0 are given scalars, and n denotes the
outward unit normal. Assumptions on these data that ensure that the problem is well-posed will be given in
the next section.

For the numerical solution of the optimal control problems basically there are two approaches. In the
optimize-then-discretize approach, one first derives the optimality conditions for (1.1)-(1.2) and then dis-
cretizes the resulting system. In the discretize-then-optimize approach, one first discretizes (1.1) and (1.2)
and then solves the finite dimensional optimization problem. These two approaches do not always coincide
even for our simple model problem and may lead to substantially different numerical solutions. This point
was first illustrated in [15] for the streamline-diffusion method (SUPG). This result inspired interest for the
search of commutative stabilization methods. First such method was analyzed in [5]. Later the ideas of this
paper were generalized to optimal control problems constrained by Oseen equation [7].

PDE constrained opti-
mal control problem

discretize -
Discrete optimization (linear-
quadratic programming) prob-
lem

optimize

?

optimize

?

Optimality conditions
(system of PDEs)

discretize - same result?

Discontinuous Galerkin (DG) methods are attractive alternatives to other stabilized methods to solve
advection-diffusion-reaction equations [2, 8, 12, 13, 18, 19, 23, 24, 31]. They provide greater flexibility to
locally adapt the mesh or the polynomial degree of the basis functions which implies better ability to capture
fine scales of the solution. The way DG methods treat Dirichlet boundary conditions has also positive effect
on local error estimates (cf. [25]). Presently, there exist many DG methods for advection-diffusion problems
and their number is constantly growing. Instead of checking the commutativity property for each individual
method, following ideas of [9], we analyze a large family of existing DG methods and classify them. In
addition we also provide conditions the new DG methods need to satisfy in order to be commutative.

Numerical results show that controls computed by non-commutative DG methods and discretize-then-
optimize approach may have very low order of convergence in 𝐿2 norm and not converge at all in 𝐻1 norm.
The quality of the solutions suffers as well. This is alarming since discretize-then-optimize approach is
very popular in practice. It seems very natural to discretize the continuous problem and use available tools
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to solve the resulting linear-quadratic programming problem. Therefore we believe that the commutative
property is desirable and at least for in the case of a simple model problem, a ”good” method should be
independent of the approach one takes.

Also, we would like to mention that there is a high interest in dual or adjoint consistent DG method in
the case of a single equation. Such methods have better convergence rates in the 𝐿2 norm and allow double
order of convergence in adaptivity for certain functional of interest [21, 28, 29]. In principle, for our simple
model problem we could use the definition of adjoint consistency to investigate the commutative properties.
However, for the PDE constrained optimal control problems in addition to the state and adjoint equations,
one needs to look at the gradient equation as well. The role of this gradient equation is more subtle for
nonlinear problems. Therefore we decided to use the analysis based on the minimization of the Lagrangian
functional since it can be naturally extended to more complicated problems.

The rest of the paper is organized as follows. In Section 2, we introduce the notation and state the
optimality conditions. In Section 3, first we describe the discontinuous Galerkin methods and then derive
commutativity conditions when the state equation is just a Laplace equation, both in primal and mixed forms.
We conclude this section with the commutativity conditions for a full advection-diffusion state problem. In
Section 4 we provide error analysis for the optimal control problem for some DG methods in the energy
and 𝐿2 norms. Finally, in Section 5 we provide some numerical results that illustrate the dangers of using
non-commutative methods and the discretize-then-optimize approach.

2 Optimal Control Problem and Optimality Conditions

In this section we collect some results on the existence, uniqueness and characterization of solutions of the
optimal control problem (1.1), (1.2). We define the state and control spaces as

𝑌 =
{︀
𝑦 ∈ 𝐻1(Ω) : 𝑦 = 𝑔𝐷 on Γ𝐷

}︀
, 𝑈 = 𝐿2(Ω) (2.1a)

and the space of test functions as

𝑉 =
{︀
𝑣 ∈ 𝐻1(Ω) : 𝑣 = 0 on Γ𝐷

}︀
. (2.1b)

We also use the following inner product and (semi-)norms. Let 𝐷 ⊂ Ω. For any 𝑘 > 0 and multi-index 𝛼
we define

(𝑓, 𝑔)𝐷 =
∫︁

𝐷
𝑓𝑔, ‖𝑓‖2𝐷 =

∫︁
𝐷
𝑓2,

|𝑓 |2𝑘,𝐷 =
∑︁
|𝛼|=𝑘

∫︁
𝐷
|𝐷𝛼𝑓 |2, ‖𝑓‖2𝑘,𝐷 =

∑︁
|𝛼|≤𝑘

∫︁
𝐷
|𝐷𝛼𝑓 |2.

If 𝐷 = Ω, we will drop the subscripts.
The weak form of the state equation (1.2) is given by

𝑎(𝑦, 𝑣) + 𝑏(𝑢, 𝑣) = (𝑓, 𝑣) + ⟨𝑔𝑁 , 𝑣⟩Γ𝑁
, ∀𝑣 ∈ 𝑉, (2.2a)



4 D. LEYKEKHMAN

where

𝑎(𝑦, 𝑣) =
∫︁

Ω
𝜀∇𝑦(𝑥) · ∇𝑣(𝑥) +∇ · (𝛽(𝑥)𝑦(𝑥))𝑣(𝑥) + 𝑟(𝑥)𝑦(𝑥)𝑣(𝑥)𝑑𝑥, (2.2b)

𝑏(𝑢, 𝑣) = −
∫︁

Ω
𝑢(𝑥)𝑣(𝑥)𝑑𝑥, (2.2c)

⟨𝑔𝑁 , 𝑣⟩Γ𝑁
=

∫︁
Γ𝑁

𝑔𝑁 (𝑥)𝑣(𝑥)𝑑𝑥. (2.2d)

We are interested in the solution of the optimal control problem

minimize
{𝑦, 𝑢} ∈ 𝑌 × 𝑈

1
2
‖𝑦 − ̂︀𝑦‖2 +

𝛼

2
‖𝑢‖2, (2.3a)

subject to 𝑎(𝑦, 𝑣) + 𝑏(𝑢, 𝑣) = (𝑓, 𝑣) + ⟨𝑔𝑁 , 𝑣⟩Γ𝑁
, ∀𝑣 ∈ 𝑉. (2.3b)

We assume that

𝑓, ̂︀𝑦 ∈ 𝐿2(Ω),𝛽 ∈𝑊 1,∞(Ω)2, 𝑟 ∈ 𝐿∞(Ω), 𝑔𝐷 ∈ 𝐻3/2(Γ𝐷), 𝑔𝑁 ∈ 𝐻1/2(Γ𝑁 ), 𝛼 > 0, 𝜀 > 0, (2.4)

Γ𝐷 ̸= ∅ is the Dirichlet and Γ𝑁 is the Neumann part of the boundary, such that Γ = Γ𝐷 ∪ Γ𝑁 and Γ𝐷 ∩
Γ𝑁 = ∅.

Under the above assumptions, the bilinear form 𝑎(·, ·) is continuous on 𝑉 ×𝑉 and 𝑉 -elliptic. Hence the
theory in [26, Sec. II.1] guarantees the existence of a unique solution (𝑦, 𝑢) ∈ 𝑌 × 𝑈 of (2.3). The theory
in [26, Sec. II.1] also provides necessary and sufficient optimality conditions, which can be best described
using the Lagrangian functional

𝐿(𝑦, 𝑢, 𝜆) =
1
2
‖𝑦 − ̂︀𝑦‖2 +

𝛼

2
‖𝑢‖2 + 𝑎(𝑦, 𝜆) + 𝑏(𝑢, 𝜆)− (𝑓, 𝜆)− ⟨𝑔𝑁 , 𝜆⟩Γ𝑁

. (2.5)

The necessary and, for our model problem, sufficient optimality conditions can be obtained by setting the
partial Fréchet-derivatives of (2.5) with respect to the state 𝑦, control 𝑢, and adjoint 𝜆 equal to zero. Accom-
plishing it we obtain, the adjoint equation

𝜕𝐿

𝜕𝑦
𝜓 = 𝑎(𝜓, 𝜆) + (𝑦 − 𝑦, 𝜓) = 0, ∀𝜓 ∈ 𝑉, (2.6a)

the gradient equation

𝜕𝐿

𝜕𝑢
𝑤 = 𝑏(𝑤, 𝜆) + 𝛼(𝑢,𝑤) = 0, ∀𝑤 ∈ 𝑈, (2.6b)

and the state equation

𝜕𝐿

𝜕𝜆
𝑣 = 𝑎(𝑦, 𝑣) + 𝑏(𝑢, 𝑣)− (𝑓, 𝑣) + ⟨𝑔, 𝑣⟩Γ𝑁

= 0, ∀𝑣 ∈ 𝑉. (2.6c)
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Notice that the adjoint equation (2.6a) is also an advection-diffusion equation, with the strong form

∇ · (−𝜀∇𝜆(𝑥)− 𝛽(𝑥)𝜆(𝑥)) + (𝑟(𝑥) +∇ · 𝛽(𝑥))𝜆(𝑥) = −(𝑦(𝑥)− 𝑦(𝑥)), 𝑥 ∈ Ω, (2.7a)

𝜆(𝑥) = 0, 𝑥 ∈ Γ𝐷, (2.7b)

𝜀
𝜕

𝜕n
𝜆(𝑥) + 𝛽(𝑥) · n(𝑥) 𝜆(𝑥) = 0, 𝑥 ∈ Γ𝑁 . (2.7c)

In contrast to the state equation, in the adjoint equation the advection field is −𝛽, the reaction term is
𝑟 +∇ · 𝛽, zero Dirichlet boundary condition on Γ𝐷, and zero mixed type boundary condition on Γ𝑁 .

3 Discontinuous Galerkin Discretization

To set the DG framework we will need some notation. Let 𝑇 = {𝑇ℎ}ℎ be a family of conforming triangu-
lations such that Ω = ∪𝜏∈𝑇ℎ

𝜏 , 𝜏𝑖 ∩ 𝜏𝑗 = ∅ for 𝜏𝑖, 𝜏𝑗 ∈ 𝑇ℎ, 𝑖 ̸= 𝑗. We set max𝜏∈𝑇ℎ
diam(𝜏) = h. The

assumption that the triangulations are conforming can be relaxed in the formulation of the discontinuous
Galerkin discretization.

Define ℰ0
ℎ to be a set of interior edges of 𝑇ℎ and ℰ𝜕

ℎ to be a collection of the boundary edges. Hence
the set of all edges is given by ℰℎ = ℰ𝜕

ℎ ∪ ℰ0
ℎ . We further decompose the boundary edges into ℰ𝜕

ℎ =
ℰ+

ℎ ∪ ℰ−ℎ , where ℰ−ℎ
def=
{︀
𝑒 ∈ ℰ𝜕

ℎ : 𝑒 ⊂ {𝑥 ∈ 𝜕Ω : 𝛽(𝑥) · n(𝑥) < 0}
}︀

and ℰ+
ℎ

def= ℰ𝜕
ℎ ∖ ℰ

−
ℎ are the sets

of edges that corresponding to inflow and outflow parts of the boundary, respectively. For a given ele-
ment 𝜏 ∈ 𝑇ℎ, we decompose its boundary 𝜕𝜏 into to inflow and outflow parts of the element boundary,
𝜕−𝜏

def= {𝑥 ∈ 𝜕𝜏 : 𝛽(𝑥) · n𝜏 (𝑥) < 0} and 𝜕+𝜏
def= {𝑥 ∈ 𝜕𝜏 : 𝛽(𝑥) · n𝜏 (𝑥) ≥ 0}, where n𝜏 denotes the

unit outward normal to 𝜏 .
Let 𝜏1 and 𝜏2 be two neighboring elements and let n1 and n2 be outward normal vectors at the boundary

of elements 𝜏1 and 𝜏2 respectively. Let 𝜑𝑖 and 𝜙𝑖 be the restrictions to 𝜏𝑖, 𝑖 = 1, 2 respectively. We define
the standard jump averages on the set of interior edges by

{𝜑} =
𝜑1 + 𝜑2

2
, [[𝜑]] = 𝜑1n1 + 𝜑2n1, (3.1)

{𝜙} =
𝜙1 + 𝜙2

2
, [[𝜙]] = 𝜙1 · n1 + 𝜙2 · n1. (3.2)

On the set of boundary edges we set

{𝜑} = 𝜑, [[𝜑]] = 𝜑n, {𝜙} = 𝜙. (3.3)

In the following analysis we will frequently use the identity,∑︁
𝜏∈𝑇ℎ

(𝜙 · n, 𝜑)𝜕𝜏 =
∑︁
𝑒∈ℰℎ

({𝜙}, [[𝜑]])𝑒 +
∑︁
𝑒∈ℰ0

ℎ

([[𝜙]], {𝜑})𝑒 (3.4)

=
∑︁
𝑒∈ℰ0

ℎ

({𝜙}, [[𝜑]])𝑒 + ([[𝜙]], {𝜑})𝑒 +
∑︁
𝑒∈ℰ𝜕

ℎ

(𝜙 · n, 𝜑)𝑒.
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We define the discrete state and control spaces to be

𝑌ℎ = 𝑉ℎ
def=
{︁
𝑦 ∈ 𝐿2(Ω) : 𝑦 |𝜏∈ P𝑘(𝜏) ∀𝜏 ∈ 𝑇ℎ

}︁
, (3.5a)

𝑈ℎ
def=
{︁
𝑢 ∈ 𝐿2(Ω) : 𝑢 |𝜏∈ P𝑙(𝜏) ∀𝜏 ∈ 𝑇ℎ

}︁
, (3.5b)

respectively. P𝑘 denotes the set of polynomials of order 𝑘. The orders 𝑘, 𝑙 ∈ N of the finite element ap-
proximation can be different for the states and the controls. Note that since discontinuous Galerkin methods
naturally impose boundary conditions weakly, the space 𝑌ℎ of discrete states and the space of test functions
𝑉ℎ are identical. For the rest of the paper to avoid the unnecessary confusion the only finite dimensional
space we will use is 𝑉ℎ.

3.1 Laplace equation. Primal formulation.

3.1.1 DG discretization of the state equation

For a clearer illustration of the ideas, first we consider in details the case when the state equation is just the
Laplace equation, i.e. our optimal control problem is the following,

min
1
2

∫︁
Ω

(𝑦(𝑥)− ̂︀𝑦(𝑥))2𝑑𝑥+
𝛼

2

∫︁
Ω
𝑢2(𝑥)𝑑𝑥 (3.6)

subject to

−∆𝑦(𝑥) = ∇ · (−∇𝑦(𝑥)) = 𝑓(𝑥) + 𝑢(𝑥), 𝑥 ∈ Ω, (3.7a)

𝑦(𝑥) = 𝑔𝐷(𝑥), 𝑥 ∈ Γ𝐷, (3.7b)
𝜕

𝜕n
𝑦(𝑥) = 𝑔𝑁 (𝑥), 𝑥 ∈ Γ𝑁 . (3.7c)

The optimality conditions for this problem can be obtained from (2.6) by setting 𝜀 = 1, 𝛽 ≡ 0, and 𝑟 ≡ 0.
Following [8], we rewrite the state equation as

−∆𝑦(𝑥) = 𝑓(𝑥) + 𝑢(𝑥), in each 𝜏 ∈ 𝑇ℎ,

[[𝑦(𝑥)]] = 0, on each 𝑒 ∈ ℰ0
ℎ,

[[−∇𝑦(𝑥)]] = 0, on each 𝑒 ∈ ℰ0
ℎ,

𝑦(𝑥) = 𝑔𝐷(𝑥), on each 𝑒 ∈ Γ𝐷,

𝜕

𝜕n
𝑦(𝑥) = 𝑔𝑁 (𝑥), on each 𝑒 ∈ Γ𝑁 .

Assume we are given operators 𝐵0, 𝐵1, 𝐵2, 𝐵𝐷, and 𝐵𝑁 . We use the usual convention. The bold letters
denote vector valued operators and the regular letters denote the scalar valued operators.
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We consider the following discrete problem: for a given 𝑓, 𝑢 ∈ 𝐿2(Ω) find 𝑦 ∈ 𝑉ℎ such that for any
𝑣 ∈ 𝑉ℎ,

𝑎ℎ(𝑦, 𝑢; 𝑣) def=
∑︁
𝜏∈𝑇ℎ

(−∆𝑦 − 𝑓 − 𝑢,𝐵0𝑣)𝜏 +
∑︁
𝑒∈ℰ0

ℎ

([[𝑦]],𝐵1𝑣)𝑒 − ([[∇𝑦]], 𝐵2𝑣)𝑒 (3.8)

+
∑︁

𝑒∈Γ𝐷

(𝑦 − 𝑔𝐷, 𝐵𝐷𝑣)𝑒 +
∑︁

𝑒∈Γ𝑁

(
𝜕𝑦

𝜕n
− 𝑔𝑁 , 𝐵𝑁𝑣)𝑒 = 0.

Example 3.1 By taking

𝐵0𝑣 := 𝑣, ∀𝜏 ∈ 𝑇ℎ, (3.9a)

𝐵1𝑣 := −{∇𝑣}+
𝜎

|𝑒|
[[𝑣]], ∀𝑒 ∈ ℰ0

ℎ, (3.9b)

𝐵2𝑣 := −{𝑣}, ∀𝑒 ∈ ℰ0
ℎ, (3.9c)

𝐵𝐷𝑣 := − 𝜕𝑣
𝜕n

+
𝜎

|𝑒|
𝑣, ∀𝑒 ∈ Γ𝐷, (3.9d)

𝐵𝑁𝑣 := 𝑣, ∀𝑒 ∈ Γ𝑁 , (3.9e)

we obtain the usual symmetric interior penalty method (SIPG). To insure the stability, 𝜎 needs to be suffi-
ciently large.

Example 3.2 By keeping the same operators 𝐵0, 𝐵2, and 𝐵𝑁 as in (3.9a), (3.9c), and (3.9e), and taking

𝐵1𝑣 := {∇𝑣}+
𝜎

|𝑒|
[[𝑣]], ∀𝑒 ∈ ℰ0

ℎ, (3.10a)

𝐵𝐷𝑣 :=
𝜕𝑣

𝜕n
+

𝜎

|𝑒|
𝑣, ∀𝑒 ∈ Γ𝐷, (3.10b)

we obtain the usual non-symmetric interior penalty method (NIPG). In this example 𝜎 can be any positive
number.

Example 3.3 Although we are primary interested in DG methods, the Continuous Interior Penalty (CIP)
method [17] can be put in this framework as well by considering the continuous elements and taking

𝐵0𝑣 := 𝑣, ∀𝜏 ∈ 𝑇ℎ, (3.11a)

𝐵1𝑣 := arbitrary (since [[𝑢]] = 0), ∀𝑒 ∈ ℰ0
ℎ, (3.11b)

𝐵2𝑣 := −{𝑣} − 𝑐2|𝑒|2[[∇𝑣]], ∀𝑒 ∈ ℰ0
ℎ, (3.11c)

𝐵𝐷𝑣 := − 𝜕𝑣
𝜕n

+
𝜎

|𝑒|
𝑣, ∀𝑒 ∈ Γ𝐷, (3.11d)

𝐵𝑁𝑣 := 𝑣, ∀𝑒 ∈ Γ𝑁 . (3.11e)

Remark 3.4 There is some sign inconsistency with [8]. There [[∇𝑦]] = 0 was imposed instead of [[−∇𝑦]] =
0. In the formulation of the method, this choice only affects the sign in the definition of the operator 𝐵2.
Later, when we will consider the mixed form of the equation the choice of the sign is more important.



8 D. LEYKEKHMAN

3.1.2 Optimize-then-Discretize

Applying the above DG disretization to the optimality system (2.6), we obtain that a triplet (𝑦, 𝑢, 𝜆) ∈
𝑉ℎ × 𝑉ℎ × 𝑉ℎ is the unique solution of the system consisting of the discretized adjoint equation∑︁

𝜏∈𝑇ℎ

(−∆𝜆− 𝑦 + 𝑦,𝐵0𝜑)𝜏 +
∑︁
𝑒∈ℰ0

ℎ

([[𝜆]],𝐵1𝜑)𝑒 − ([[∇𝜆]], 𝐵2𝜑)𝑒 (3.12a)

+
∑︁

𝑒∈Γ𝐷

(𝜆,𝐵𝐷𝜑)𝑒 +
∑︁

𝑒∈Γ𝑁

(
𝜕𝜆

𝜕n
, 𝐵𝑁𝜑)𝑒 = 0, ∀𝜑 ∈ 𝑉ℎ,

the discretized gradient equation

(𝜓, 𝜆)𝜏 − 𝛼(𝑢, 𝜓)𝜏 = 0, ∀𝜓 ∈ 𝑉ℎ, (3.12b)

and the discretized state equation∑︁
𝜏∈𝑇ℎ

(−∆𝑦 − 𝑓 − 𝑢,𝐵0𝜙)𝜏 +
∑︁
𝑒∈ℰ0

ℎ

([[𝑦]],𝐵1𝜙)𝑒 − ([[∇𝑦]], 𝐵2𝜙)𝑒 (3.12c)

+
∑︁

𝑒∈Γ𝐷

(𝑦 − 𝑔𝐷, 𝐵𝐷𝜙)𝑒 +
∑︁

𝑒∈Γ𝑁

(
𝜕𝑦

𝜕n
− 𝑔𝑁 , 𝐵𝑁𝜙)𝑒 = 0, ∀𝜙 ∈ 𝑉ℎ.

3.1.3 Discretize-then-Optimize

Now we derive the optimality conditions for discretize-then-optimize approach when the optimal control
problem is discretized by the method above. Thus we are solving

minimize
{𝑦, 𝑢} ∈ 𝑉ℎ × 𝑉ℎ

1
2
‖𝑦 − ̂︀𝑦‖2 +

𝛼

2
‖𝑢‖2, (3.13a)

subject to 𝑎ℎ(𝑦, 𝑢; 𝑣) = 0, ∀𝑣 ∈ 𝑉ℎ. (3.13b)

The discrete Lagrangian is now given by

𝐿ℎ(𝑦, 𝑢, 𝜆) =
1
2
‖𝑦 − ̂︀𝑦‖2 +

𝛼

2
‖𝑢‖2 + 𝑎ℎ(𝑦, 𝑢;𝜆). (3.14)

Again, the necessary and, for our model problem, sufficient optimality conditions can be obtained by setting
the partial Fréchet-derivatives of (3.14) with respect to the discrete state 𝑦, discrete control 𝑢, and discrete
adjoint 𝜆 equal to zero. Thus we obtain the system consisting of the discrete adjoint equation

𝜕𝐿ℎ

𝜕𝑦
𝜑 =

∑︁
𝜏∈𝑇ℎ

(−∆𝜑,𝐵0𝜆)𝜏 + (𝑦 − 𝑦, 𝜑)𝜏 +
∑︁
𝑒∈ℰ0

ℎ

([[𝜑]],𝐵1𝜆)𝑒 − ([[∇𝜑]], 𝐵2𝜆)𝑒 (3.15a)

+
∑︁

𝑒∈Γ𝐷

(𝜑,𝐵𝐷𝜆)𝑒 +
∑︁

𝑒∈Γ𝑁

(
𝜕𝜑

𝜕n
, 𝐵𝑁𝜆)𝑒 = 0, ∀𝜑 ∈ 𝑉ℎ,



INVESTIGATION OF COMMUTATIVE PROPERTIES OF DG METHODS 9

the discrete gradient equation

𝜕𝐿ℎ

𝜕𝑢
𝜓 = (𝜓,𝐵0𝜆)𝜏 − 𝛼(𝑢, 𝜓)𝜏 = 0, ∀𝜓 ∈ 𝑉ℎ, (3.15b)

and the discrete state equation

𝜕𝐿ℎ

𝜕𝜆
𝜙 =

∑︁
𝜏∈𝑇ℎ

(−∆𝑦 − 𝑓 − 𝑢,𝐵0𝜙)𝜏 +
∑︁
𝑒∈ℰ0

ℎ

([[𝑦]],𝐵1𝜙)𝑒 − ([[∇𝑦]], 𝐵2𝜙)𝑒 (3.15c)

+
∑︁

𝑒∈Γ𝐷

(𝑦 − 𝑔𝐷, 𝐵𝐷𝜙)𝑒 +
∑︁

𝑒∈Γ𝑁

(
𝜕𝑦

𝜕n
− 𝑔𝑁 , 𝐵𝑁𝜙)𝑒 = 0, ∀𝜙 ∈ 𝑉ℎ.

3.1.4 Commutativity Conditions.

From the system of the discrete equations (3.12) and (3.15) we can easily identify the methods for which both
approaches optimize-then-discretize and discretize-then-optimize commute. First of all comparing (3.12b)
with (3.15b) we conclude that for the method to be commutative one needs

𝐵0𝑣 := 𝑣. (3.16)

This condition seems to hold for the most known DG methods. From now on and until the end of this section
we assume (3.16).

Now we turn our attention to (3.12a) and (3.15a). Integrating (−∆𝜑, 𝜆)𝜏 by parts twice we obtain,

(−∆𝜑, 𝜆)𝜏 = (𝜑,−∆𝜆)𝜏 − (
𝜕𝜑

𝜕n
, 𝜆)𝜕𝜏 + (𝜑,

𝜕𝜆

𝜕n
)𝜕𝜏 .

Summing over all elements 𝜏 and using (3.4), we can rewrite (3.15a) as∑︁
𝜏∈𝑇ℎ

(−∆𝜆− 𝑦 + 𝑦, 𝜑)𝜏

+
∑︁
𝑒∈ℰ0

ℎ

([[𝜑]],𝐵1𝜆+ {∇𝜆})𝑒 − ({∇𝜑}, [[𝜆]])𝑒 − ([[∇𝜑]], 𝐵2𝜆+ {𝜆})𝑒 + ({𝜑}, [[∇𝜆]])𝑒 (3.17)

+
∑︁

𝑒∈Γ𝐷

(𝜑,𝐵𝐷𝜆+
𝜕𝜆

𝜕n
)𝑒 − (

𝜕𝜑

𝜕n
, 𝜆)𝑒 +

∑︁
𝑒∈Γ𝑁

(
𝜕𝜑

𝜕n
, 𝐵𝑁𝜆− 𝜆)𝑒 + (𝜑,

𝜕𝜆

𝜕n
)𝑒 = 0.

Now directly comparing (3.17) with (3.12a), in order to have a commutative method it is necessary

([[𝜆]],𝐵1𝜑+ {∇𝜑})𝑒 − ([[∇𝜆]], 𝐵2𝜑+ {𝜑})𝑒 = ([[𝜑]],𝐵1𝜆+ {∇𝜆})𝑒 − ([[∇𝜑]], 𝐵2𝜆+ {𝜆})𝑒 (3.18)

on each interior edge. This condition can be satisfied for example by choosing

𝐵1𝑣 := −{∇𝑣}+ 𝑐1[[𝑣]],
𝐵2𝑣 := −{𝑣}+ 𝑐2[[∇𝑣]],
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with some parameters 𝑐1 and 𝑐2 that may depend on the edge 𝑒. For example the choice 𝑐1 = 𝜎
|𝑒| and 𝑐2 = 0

leads to the SIPG method. However, in addition, the boundary operators 𝐵𝐷 and 𝐵𝑁 must also satisfy

(𝜑,𝐵𝐷𝜆+
𝜕𝜆

𝜕n
)𝑒 = (𝜆,𝐵𝐷𝜑+

𝜕𝜑

𝜕n
)𝑒 (3.19)

on each Dirichlet edge and

(
𝜕𝜑

𝜕n
, 𝐵𝑁𝜆− 𝜆)𝑒 = (

𝜕𝜆

𝜕n
, 𝐵𝑁𝜑− 𝜑)𝑒 (3.20)

on each Neumann edge. This leads to the following choice

𝐵𝐷𝑣 := − 𝜕𝑣
𝜕n

+ 𝑐𝐷𝑣,

𝐵𝑁𝑣 := 𝑣 + 𝑐𝑁
𝜕𝑣

𝜕n
,

with some parameters 𝑐𝐷 and 𝑐𝑁 that may depend on the edge 𝑒. Thus in particular for the SIPG and CIP
methods both approaches coincide. We summarize our findings in the following proposition.

Proposition 3.5 Assume that the optimal control problem (3.6) is discretized by a DG method that can be
put in the form of (3.8) with given operators 𝐵0,𝐵1, 𝐵2, 𝐵𝐷, 𝐵𝑁 . Then in order for the two approaches
optimize-then-discretize and discretize-then-optimize to commute the operators must satisfy (3.16) in the
interior of each triangle, (3.18) on each interior edge, and (3.19) and (3.20) on the boundary edges.

In the Table 3.1 we list most popular DG methods and report whether they are commutative or not.

Table 3.1: Results for some common DG methods in primary form

Method 𝐵0𝑣 𝐵1𝑣 𝐵2𝑣 𝐵𝐷𝑣 𝐵𝑁𝑣 commutative
CIP [17] 𝑣 [[𝑣]] ≡ 0 −𝑣 + 𝑐2[[∇𝑣]] − 𝜕𝑣

𝜕n + 𝑐1𝑣 𝑣 yes
SIPG [1] 𝑣 −{∇𝑣}+ 𝑐1[[𝑣]] −{𝑣} − 𝜕𝑣

𝜕n + 𝑐1𝑣 𝑣 yes
NIPG [30] 𝑣 {∇𝑣}+ 𝑐1[[𝑣]] −{𝑣} 𝜕𝑣

𝜕n + 𝑐1𝑣 𝑣 no
B.O [4] 𝑣 {∇𝑣} −{𝑣} 𝜕𝑣

𝜕n 𝑣 no
D.S.W. [16] 𝑣 𝑐1[[𝑣]] −{𝑣} 𝑐1𝑣 𝑣 no

3.2 Laplace equation. Mixed formulation

A larger class of DG methods that can be obtained from the mixed formulation of the problem. Following
similar reasoning we can derive the commutativity conditions and as a result identify commutative methods
in mixed form. Since the arguments are very similar to the previous section we will omit some details.
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Following [8, sec. 2.2], we rewrite the state equation in the mixed form as

𝜎(𝑥) = −∇𝑦(𝑥), in each 𝜏 ∈ 𝑇ℎ,

∇ · 𝜎(𝑥) = 𝑓(𝑥) + 𝑢(𝑥), in each 𝜏 ∈ 𝑇ℎ,

[[𝑦(𝑥)]] = 0, on each 𝑒 ∈ ℰ0
ℎ,

[[𝜎(𝑥)]] = 0, on each 𝑒 ∈ ℰ0
ℎ,

𝑦(𝑥) = 𝑔𝐷(𝑥), on each 𝑒 ∈ Γ𝐷,

𝜎(𝑥) · n(𝑥) = 𝑔𝑁 (𝑥), on each 𝑒 ∈ Γ𝑁 .

Assume we are given operators 𝐵00, 𝐵01, 𝐵02, 𝐵10, 𝐵11, 𝐵12, 𝐵𝐷0 , 𝐵𝑁0 , 𝐵𝐷1 , and 𝐵𝑁1 . Then the mixed
analog of (3.8) is a system

∑︁
𝜏∈𝑇ℎ

(𝜎 +∇𝑦,𝐵00𝜑)𝜏 +
∑︁
𝑒∈ℰ0

ℎ

([[𝑦]],𝐵01𝜑)𝑒 + ([[𝜎]], 𝐵02𝜑)𝑒 (3.21a)

+
∑︁

𝑒∈Γ𝐷

(𝑦 − 𝑔𝐷, 𝐵𝐷0𝜑)𝑒 +
∑︁

𝑒∈Γ𝑁

(𝜎 · n− 𝑔𝑁 , 𝐵𝑁0𝜑)𝑒 = 0, ∀𝜑 ∈ 𝐻𝑑𝑖𝑣(𝑇ℎ)

∑︁
𝜏∈𝑇ℎ

(∇ · 𝜎 − 𝑓 − 𝑢,𝐵10𝜓)𝜏 +
∑︁
𝑒∈ℰ0

ℎ

([[𝑦]],𝐵11𝜓)𝑒 + ([[𝜎]], 𝐵12𝜓)𝑒 (3.21b)

+
∑︁

𝑒∈Γ𝐷

(𝑦 − 𝑔𝐷, 𝐵𝐷1𝜓)𝑒 +
∑︁

𝑒∈Γ𝑁

(𝜎 · n− 𝑔𝑁 , 𝐵𝑁1𝜓)𝑒 = 0, ∀𝜓 ∈ 𝐻1(𝑇ℎ),

where

𝐻𝑑𝑖𝑣(𝑇ℎ) = {𝜑 ∈ 𝐿2(Ω)2 : ∇ · 𝜑|𝜏 ∈ 𝐿1(𝜏), ∀𝜏 ∈ 𝑇ℎ}

and

𝐻1(𝑇ℎ) = {𝜓 ∈ 𝐿2(Ω) : 𝜓 ∈ 𝐻1(𝜏) ∀𝜏 ∈ 𝑇ℎ}.

To complete the optimize-then-discretize system, we also need the gradient equation

(𝛼𝑢, 𝜓)𝜏 = (𝜆, 𝜓)𝜏 , ∀𝜏 ∈ 𝑇ℎ, ∀𝜓, (3.22)

and the adjoint equation in the mixed form

𝑝(𝑥) = −∇𝜆(𝑥) 𝑥 ∈ Ω, (3.23)

∇ · 𝑝(𝑥) = 𝑦(𝑥)− 𝑦(𝑥), 𝑥 ∈ Ω, (3.24)

𝜆(𝑥) = 0, 𝑥 ∈ Γ𝐷, (3.25)

𝑝(𝑥) · n(𝑥) = 0, 𝑥 ∈ Γ𝑁 . (3.26)
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Discretizing the adjoint equation similarly to the state equation we obtain∑︁
𝜏∈𝑇ℎ

(𝑝 +∇𝜆,𝐵00𝜑)𝜏 +
∑︁
𝑒∈ℰ0

ℎ

([[𝜆]],𝐵01𝜑)𝑒 + ([[𝑝]], 𝐵02𝜑)𝑒 (3.27a)

+
∑︁

𝑒∈Γ𝐷

(𝜆,𝐵𝐷0𝜑)𝑒 +
∑︁

𝑒∈Γ𝑁

(𝑝 · n, 𝐵𝑁0𝜑)𝑒 = 0, ∀𝜑 ∈ 𝑉 2
ℎ∑︁

𝜏∈𝑇ℎ

(∇ · 𝑝 + 𝑦 − 𝑦,𝐵10𝜓)𝜏 +
∑︁
𝑒∈ℰ0

ℎ

([[𝜆]],𝐵11𝜓)𝑒 + ([[𝑝]], 𝐵12𝜓)𝑒 (3.27b)

+
∑︁

𝑒∈Γ𝐷

(𝜆,𝐵𝐷1𝜓)𝑒 +
∑︁

𝑒∈Γ𝑁

(𝑝 · n, 𝐵𝑁1𝜓)𝑒 = 0, ∀𝜓 ∈ 𝑉ℎ.

The discretize-then-optimize system consists of the discrete state equation (3.21), the discrete gradient equa-
tion

(𝛼𝑢, 𝜓)𝜏 = (𝐵10𝜆, 𝜓)𝜏 , ∀𝜏 ∈ 𝑇ℎ, (3.28)

and the discrete adjoint system∑︁
𝜏∈𝑇ℎ

(𝜑,𝐵00𝑝)𝜏 + (−∇ · 𝜑, 𝐵10𝜆)𝜏 +
∑︁
𝑒∈ℰ0

ℎ

([[𝜑]], 𝐵02𝑝)𝑒 + ([[𝜑]], 𝐵12𝜆)𝑒 (3.29a)

∑︁
𝑒∈Γ𝑁

(𝑝 · n, 𝐵𝑁0𝑝)𝑒 + (𝑝 · n, 𝐵𝑁1𝜆)𝑒 = 0,

∑︁
𝜏∈𝑇ℎ

(−∇𝜓,𝐵00𝑝)𝜏 + (𝑦 − 𝑦, 𝜓)𝜏 +
∑︁
𝑒∈ℰ0

ℎ

([[𝜓]],𝐵01𝑝)𝑒 + ([[𝜓]],𝐵11𝜆)𝑒 (3.29b)

+
∑︁

𝑒∈Γ𝐷

(𝜓,𝐵𝐷0𝑝)𝑒 + (𝜓,𝐵𝐷1𝜆)𝑒 = 0.

Directly comparing (3.22) with (3.28) we immediately obtain that for the method to be commutative we
must have

𝐵10𝑣 := 𝑣. (3.30)

Next we compare (3.27) with (3.29). Looking at the terms over the elements 𝜏 and taking in consideration
(3.30) we derive

𝐵00𝑣 := −𝑣. (3.31)

As we can see from the Table 3.2, these choices are made in almost all DG methods.

Remark 3.6 Again there is a sign inconsistency in the definition of operators 𝐵00, 𝐵01, and 𝐵02 in the
present paper and [8]. The choice of the sign did not really matter in [8], since the equation (2.38) in that
paper could be multiplied by negative one. However the choice of the sign in our paper is essential and can
not be taken arbitrarily.

Next we look at the terms over the interior edges. After some manipulation we derive that for the
methods to be commutative, on each interior edge 𝑒 we also must have

([[𝜑]], 𝐵02𝑝 +𝐵12𝜆+ {𝜆})𝑒 = ([[𝜆]],𝐵01𝜑− {𝜑})𝑒 + ([[𝑝]], 𝐵02𝜑)𝑒, ∀𝜑, (3.32a)

([[𝜓]],𝐵01𝑝 + 𝐵11𝜆− {𝑝})𝑒 = ([[𝑝]], 𝐵12𝜓 + {𝜓})𝑒 + ([[𝜆]],𝐵11𝜓)𝑒, ∀𝜓. (3.32b)
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We omit the conditions for boundary edges, since the boundary conditions can always be modified to make
the method commutative if necessary. We summarize the above result in the following proposition.

Proposition 3.7 Assume that the optimal control problem (3.6) is discretized by a DG method that can be
put in the form of (3.21) with given operators 𝐵00, 𝐵01, 𝐵02, 𝐵10, 𝐵11, 𝐵12, 𝐵𝐷0 , 𝐵𝑁0 , 𝐵𝐷1 , and 𝐵𝑁1 .
Then in order for the two approaches optimize-then-discretize and discretize-then-optimize to commute the
operators must satisfy (3.30) and (3.31) in the interior of each triangle, and (3.32) on each interior edge.

In the Table 3.2 we list the most common DG methods and report if they are commutative or not.

Table 3.2: Results for some common DG methods in mixed form

Method 𝐵00𝜎 𝐵01𝜎 𝐵02𝜎 𝐵10𝑣 𝐵11𝑣 𝐵12𝑣 commutative
CIP [17] −𝜎 [[𝑦]] ≡ 0 0 𝑣 [[𝑦]] ≡ 0 −𝑣 + 𝑐2[[∇𝑣]] yes
B.R. [3] −𝜎 {𝜎} 0 𝑣 0 −{𝑣} yes

LDG [14] −𝜎 {𝜎}+ 𝛾[[𝜎]] 0 𝑣 𝑐1[[𝑣]] −{𝑣}+ 𝛾 · [[𝑣]] yes
C.C.P.S. [11] −𝜎 {𝜎}+ 𝛾[[𝜎]] 𝑐2[[𝜎]] 𝑣 𝑐1[[𝑣]] −{𝑣}+ 𝛾 · [[𝑣]] yes

SIPG [1] −𝜎 {𝜎} 0 𝑣 𝑐1[[𝑣]] −{𝑣} yes
NIPG [30] −𝜎 −{𝜎} 0 𝑣 𝑐1[[𝑣]] −{𝑣} no

D.S.W. [30] −𝜎 0 0 𝑣 𝑐1[[𝑣]] −{𝑣} no
B.O. [4] −𝜎 −{𝜎} 0 𝑣 0 −{𝑣} no

[8, (2.56)-(2.57)] −𝜎 {𝜎} 0 𝑣 𝑐0{∇𝑣} −{𝑣} no
H.M. [27] −𝜎 + 𝑐𝑒𝜎 {𝜎} 0 𝑣 𝑐𝑒

1−𝑐𝑒
{∇𝑣} −{𝑣} no

3.3 Advection-diffusion-reaction equation

Now we consider the problem with the advection-diffusion-reaction state equation (1.2). An additional
difficulty lies in the fact that the advection field in the adjoint equation is the opposite of the advection field
of the state equation. Since the operators 𝐵 may depend on the advection field 𝛽, for the adjoint equation
we need a separate set of operators which we will denote 𝐵* (see Remark 3.10). The optimality conditions
for continuous problem are listed in (2.6). Following [2], we rewrite the state equation as

∇ · (−𝜀∇𝑦(𝑥) + 𝛽𝑦(𝑥)) + 𝑟(𝑥)𝑦(𝑥) = 𝑓(𝑥) + 𝑢(𝑥), in each 𝜏 ∈ 𝑇ℎ,

[[𝑦(𝑥)]] = 0, on each 𝑒 ∈ ℰ0
ℎ,

[[−𝜀∇𝑦(𝑥) + 𝛽𝑦(𝑥)]] = 0, on each 𝑒 ∈ ℰ0
ℎ,

𝑦(𝑥) = 𝑔𝐷(𝑥), on each 𝑒 ∈ Γ𝐷,

𝜀
𝜕

𝜕n
𝑦(𝑥) = 𝑔𝑁 (𝑥), on each 𝑒 ∈ Γ𝑁 .
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Assume we have operators 𝐵0, 𝐵1, 𝐵2, 𝐵𝐷, and 𝐵𝑁 . We consider the following discrete problem, find
𝑦 ∈ 𝑉ℎ such that for any 𝑣 ∈ 𝑉ℎ

𝑎ℎ(𝑦, 𝑢; 𝑣) def=
∑︁
𝜏∈𝑇ℎ

(∇ · (−𝜀∇𝑦 + 𝛽𝑦) + 𝑟𝑦 − 𝑓 − 𝑢,𝐵0𝑣)𝜏 (3.33)

+
∑︁
𝑒∈ℰ0

ℎ

([[𝑦]],𝐵1𝑣)𝑒 + ([[−𝜀∇𝑦 + 𝛽𝑦]], 𝐵2𝑣)𝑒 (3.34)

+
∑︁

𝑒∈Γ𝐷

(𝑦 − 𝑔𝐷, 𝐵𝐷𝑣)𝑒 +
∑︁

𝑒∈Γ𝑁

(𝜀
𝜕𝑦

𝜕n
− 𝑔𝑁 , 𝐵𝑁𝑣)𝑒.

Example 3.8 By taking

𝐵0𝑣 := 𝑣, ∀𝜏 ∈ 𝑇ℎ, (3.35a)

𝐵1𝑣 := −{𝜀∇𝑣}+ 𝜀
𝜎

|𝑒|
[[𝑣]] +

n+

2
[[𝛽𝑣]], ∀𝑒 ∈ ℰ0

ℎ, (3.35b)

𝐵2𝑣 := −{𝑣}, ∀𝑒 ∈ ℰ0
ℎ, (3.35c)

𝐵𝐷𝑣 := −𝜀 𝜕𝑣
𝜕n

+ 𝜀
𝜎

|𝑒|
𝑣 + |𝛽 · n|𝑣𝜒Γ−𝐷

, ∀𝑒 ∈ Γ𝐷, (3.35d)

𝐵𝑁𝑣 := 𝑣, ∀𝑒 ∈ Γ𝑁 , (3.35e)

we obtain the usual symmetric interior penalty method (SIPG) with upwinding. Here 𝜒Γ−𝐷
denotes the

characteristic function on Γ−𝐷. For this example to insure the stability one must take 𝜎 to be sufficiently
large. Notice that in contrast to the Laplace equation, the advection-diffusion equation operators depend on
the direction of the advection field 𝛽.

Remark 3.9 The Streamline Upwind Stabilized Petrov-Galerkin (SUPG) [10] or the Least-Squares method
[6] can be put in this framework by considering continuous elements and choosing 𝐵0𝑣 := 𝑣 + 𝛽 · ∇𝑣 or
𝐵0𝑣 := 𝑣+∇ · (−𝜀∇𝑣(𝑥) + 𝛽𝑣(𝑥)) + 𝑟(𝑥)𝑣(𝑥) respectively, with the appropriate choices of 𝐵1, 𝐵2, 𝐵𝐷,
and 𝐵𝑁 . However, since the commutativity conditions always require 𝐵0𝑣 := 𝑣, these methods can never
be commutative.

3.3.1 Optimize-then-Discretize system

Applying the disretization above the optimality system (2.6), we obtain that a triplet (𝑦, 𝑢, 𝜆) ∈ 𝑉ℎ×𝑉ℎ×𝑉ℎ

is the unique solution of the following system consisting of the discretized adjoint equation∑︁
𝜏∈𝑇ℎ

(∇ · (−𝜀∇𝜆− 𝛽𝜆) + (𝑟 +∇ · 𝛽)𝜆− 𝑦 + 𝑦,𝐵*0𝜑)𝜏

+
∑︁
𝑒∈ℰ0

ℎ

([[𝜆]],𝐵*
1𝜑)𝑒 + ([[−𝜀∇𝜆− 𝛽𝜆]], 𝐵*2𝜑)𝑒 (3.36a)

+
∑︁

𝑒∈Γ𝐷

(𝜆,𝐵*𝐷𝜑)𝑒 +
∑︁

𝑒∈Γ𝑁

(𝜀
𝜕𝜆

𝜕n
+ 𝛽 · n𝜆,𝐵*𝑁𝜑)𝑒 = 0, ∀𝜑 ∈ 𝑉ℎ,
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the discretized gradient equation

(𝜓, 𝜆)𝜏 − 𝛼(𝑢, 𝜓)𝜏 = 0, ∀𝜓 ∈ 𝑉ℎ, (3.36b)

and the discretized state equation∑︁
𝜏∈𝑇ℎ

(∇ · (−𝜀∇𝑦 + 𝛽𝑦) + 𝑟𝑦 − 𝑓 − 𝑢,𝐵0𝜙)𝜏

+
∑︁
𝑒∈ℰ0

ℎ

([[𝑦]],𝐵1𝜙)𝑒 + ([[−𝜀∇𝑦 + 𝛽𝑦]], 𝐵2𝜙)𝑒 (3.36c)

+
∑︁

𝑒∈Γ𝐷

(𝑦 − 𝑔𝐷, 𝐵𝐷𝜙)𝑒 +
∑︁

𝑒∈Γ𝑁

(𝜀
𝜕𝑦

𝜕n
− 𝑔𝑁 , 𝐵𝑁𝜙)𝑒 = 0, ∀𝜙 ∈ 𝑉ℎ.

Remark 3.10 Notice that the adjoint equation is again an advection-diffusion-reaction equation, but ad-
vection the field is −𝛽 instead of 𝛽. Since the operators can depend on 𝛽 and its direction, the choice of
some operators 𝐵*0 , 𝐵*

1 , 𝐵*2 , 𝐵*𝐷, and 𝐵*𝑁 for the adjoint equation can differ from the choices of 𝐵0, 𝐵1,
𝐵2, 𝐵𝐷, and 𝐵𝑁 for the state equation. Thus for example for the SIPG method we need

𝐵*𝐷𝑣 := −𝜀 𝜕𝑣
𝜕n

+ 𝜀
𝜎

|𝑒|
𝑣 + |𝛽 · n|𝑣𝜒Γ+

𝐷
, ∀𝑒 ∈ Γ𝐷.

3.3.2 Discretize-then-Optimize system

Now we derive the optimality conditions for discretize-then-optimize approach. The problem is

minimize
{𝑦, 𝑢} ∈ 𝑉ℎ × 𝑉ℎ

1
2
‖𝑦 − ̂︀𝑦‖2 +

𝛼

2
‖𝑢‖2, (3.37a)

subject to 𝑎ℎ(𝑦, 𝑢; 𝑣) = 0, ∀𝑣 ∈ 𝑉ℎ. (3.37b)

The discrete Lagrangian is given by

𝐿ℎ(𝑦, 𝑢, 𝜆) =
1
2
‖𝑦 − ̂︀𝑦‖2 +

𝛼

2
‖𝑢‖2 + 𝑎ℎ(𝑦, 𝑢;𝜆). (3.38)

The necessary and, for our model problem, sufficient optimality conditions again can be obtained by setting
the partial Fréchet-derivatives of (3.38) with respect to the discrete state 𝑦, discrete control 𝑢, and discrete
adjoint 𝜆 equal to zero. Thus we obtain the following system consisting of the discrete adjoint equation

𝜕𝐿ℎ

𝜕𝑦
𝜑 =

∑︁
𝜏∈𝑇ℎ

(∇ · (−𝜀∇𝜑− 𝛽𝜑) + 𝑟𝜑,𝐵0𝜆)𝜏 + (𝑦 − 𝑦, 𝜑)𝜏

+
∑︁
𝑒∈ℰ0

ℎ

([[𝜑]],𝐵1𝜆)𝑒 + ([[−𝜀∇𝜑− 𝛽𝜑]], 𝐵2𝜆)𝑒 (3.39a)

+
∑︁

𝑒∈Γ𝐷

(𝜑,𝐵𝐷𝜆)𝑒 +
∑︁

𝑒∈Γ𝑁

(𝜀
𝜕𝜑

𝜕n
, 𝐵𝑁𝜆)𝑒 = 0, ∀𝜑 ∈ 𝑉ℎ,
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the discrete gradient equation

𝜕𝐿ℎ

𝜕𝑢
𝜓 = (𝜓,𝐵0𝜆)𝜏 − 𝛼(𝑢, 𝜓)𝜏 = 0, ∀𝜓 ∈ 𝑉ℎ, (3.39b)

and the discrete state equation

𝜕𝐿ℎ

𝜕𝜆
𝜙 =

∑︁
𝜏∈𝑇ℎ

(∇ · (−𝜀∇𝑦 + 𝛽𝑦) + 𝑟𝑦 − 𝑓 − 𝑢,𝐵0𝜙)𝜏

+
∑︁
𝑒∈ℰ0

ℎ

([[𝑦]],𝐵1𝜙)𝑒 + ([[−𝜀∇𝑦 + 𝛽𝑦]], 𝐵2𝜙)𝑒 (3.39c)

+
∑︁

𝑒∈Γ𝐷

(𝑦 − 𝑔𝐷, 𝐵𝐷𝜙)𝑒 +
∑︁

𝑒∈Γ𝑁

(𝜀
𝜕𝑦

𝜕n
− 𝑔𝑁 , 𝐵𝑁𝜙)𝑒 = 0, ∀𝜙 ∈ 𝑉ℎ.

3.3.3 Commutativity Conditions.

Comparing (3.39b) with (3.36b), similar to the Laplace equation, for the methods to be commutative it is
required

𝐵*0𝑣 = 𝐵0𝑣 := 𝑣. (3.40)

From now on we assume that. Integrating (∇ · (−𝜀∇𝜑 + 𝛽𝜑), 𝜆)𝜏 by parts and rearranging the terms we
obtain

(∇ · (−𝜀∇𝜑+ 𝛽𝜑, 𝜆)𝜏 = (𝜀∇𝜑− 𝛽𝜑,∇𝜆)𝜏 + (−𝜀𝜕𝜑
𝜕n

+ 𝛽 · n𝜑, 𝜆)𝜕𝜏

= (𝜑,−∇ · (𝜀∇𝜆))𝜏 + (𝜑, 𝜀
𝜕𝜆

𝜕n
)𝜕𝜏 + (𝜑,−𝛽 · ∇𝜆)𝜏 + (−𝜀𝜕𝜑

𝜕n
+ 𝛽 · n𝜑, 𝜆)𝜕𝜏

= (∇ · (−𝜀∇𝜆− 𝛽𝜆) + (∇ · 𝛽)𝜆, 𝜑)𝜏 + (𝜑, 𝜀
𝜕𝜆

𝜕n
)𝜕𝜏 + (−𝜀𝜕𝜑

𝜕n
+ 𝛽 · n𝜑, 𝜆)𝜕𝜏 .

Summing over all elements 𝜏 and using (3.4), we can rewrite (3.39a) as∑︁
𝜏∈𝑇ℎ

(∇ · (−𝜀∇𝜆− 𝛽𝜆) + (𝑟 +∇ · 𝛽)𝜆, 𝜑)𝜏 + (𝑦 − 𝑦, 𝜑)𝜏

+
∑︁
𝑒∈ℰ0

ℎ

([[𝜀∇𝜆]], {𝜑})𝑒 + ({𝜀∇𝜆}, [[𝜑]])𝑒 + ([[−𝜀∇𝜑+ 𝛽𝜑]], {𝜆})𝑒 + ({−𝜀∇𝜑+ 𝛽𝜑}, [[𝜆]])𝑒

+
∑︁
𝑒∈ℰ0

ℎ

([[𝜑]],𝐵1𝜆)𝑒 + ([[−𝜀∇𝜑− 𝛽𝜑]], 𝐵2𝜆)𝑒 (3.41)

+
∑︁
𝑒∈ℰ𝜕

ℎ

(𝜀
𝜕𝜆

𝜕n
, 𝜑)𝑒 + (𝜆,−𝜀𝜕𝜑

𝜕n
+ 𝛽 · n𝜑)𝑒

+
∑︁

𝑒∈Γ𝐷

(𝜑,𝐵𝐷𝜆)𝑒 +
∑︁

𝑒∈Γ𝑁

(𝜀
𝜕𝜑

𝜕n
, 𝐵𝑁𝜆)𝑒 = 0, ∀𝜑 ∈ 𝑉ℎ.
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Now directly comparing (3.41) with (3.36a) in order to have a commutative method we need

([[𝜆]],𝐵*
1𝜑+ {𝜀∇𝜑− 𝛽𝜑})𝑒 − ([[𝜀∇𝜆]], 𝐵*2𝜑+ {𝜑})𝑒 − ([[𝛽𝜆]], 𝐵2𝜑)𝑒 (3.42)

= ([[𝜑]],𝐵1𝜆+ {𝜀∇𝜆})𝑒 − ([[𝜀∇𝜑]], 𝐵2𝜆+ {𝜆})𝑒 + ([[𝛽𝜑]], 𝐵2𝜆+ {𝜆})𝑒,

on each interior edge. In addition on the boundary edges we also need

(𝜆,𝐵*𝐷𝜑+ 𝜀
𝜕𝜑

𝜕n
− 𝛽 · n𝜑)𝑒 = (𝜑,𝐵𝐷𝜆+ 𝜀

𝜕𝜆

𝜕n
)𝑒

on each Dirichlet edge and

(𝜀
𝜕𝜆

𝜕n
+ 𝛽 · n𝜆,𝐵*𝑁𝜑− 𝜑)𝑒 = (𝜀

𝜕𝜑

𝜕n
, 𝐵𝑁𝜆− 𝜆)𝑒.

on each Neumann edge. Direct computations show that these conditions are satisfied for Example 3.8.
Of course, if the diffusion part discretized with non-commutative method then the method for advection-
diffusion equation can not be commutative. For example in [2] several new stable methods were proposed
for a single equation. However none of the proposed methods is commutative.

4 Global error estimates for the SIPG methods

In this section we derive global error estimates for upwind SIPG method (cf. Example 3.8), which satis-
fies the symmetry condition. In the following analysis it is convenient to separate diffusion part from the
advection-reaction part. Thus we define

𝑎𝑑
ℎ(𝑦, 𝑣) := 𝜀

∑︁
𝜏∈𝑇ℎ

(∇𝑦,∇𝑣)𝜏 + 𝜀
∑︁
𝑒∈ℰℎ

(︂
𝜎

|𝑒|
([[𝑦]], [[𝑣]])𝑒 − ({∇𝑦}, [[𝑣]])𝑒 − ([[𝑦]], {∇𝑣})𝑒

)︂
(4.1)

𝑎𝑎𝑟
ℎ (𝑦, 𝑣) :=

∑︁
𝜏∈𝑇ℎ

(∇ · (𝛽𝑦) + 𝑟𝑦, 𝑣)𝜏 +
∑︁
𝑒∈ℰ0

ℎ

(︀
|n · 𝛽|(𝑦+ − 𝑦−), 𝑣+

)︀
𝑒

+
∑︁
𝑒∈ℰ−ℎ

(︀
|n · 𝛽|𝑦+, 𝑣+

)︀
. (4.2)

The discontinuous Galerkin discretization of the state equation (1.2) for a fixed control 𝑢 is now given as
follows (cf. (2.2a)). Find 𝑦 ∈ 𝑉ℎ such that

𝑎ℎ(𝑦, 𝑣)− (𝑢, 𝑣) = 𝑙ℎ(𝑣) ∀𝑣 ∈ 𝑉ℎ, (4.3)

where 𝑎ℎ(𝑦, 𝑣) = 𝑎𝑑
ℎ(𝑦, 𝑣) + 𝑎𝑎𝑟

ℎ (𝑦, 𝑣) and for each 𝑣 ∈ 𝑉ℎ

𝑙ℎ(𝑣) =
∑︁
𝜏∈𝑇ℎ

(𝑓, 𝑣)𝜏 + 𝜀
∑︁
𝑒∈ℰ𝜕

ℎ

(︂
𝜎

|𝑒|
(𝑔𝐷, 𝑣)𝑒 − (𝑔𝐷, 𝑣)𝑒

)︂
+
∑︁
𝑒∈ℰ−ℎ

(︀
|n · 𝛽|𝑔𝐷, 𝑣

+
)︀
𝑒

+ ⟨𝑔𝑁 , 𝑣⟩Γ𝑁
. (4.4)
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4.1 Preliminaries

Here we list some of the known properties of the SIPG method. The presentation and the results we adapt
from [2]. Since the state equation (1.2) for a smooth 𝛽 can be rewritten as

−∆𝑦(𝑥) + 𝛽(𝑥) · ∇𝑦(𝑥) + (𝑟(𝑥) +∇ · 𝛽)𝑦(𝑥) = 𝑓(𝑥) + 𝑢(𝑥),

we introduce the ”effective” reaction function 𝜌(𝑥) with the assumption

𝜌(𝑥) = 𝑟(𝑥) + 1
2∇ · 𝛽(𝑥) ≥ 𝜌0 ≥ 0 a.e. in Ω. (4.5)

Following [2] we make the following assumptions on the advective field 𝛽.

Assumption 4.1 𝛽 has no closed curves and stationary points. It implies (cf. [2, App. A]) that

∃ 𝜂 ∈𝑊 𝑘+1
∞ (Ω) such that 𝛽 · ∇𝜂 ≥ 2𝑏0 := 2

‖𝛽‖0,∞
𝐿

in Ω, where 𝐿 = 𝑑𝑖𝑎𝑚(Ω). (4.6)

Assumption 4.2 We also assume that

∃ 𝑐𝛽 > 0 such that |𝛽| ≥ 𝑐𝛽‖𝛽‖1,∞ ∀𝑥 ∈ Ω, (4.7)

and for a given shape-regular family 𝑇ℎ of decomposition of Ω into triangles 𝜏 ,

∃ 𝑐𝜌 > 0 such that ∀𝜏 ∈ 𝑇ℎ ‖𝜌‖0,∞,𝜏 ≤ 𝑐𝜌(min
𝜏
𝜌(𝑥) + 𝑏0). (4.8)

For more detailed description of these assumption we refer to [2, App. 2.1].
Primary, we will be working with a norm

|||𝑣|||2 = |||𝑣|||2𝑑 + |||𝑣|||2𝑎𝑟, (4.9a)

where

|||𝑣|||2𝑑 := 𝜀|𝑣|21,ℎ +
∑︁

𝑒/∈Γ𝑁

𝜀

|𝑒|
‖[[𝑣]]‖2𝑒, (4.9b)

|||𝑣|||2𝑎𝑟 := ‖(𝜌+ 𝑏0)1/2𝑣‖2 +
∑︁
𝑒∈ℰℎ

‖|𝛽 · n|1/2[[𝑣]]‖2𝑒, (4.9c)

where 𝑏0 = ‖𝛽‖∞/𝐿 defined in (4.6) and 𝜌 is the piecewise constant function defined as

𝜌(𝑥) |𝜏= min
𝑥∈𝜏

𝜌(𝑥) ∀𝜏 ∈ 𝑇ℎ. (4.10)

Since we treat the case of 𝜌 = 0, to show a stability result in ||| · ||| norm we need to introduce the weight
function 𝜒 = 𝑒−𝜂, with 𝜂 from (4.6). From the assumptions on 𝜂 there exists positive constants 𝜒*1, 𝜒*2, and
𝜒*3, such that

𝜒*1 ≤ 𝜒 ≤ 𝜒*2, |∇𝜒| ≤ 𝜒*3. (4.11)

Following [2], we define a weight function 𝜙 by

𝜙 = 𝜒+ 𝜅, (4.12)

where 𝜅 is sufficiently large number to be specified later (cf. [2, eq. 4.15] for more details). The inclusion
of 𝜅 in the definition of the weight function avoids the restriction of considering only advection-dominated
problems. The important stability and continuity results we state in the following lemma.
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Lemma 4.3 There exists constants 𝑐1, 𝑐2, 𝜒*4, and 𝜒*5 such that for 𝑎𝑑
ℎ(·, ·) and 𝑎𝑎𝑟

ℎ (·, ·) defined in (4.1) and
any 𝑢, 𝑣 ∈ 𝑉ℎ,

𝑎ℎ(𝑢, 𝑣) ≤ 𝑐1|||𝑢||||||𝑣|||, (4.13a)

𝑎𝑑
ℎ(𝑣, 𝜙𝑣) ≥ 𝜒*1 + 𝜅

6
|||𝑣|||2𝑑, (4.13b)

𝑎𝑎𝑟
ℎ (𝑣, 𝜙𝑣) ≥ 𝜒*1

2
|||𝑣|||2𝑎𝑟, (4.13c)

𝑎𝑑
ℎ(𝑣, 𝜙𝑣 − 𝑃ℎ(𝜙𝑣)) ≤ 𝜒*4|||𝑣|||2𝑑, (4.13d)

𝑎𝑎𝑟
ℎ (𝑣, 𝜙𝑣 − 𝑃ℎ(𝜙𝑣)) ≤ 𝜒*5(ℎ/𝐿)1/2|||𝑣|||2𝑎𝑟, (4.13e)

|||𝑃ℎ(𝜙𝑣)||| ≤ 𝑐2|||𝑣|||, (4.13f)

where 𝑃ℎ : 𝐿2 → 𝑉ℎ is the orthogonal 𝐿2-projection defined by

(𝑃ℎ𝑢, 𝑣)𝜏 = (𝑢, 𝑣)𝜏 , ∀𝑣 ∈ 𝑉ℎ, ∀𝜏 ∈ 𝑇ℎ.

The proof of this lemma is given in [2, Lem. 4.1, Lem. 4.3] for a slightly different DG method. The
arguments can easily be adapted for the SIPG method as well.

4.2 Energy error estimates

In this section we derive a priori error estimates for the control in the case of unconstrained problem. First
we introduce two intermediate functions. Define ̃︀𝑦ℎ = ̃︀𝑦ℎ(𝑢) ∈ 𝑉ℎ for a given 𝑢 ∈ 𝐿2, to be the solution to

𝑎ℎ(̃︀𝑦ℎ, 𝑣) = (𝑢, 𝑣) + (𝑓, 𝑣) + ⟨𝑔, 𝑣⟩Γ𝑁
, ∀𝑣 ∈ 𝑉ℎ. (4.14)

Similarly we define ̃︀𝜆ℎ = ̃︀𝜆ℎ(̃︀𝑦ℎ(𝑢)) ∈ 𝑉ℎ to be the solution to the following equation

𝑎ℎ(𝑣, ̃︀𝜆ℎ) = (̂︀𝑦, 𝑣)− (̃︀𝑦ℎ, 𝑣), ∀𝑣 ∈ 𝑉ℎ. (4.15)

Using the discrete and continuous gradient equations, we have

𝛼‖𝑢− 𝑢ℎ‖2 = 𝛼(𝑢− 𝑢ℎ, 𝑢− 𝑢ℎ) = (𝛼𝑢− 𝜆, 𝑢− 𝑢ℎ)− (𝛼𝑢ℎ − 𝜆ℎ, 𝑢− 𝑢ℎ) + (𝜆− 𝜆ℎ, 𝑢− 𝑢ℎ)

= (𝜆− ̃︀𝜆ℎ, 𝑢− 𝑢ℎ) + (̃︀𝜆ℎ − 𝜆ℎ, 𝑢− 𝑢ℎ) := 𝐽1 + 𝐽2.
(4.16)

Using the Cauchy-Schwarz and arithmetic-geometric mean inequalities we have,

𝐽1 = (𝜆− ̃︀𝜆ℎ, 𝑢− 𝑢ℎ) ≤ 1
2𝛼
‖𝜆− ̃︀𝜆ℎ‖2 +

𝛼

2
‖𝑢− 𝑢ℎ‖2.

Next we will estimate ‖𝜆− ̃︀𝜆ℎ‖. To accomplish this we will require the following two lemmas.

Lemma 4.4 Let 𝑦 be the exact solution to (1.1)-(1.2) and ̃︀𝑦ℎ be a solution of (4.14) with the exact control
𝑢. Assume 𝑦 ∈ 𝐻𝑠, for some 𝑠 > 3/2, then for ℎ sufficiently small there exists a constant 𝐶1 independent
of 𝑢, 𝜆, and 𝑦 such that

|||𝑦 − ̃︀𝑦ℎ||| ≤ 𝐶1|||𝑦 − 𝑃ℎ𝑦|||.
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Proof: Since 𝑦 ∈ 𝐻𝑠 for some 𝑠 > 3/2 and the SIPG method is consistent, we have

𝑎ℎ(̃︀𝑦ℎ − 𝑦, 𝑣) = 0 ∀𝑣 ∈ 𝑉ℎ. (4.17)

Put 𝜁ℎ = ̃︀𝑦ℎ − 𝑃ℎ𝑦. Then from (4.13b) and (4.13c) we have,

𝜒*1 + 𝜅

6
|||𝜁ℎ|||2𝑑 +

𝜒*1
2
|||𝜁ℎ|||2𝑎𝑟 ≤ 𝑎ℎ(𝜁ℎ, 𝜙𝜁ℎ) = 𝑎ℎ(𝜁ℎ, 𝜙𝜁ℎ − 𝑃ℎ(𝜙𝜁ℎ)) + 𝑎ℎ(𝜁ℎ, 𝑃ℎ(𝜙𝜁ℎ)) (4.18)

= 𝑎ℎ(𝜁ℎ, 𝜙𝜁ℎ − 𝑃ℎ(𝜙𝜁ℎ)) + 𝑎ℎ(𝑦 − 𝑃ℎ𝑦, 𝑃ℎ(𝜙𝜁ℎ)),

where in the last step we used (4.17). From (4.13a), the Cauchy-Schwarz inequality, and (4.13f), we obtain

𝑎ℎ(𝑦 − 𝑃ℎ𝑦, 𝑃ℎ(𝜙𝜁ℎ)) ≤ 𝑐1|||𝑦 − 𝑃ℎ𝑦||||||𝑃ℎ(𝜙𝜁ℎ)||| ≤ 𝑐1𝑐2|||𝑦 − 𝑃ℎ𝑦||||||𝜁ℎ|||. (4.19)

To estimate

𝑎ℎ(𝜁ℎ, 𝜙𝜁ℎ − 𝑃ℎ(𝜙𝜁ℎ)) = 𝑎𝑑
ℎ(𝜁ℎ, 𝜙𝜁ℎ − 𝑃ℎ(𝜙𝜁ℎ)) + 𝑎𝑎𝑟

ℎ (𝜁ℎ, 𝜙𝜁ℎ − 𝑃ℎ(𝜙𝜁ℎ))

we use (4.13d) and (4.13e). Thus

𝑎𝑑
ℎ(𝜁ℎ, 𝜙𝜁ℎ − 𝑃ℎ(𝜙𝜁ℎ)) + 𝑎𝑎𝑟

ℎ (𝜁ℎ, 𝜙𝜁ℎ − 𝑃ℎ(𝜙𝜁ℎ)) ≤ 𝜒*4|||𝜁ℎ|||2𝑑 + 𝜒*5(ℎ/𝐿)1/2|||𝜁ℎ|||2𝑎𝑟.

Now if 𝜅 is so large that 𝜒*1+𝜅
12 ≥ 𝜒*4 and ℎ is so small that 𝜒*5(ℎ/𝐿)1/2 ≤ 𝜒*1

4 , then with 𝑐3 = min
(︁

𝜒*1+𝜅
12 ,

𝜒*1
4

)︁
and using (4.23), we have

𝑐3|||𝜁ℎ||| ≤ 𝑐1𝑐2|||𝑦 − 𝑃ℎ𝑦|||. (4.20)

Hence by the triangle inequality we have

|||𝑦 − ̃︀𝑦ℎ||| ≤
(︂
𝑐2𝑐1
𝑐3

+ 1
)︂
|||𝑦 − 𝑃ℎ𝑦|||,

which proves the lemma with 𝐶1 = 𝑐2𝑐1
𝑐3

+ 1. �

Lemma 4.5 Let 𝜆 be the exact adjoint and ̃︀𝜆ℎ be a solution to (4.15). Assume that 𝜆 ∈ 𝐻𝑠(Ω), 𝑠 > 3/2
and ℎ is sufficiently small. Then there exist constants 𝐶2 and 𝐶3, 𝜆, 𝑦, and 𝑢 such that

|||𝜆− ̃︀𝜆ℎ||| ≤ 𝐶2|||𝜆− 𝑃ℎ𝜆|||+ 𝐶3‖𝑦 − ̃︀𝑦ℎ‖.

Proof: Proof is similar to the proof of Lemma 4.4. Since 𝑦 ∈ 𝐻𝑠 for some 𝑠 > 3/2 and the SIPG method
is consistent, we have

𝑎ℎ(𝑣, ̃︀𝜆ℎ − 𝜆) = (𝑦 − ̃︀𝑦ℎ, 𝑣), ∀𝑣 ∈ 𝑉ℎ. (4.21)

Put 𝜁ℎ = ̃︀𝜆ℎ − 𝑃ℎ𝜆. Then from (4.13b) and (4.13c) we have,

𝜒*1 + 𝜅

6
|||𝜁ℎ|||2𝑑 +

𝜒*1
2
|||𝜁ℎ|||2𝑎𝑟 ≤ 𝑎ℎ(𝜙𝜁ℎ, 𝜁ℎ) = 𝑎ℎ(𝜙𝜁ℎ − 𝑃ℎ(𝜙𝜁ℎ), 𝜁ℎ) + 𝑎ℎ(𝑃ℎ(𝜙𝜁ℎ), 𝜁ℎ) (4.22)

= 𝑎ℎ(𝜙𝜁ℎ − 𝑃ℎ(𝜙𝜁ℎ), 𝜁ℎ, ) + 𝑎ℎ(𝑃ℎ(𝜙𝜁ℎ), 𝜆− 𝑃ℎ𝜆) + (𝑦 − ̃︀𝑦ℎ, 𝑃ℎ(𝜙𝜁ℎ)),
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where in the last step we used (4.21). From (4.13a), the Cauchy-Schwarz inequality, and (4.13f), we obtain

𝑎ℎ(𝑃ℎ(𝜙𝜁ℎ), 𝜆− 𝑃ℎ𝜆) + (𝑦 − ̃︀𝑦ℎ, 𝑃ℎ(𝜙𝜁ℎ)) ≤ 𝑐1|||𝜆− 𝑃ℎ𝜆||||||𝑃ℎ(𝜙𝜁ℎ)|||+ ‖𝑦 − ̃︀𝑦ℎ‖‖𝑃ℎ(𝜙𝜁ℎ)‖
≤ (𝑐6|||𝜆− 𝑃ℎ𝜆|||+ ‖𝑦 − ̃︀𝑦ℎ‖) 𝑐5|||𝜁ℎ|||. (4.23)

Similarly to the proof of the previous lemma, we have

𝑐4|||𝜁ℎ||| ≤ 𝑐5 (𝑐6|||𝜆− 𝑃ℎ𝜆|||+ ‖𝑦 − ̃︀𝑦ℎ‖) . (4.24)

Hence by the triangle inequality we have

|||𝜆− ̃︀𝜆ℎ||| ≤
(︂
𝑐5𝑐6
𝑐4

+ 1
)︂
|||𝜆− 𝑃ℎ𝜆|||+

𝑐5
𝑐4
‖𝑦 − ̃︀𝑦ℎ‖,

which proves the lemma with 𝐶2 = 𝑐5𝑐6
𝑐4

+ 1 and 𝐶3 = 𝑐5
𝑐4

. �

Since (𝜌0 + 𝑏0)1/2‖𝜆− ̃︀𝜆ℎ‖ ≤ |||𝜆− ̃︀𝜆ℎ|||, from Lemma 4.4 and Lemma 4.5, it follows that

𝐽1 ≤
𝐶

𝛼

(︀
|||𝑦 − 𝑃ℎ𝑦|||2 + |||𝜆− 𝑃ℎ𝜆|||2

)︀
+
𝛼

2
‖𝑢− 𝑢ℎ‖2. (4.25)

Next we will show that 𝐽2 ≤ 0. Using that (𝑦ℎ − ̃︀𝑦ℎ) ∈ 𝑉ℎ and (𝜆ℎ − ̃︀𝜆ℎ) ∈ 𝑉ℎ and the definitions of ̃︀𝑦ℎ

and ̃︀𝜆ℎ we have

𝐽2 = (̃︀𝜆ℎ − 𝜆ℎ, 𝑢− 𝑢ℎ) = 𝑎ℎ(̃︀𝑦ℎ − 𝑦ℎ, ̃︀𝜆ℎ − 𝜆ℎ) = −(̃︀𝑦ℎ − 𝑦ℎ, ̃︀𝑦ℎ − 𝑦ℎ) = −‖̃︀𝑦ℎ − 𝑦ℎ‖2 ≤ 0. (4.26)

From the above estimates we can derive the following error estimates for the optimal control problem.

Theorem 4.6 Let 𝑦, 𝑢, 𝜆 be the state, control, and adjoint solutions to the optimal control system (2.6), and
let 𝑦ℎ, 𝑢ℎ, 𝜆ℎ be the discrete solutions obtained by the SIPG method. Assume that 𝑦 ∈ 𝐻𝑠(Ω) for some
𝑠 > 3/2 and ℎ is sufficiently small. Then, there exist a constant 𝐶 independent of 𝑦, 𝑢, and 𝜆 such that

|||𝑦 − 𝑦ℎ|||+
1
𝛼
|||𝜆− 𝜆ℎ|||+ ‖𝑢− 𝑢ℎ‖ ≤

𝐶

𝛼
(|||𝜆− 𝑃ℎ𝜆|||+ |||𝑦 − 𝑃ℎ𝑦|||) .

Proof: From the estimates (4.25) and (4.26) it follows that

‖𝑢− 𝑢ℎ‖ ≤
𝐶

𝛼
(|||𝜆− 𝑃ℎ𝜆|||+ |||𝑦 − 𝑃ℎ𝑦|||) .

From the state equation we have |||𝑦−𝑦ℎ||| ≤ 𝐶‖𝑢−𝑢ℎ‖ and from the gradient equation we have 𝛼(𝑢−𝑢ℎ) =
𝜆− 𝜆ℎ. Hence we have the theorem. �

Using the approximation theory of the 𝐿2-projection, we can easily obtain

|||𝑣 − 𝑃ℎ𝑣||| ≤ 𝐶ℎ𝑘
(︁
𝜀1/2 + ‖𝛽‖∞ℎ1/2 + (‖𝜌‖∞ + 𝑏0)1/2ℎ

)︁
|𝑣|𝑘+1,

hence we have the following result.
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Corollary 4.7 Let the solution 𝑦, 𝑢, 𝜆 of the optimal control problem to be in 𝐻𝑘. Then there is a constant
𝐶 independent of 𝑦, 𝑢, and 𝜆 such that

|||𝑦 − 𝑦ℎ|||+
1
𝛼
|||𝜆− 𝑃ℎ𝜆|||+ ‖𝑢− 𝑢ℎ‖

≤ 𝐶𝛼−1ℎ𝑘
(︁
𝜀1/2 + ‖𝛽‖∞ℎ1/2 + (‖𝜌‖∞ + 𝑏0)1/2ℎ

)︁
(|𝑦|𝑘+1 + |𝜆|𝑘+1).

In summary,

‖𝑢− 𝑢ℎ‖ ≤ 𝛼−1

⎧⎨⎩
𝑂(ℎ𝑘), if diffusion dominated;
𝑂(ℎ𝑘+1/2), if advection dominated;
𝑂(ℎ𝑘+1), if reaction dominated.

The above error estimate is optimal for advection and reaction dominated problems, but suboptimal for
diffusion dominated problems.

4.3 𝐿2-error estimates

In this section we derive optimal error estimates in 𝐿2 norm for diffusion dominated problem. For simplicity
of the presentation we assume the constant advection field 𝛽. For 𝑒𝑦 = 𝑦 − 𝑦ℎ and 𝑒𝜆 = 𝜆 − 𝜆ℎ let 𝑧, 𝑣, 𝑝
be a solution to a dual system

∇ · (−𝜀∇𝑧 − 𝛽𝑧) + 𝑟𝑧 + 𝑝 = 𝑒𝑦 (4.27a)

𝛼𝑣 − 𝑧 = 0 (4.27b)

∇ · (−𝜀∇𝑝+ 𝛽𝑝) + 𝑟𝑝− 𝑣 = 𝑒𝜆. (4.27c)

The following theorem was shown in [22] for the optimal control problem (1.1)-(1.2).

Theorem 4.8 Let Ω be a bounded open convex subset of R𝑛, 𝛽 be a constant vector, and 𝑓, ̂︀𝑦 ∈ 𝐿2(Ω).
Then there exists a positive constant 𝐶 independent of 𝜀 such that the unique solution of the optimal control
problem (1.1)-(1.2) and the associated adjoint satisfy

𝜀3/2 (‖𝑦‖2 + ‖𝜆‖2) ≤ 𝐶 (‖𝑓‖+ ‖̂︀𝑦‖) .
Since the adjoint system is equivalent to the following (”dual”) optimal control problem

min
𝑝,𝑣

1
2
‖𝑝− 𝑒𝑦‖2 +

𝛼

2
‖𝑣‖2 (4.28)

subject to second order advection-diffusion equation

∇ · (−𝜀∇𝑝(𝑥) + 𝛽(𝑥)𝑝(𝑥)) + 𝑟(𝑥)𝑝(𝑥) = 𝑣(𝑥) + 𝑒𝜆(𝑥), 𝑥 ∈ Ω, (4.29a)

𝑝(𝑥) = 0, 𝑥 ∈ Γ𝐷, (4.29b)

𝜀
𝜕

𝜕n
𝑝(𝑥) = 0, 𝑥 ∈ Γ𝑁 , (4.29c)
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similar argument give us the following regularity estimate for the adjoint system (4.27),

𝜀3/2(‖𝑝‖2 + ‖𝜆‖2) ≤ 𝐶 (‖𝑒𝑦‖+ ‖𝑒𝜆‖) . (4.30)

Define the discrete bilinear form for the original optimal control problem to be

𝒜ℎ({𝑦, 𝑢, 𝜆}, {𝜑, 𝜙, 𝜓}) = 𝑎ℎ(𝑦, 𝜑)− (𝑢, 𝜑) + 𝛼(𝑢, 𝜙)− (𝜆, 𝜙) + 𝑎ℎ(𝜓, 𝜆) + (𝑦, 𝜓).

Since the SIPG method is consistent we have the following Galerkin orthogonality condition

𝒜ℎ({𝑒𝑦, 𝑒𝑢, 𝑒𝜆}, {𝜑, 𝜙, 𝜓}) = 0, ∀{𝜑, 𝜙, 𝜓} ∈ 𝑉ℎ × 𝑉ℎ × 𝑉ℎ. (4.31)

From the dual system (4.27) we have

‖𝑒𝑦‖2 + ‖𝑒𝜆‖2 = (∇ · (−𝜀∇𝑧 − 𝛽𝑧) + 𝑟𝑧 + 𝑝, 𝑒𝑦) + (𝛼𝑣 − 𝑧, 𝑒𝑢)
+ (∇ · (−𝜀∇𝑝+ 𝛽𝑝) + 𝑟𝑝− 𝑣, 𝑒𝜆).

Writing the above expression as a sum over all elements and integrating by parts, we have

(∇ · (−𝜀∇𝑧 − 𝛽𝑧), 𝑒𝑦) =
∑︁

𝜏

(∇ · (−𝜀∇𝑧 − 𝛽𝑧), 𝑒𝑦)𝜏

=
∑︁

𝜏

𝜀(∇𝑧,∇𝑒𝑦)𝜏 + (𝑧,𝛽 · ∇𝑒𝑦)𝜏 − 𝜀(∇𝑧 · n, 𝑒𝑦)𝜕𝜏 − (𝛽 · n𝑧, 𝑒𝑦)𝜕𝜏

Using the fact that 𝑧 is continuous, and as a result [[𝑧]] = 0, we have

(∇ · (−𝜀∇𝑧 − 𝛽𝑧) + 𝑟𝑧, 𝑒𝑦) =
∑︁

𝜏

𝜀(∇𝑧,∇𝑒𝑦)𝜏 + (𝑧, (𝑟 + 𝛽 · ∇)𝑒𝑦)𝜏

+
∑︁

𝑒

−𝜀({∇𝑧}, [[𝑒𝑦]])𝑒 + (|𝛽 · n|(𝑒+𝑦 − 𝑒−𝑦 ), 𝑧)𝑒 = 𝑎ℎ(𝑒𝑦, 𝑧).

Similarly, we have
(∇ · (−𝜀∇𝑝+ 𝛽𝑝) + 𝑟𝑝, 𝑒𝜆) = 𝑎ℎ(𝑝, 𝑒𝜆).

Thus,
‖𝑒𝑦‖2 + ‖𝑒𝜆‖2 = 𝑎ℎ(𝑒𝑦, 𝑧) + (𝑝, 𝑒𝑦) + (𝛼𝑣, 𝑒𝑢)− (𝑧, 𝑒𝑢) + 𝑎ℎ(𝑝, 𝑒𝜆) + (𝑣, 𝑒𝜆).

Using the Galerkin orthogonality (4.31) we have

‖𝑒𝑦‖2+‖𝑒𝜆‖2 = 𝑎ℎ(𝑒𝑦, 𝑧−𝐼ℎ𝑧)+(𝑒𝑦, 𝑝−𝐼ℎ𝑝)+𝛼(𝑒𝑢, 𝑣−𝐼ℎ𝑣)−(𝑒𝑢, 𝑧−𝐼ℎ𝑧)+𝑎ℎ(𝑝−𝐼ℎ𝑝, 𝑒𝜆)+(𝑒𝜆, 𝑣−𝐼ℎ𝑣),
(4.32)

where 𝐼ℎ : 𝐶0 → 𝑆ℎ is the usual continuous interpolant on the space of continuous piecewise linear
functions 𝑆ℎ. To show that

𝑎ℎ(𝑒𝑦, 𝑧 − 𝐼ℎ𝑧) ≤ 𝐶ℎ|||𝑒𝑦|||‖𝑧‖2,
we notice that since 𝑧 − 𝐼ℎ𝑧 is continuous, [[𝑧 − 𝐼ℎ𝑧]] = 0 and we have

𝑎ℎ(𝑒𝑦, 𝑧 − 𝐼ℎ𝑧) =
∑︁

𝜏

𝜀(∇𝑒𝑦,∇(𝑧 − 𝐼ℎ𝑧))𝜏 + (𝛽 · ∇𝑒𝑦, 𝑧 − 𝐼ℎ𝑧)𝜏

+
∑︁

𝑒

−𝜀([[𝑒𝑦]], {∇(𝑧 − 𝐼ℎ𝑧)})𝑒 + (|𝛽 · 𝑛|(𝑒+𝑦 − 𝑒−𝑦 ), 𝑧 − 𝐼ℎ𝑧)𝑒 = 𝐽1 + 𝐽2 + 𝐽3 + 𝐽4.
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By the Cauchy-Schwarz inequality and the standard approximation property of the interpolant 𝐼ℎ, we have

𝐽1 + 𝐽2 + 𝐽4 ≤ 𝐶ℎ|||𝑒𝑦|||‖𝑧‖2.

Using the trace inequality we obtain

𝐽3 =
∑︁

𝑒

√︂
𝜎

ℎ
‖[[𝑒𝑦]]‖

√︂
ℎ

𝜎
‖∇(𝑧 − 𝐼ℎ𝑧)‖𝑒 ≤

(︃∑︁
𝑒

𝜎

ℎ
‖[[𝑒𝑦]]‖2

)︃1/2

𝐶
∑︁

𝜏

‖∇(𝑧 − 𝐼ℎ𝑧)‖2𝜏 ≤ 𝐶ℎ|||𝑒𝑦|||‖𝑧‖2.

Similarly we can obtain
𝑎ℎ(𝑝− 𝐼ℎ𝑝, 𝑒𝜆) ≤ 𝐶ℎ|||𝑒𝜆||| ‖𝑝‖2,

and as a result

‖𝑒𝑦‖2 + ‖𝑒𝜆‖2 ≤ 𝐶ℎ(‖𝑧‖2 + ‖𝑣‖2 + ‖𝑝‖2)(|||𝑒𝑦|||+ |||𝑒𝑢|||+ |||𝑒𝜆|||).

Using now the 𝐻2 regularity (4.30) and the fact that 𝛼𝑢 = 𝜆 we obtain the following result.

Theorem 4.9 (𝐿2-error estimate) Let 𝑦, 𝑢, 𝜆 be the state, control, and adjoint solutions to the optimal
control system (2.6), and let 𝑦ℎ, 𝑢ℎ, 𝜆ℎ be the discrete solutions obtained by SIPG method. Assume the
advection field 𝛽 is constant and Ω is convex. Then for ℎ is sufficiently small there exists a constant 𝐶
independent of 𝑦, 𝑢, and 𝜆 such that

‖𝑦 − 𝑦ℎ‖+ ‖𝑢− 𝑢ℎ‖+ ‖𝜆− 𝜆ℎ‖ ≤ 𝐶𝛼ℎ(|||𝑦 − 𝑦ℎ|||+ |||𝑢− 𝑢ℎ|||+ |||𝜆− 𝜆ℎ|||).

4.4 NIPG method

Examining the proof of Theorem 4.6, one can see that to the derive the error estimates in the energy norm
the only properties of the SIPG we used are (4.13) and the consistency of the method for the state and
the adjoint equations. Since the NIPG method with upwinding satisfies the same properties (cf. [2]), the
result of Theorem 4.6 also holds for the NIPG method for the optimize-then-discretize approach. Of course
since the NIPG method is not adjointly consistent, the 𝐿2-error estimates are suboptimal even for a single
equation. Our numerical examples in the next section illustrate that for the optimal control problems.

The situation with discretize-then-optimize approach for NIPG method is more peculiar. In this situation
the adjoint equation is not consistent and as a result the Lemma 4.5 does not hold and we can not expect
any convergence in the energy norm for the adjoint and control variable. This indeed is confirmed by the
numerical experiments in the next section. However, the duality argument of Section 4.3 goes through
since the dual problem for the adjoint equation is now consistent for the NIPG method. Thus, for diffusion
dominated problems one can show the first order convergence for the adjoint and the control variable in the
𝐿2 norm. This first order convergence is observed by the numerical experiments in the next section.

5 Numerical Results

In this section we provide several numerical examples that illustrate how the optimize-then-discretize and the
discretize-then-optimize approaches may have substantially different numerical solutions for non-commutative
methods.
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5.1 Example 1

In the first example we show that the choice of the approach may have affect on the order of convergence.
We illustrate it by considering a problem (1.1)-(1.2) with

𝜀 = 1, 𝛼 = 1, 𝛽 = (
√

2/2,
√

2/2)𝑇 ,

and the exact solution

𝑦(𝑥, 𝑦) = 𝜂(𝑥)𝜂(𝑦), 𝑢(𝑥, 𝑦) = 𝜂(1− 𝑥)𝜂(1− 𝑦), (5.1)

where

𝜂(𝑧) = 𝑧3 − 𝑒𝑧−1 − 𝑒−1

1− 𝑒−1
.

In Figures 5.1 we report the convergence rates with the SIPG solution for the state and control. As expected,
the convergence rates are optimal. Recall that the SIPG method is commutative and both strategies optimize-
then-discretize and discretize-then-optimize coincide.

convergence rates, state convergence rates, control

Figure 5.1: Results for Example 1. The left and the right plots show the convergence rates of the computed
state and control, respectively, using the SIPG method with piecewise linear (P1) and piecewise quadratic
(P2) elements on a uniform mesh.

In Figures 5.2 we report the convergence rates with the NIPG solution for the state and control for
optimize-then-discretize strategy. Since the NIPG method is not adjointly consistent, similarly to a single
equation, the convergence rates in 𝐿2 norm for piecewise quadratic elements are suboptimal.

In Figures 5.3 we report the convergence rates with the NIPG solution for the state and the control for
discretize-then-optimize strategy. Since the NIPG method is not commutative and as a result inconsistent
for the adjoint equation the computed control fails to converge in 𝐻1 norm for both piecewise linear and
piecewise quadratic elements. As was expected from Section 4.4 we observe a first order convergence in 𝐿2

norm.
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convergence rates, state convergence rates, control

Figure 5.2: Results for Example 1. The left and the right plots show the convergence rates of the computed
state and control, respectively, using optimize-then-discretize method with the NIPG piecewise linear (P1)
and piecewise quadratic (P2) elements on a uniform mesh.

convergence rates, state convergence rates, control

Figure 5.3: Results for Example 1. The left and the right plots show the convergence rates of the computed
state and control, respectively, using discretize-then-optimize method with the NIPG piecewise linear (P1)
and piecewise quadratic (P2) elements on a uniform mesh.

5.2 Example 2

In the second example we want to show that the quality of the solution may also be affected by the choice
of the approach. We illustrate this by considering a problem (1.1)-(1.2) that has mild interior and boundary
layers. We select

𝜀 = 10−2, 𝛼 = 1, 𝛽 = (cos 𝜃, sin 𝜃)𝑇 , 𝜃 = 𝜋/4, 𝑓 ≡ 0, 𝑦 ≡ 1.

The boundary conditions for the state equation are displayed in Figure 5.4. The exact solution for this
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y=1

!

y=1

y=0

y=0

y=0

Internal layer

Boundary layers

c=(cos!,sin!)

Figure 5.4: Problem set up for the state.

problem is not known. For small 𝜀 the state has interior layer along the line 𝑦 = 0.2 +𝑥 tan 𝜃 and boundary
layers along the lines 𝑦 = 1 and 𝑥 = 1. In Figures 5.5, 5.6, and 5.7 we plot the SIPG and NIPG solutions
with optimize-then-discritize strategy, and the NIPG solution with discretize-then-optimize approach for the
state and control, respectively. One can see that SIPG solution is superior to the other two and essentially
smooth. The NIPG optimize-then-discritize solution looks smooth, but has larger oscillations along the
boundary layer. Finally, the NIPG discretize-then-optimize solution looks bad. The state has even larger
oscillations at the boundary layer and the computed control looks very discontinuous. This kind of behavior
for adjointly inconsistent methods was observed in [20, 28].

Figure 5.5: Numerical results for Example 2. The left and the right plots show the computed state and
control, respectively, with the SIPG piecewise linear elements on a uniform mesh with 800 elements.
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Figure 5.6: Numerical results for Example 2. The left and the right plots show the computed state and
control, respectively, using optimize-then-discretize method with the NIPG piecewise linear elements on a
uniform mesh with 800 elements.

Figure 5.7: Numerical results for Example 2. The left and the right plots show the computed state and
control, respectively, using discretize-then-optimize method with the NIPG piecewise linear elements on a
uniform mesh with 800 elements.

6 Summary

In this paper we looked at the DG methods applied to a model optimal control problem governed by
advection-diffusion equation. We derived the necessary symmetry conditions for a large class of DG meth-
ods both in primary and mixed forms and classified the most common ones. For the SIPG method we
obtained optimal error estimates in the energy and the 𝐿2-norm. However, the non-symmetric DG methods
require extra care. For our simple model problem the analysis and the numerical experiments show that
for the non-symmetric methods the optimize-then-discretize approach is preferable over the discretize-then-
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optimize approach. For nonlinear problems the situation is less clear and needs to be further investigated.
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