
MATH 2410 – Differential Equations April 28, 2018

Practice Final Exam 2. Solutions.

No calculators. Show your work. Clearly mark each answer.

1. Consider the autonomous differential equation

y′ = (y + 1)(y − 3)3(y − 5)2.

(a) Compute the equilibrium solutions.

(b) Sketch the phase line and classify the equilibria as sinks, sources, or nodes.

(c) Describe the long term behavior of the solution to the above differential equation with initial
condition y(0) = 2.

Solution:

2. A 400-gallon tank initially contains 200 gallons of sugar water at concentration of 0.1 pounds of sugar
per gallon. Suppose water containing 0.5 sugar per gallon flows into the top of the tank at a rate of
2 gallons per minute. The water in the tank is kept well mixed and well-mixed solution leaves the
bottom of the tank at rate 1 gallon per minute. How much sugar is in the tank when the tank is full?

Solution:

Let c(t) be amount of sugar in the tank. Then the concentration is C(t) = c(t)
V (t) , where is V (t) is

the volume of the fluid in the tank, which changes in time. Thus, C(0) = 0.1 lb./gal. and c(0) =

0.1 lb./gal. ∗ 200 gal. = 20 lb. and we need to find C(200) = c(200)
400 , since V (200) = 400. The sugar

enters the tank at the rate of

1

2
lb./gal.× 2 gal./min. = 1 lb./min.

and leaves at the rate of

c(t)

200 + t
lb./gal.× 1 gal./min. =

c(t)

200 + t
lb./min.



Thus, the rate of change rate for the amount of the mixture is

c′(t) = 1− c(t)

200 + t
.

Hence the equation for the amount of the mixture is

c′(t) +
c(t)

200 + t
= 1, c(0) = 20.

The integration factor is 1 + t hence

d

dt
(c(t)(200 + t)) = 200 + t

integration both sides we obtain

c(t)(200 + t) =
(200 + t)2

2
+A, for any constant A.

From the condition c(0) = 20 we find

20 ∗ 200 =
(200)2

2
+A =⇒ A = 200(20− 100) = −80 ∗ 200

Hence

c(t) =
(200 + t)

2
− 80 ∗ 200

200 + t
,

and as a result

c(200) =
(200 + 200)

2
− 80 ∗ 200

200 + 200
= 200− 40 = 160 lb.

and C(200) =
c(200)

400
=

160

400
= 0.4 lb./gal.

3. Solve the initial value problem

y′ +
3y

t+ 1
= (t+ 1)2

y(0) = 3.

Solution:

The integrating factor is

τ(t) = e
∫

3
1+tdt = e3 ln (1+t) = eln (1+t)3 = (1 + t)3.

Multiplying by the integrating factor τ(t), we obtain

d

dt

(
(1 + t)3y(t)

)
= (1 + t)5.

Integrating both sides, we obtain

(1 + t)3y(t) =
(1 + t)6

6
+ C.

From the condition y(0) = 3, we find

y(0) = 3 =
1

6
+ C ⇒ C =

17

6
.

As a result

y(t) =
(1 + t)3

6
+

17

6

1

(1 + t)3
.



4. The following system describe a pair of competing species. Describe the long-time likely outcome of
the competition by plotting the direction field.

dx

dt
= x(2− x− y)

dy

dt
= y(6− 2x− 2y).

Draw the curves x(t) and y(t) if x(0) = 3 and y(0) = 3 in the phase plane.

Solution:

5. Compute the Euler’s approximate solution at time t = 1 of the following system

dx

dt
= x(2− 2x− y)

dy

dt
= y(t− x− 2y).

With initial position x(0) = 2 and y(0) = 1 and time step ∆t = 0.5

Solution: We can rewrite the above system in vector form

~z′(t) = ~F (t, ~z(t)),

where ~z(t) =

(
x(t)
y(t)

)
, ~F (t, ~z(t)) =

(
x(2− 2x− y)
y(t− x− 2y)

)
and ~z(0) =

(
2
1

)
.

The Euler’s method for this problem is

~zn+1 = ~zn + ∆t · ~F (tn, ~z
n), n = 0, 1, . . . .



Since ∆t = 0.5, in order to approximate ~z(1), we only need two steps of the method. Since ~z(0) =(
2
1

)
, t0 = 0, we find

~z1 =

(
x(0)
y(0)

)
+ ∆t ·

(
x(0)(2− 2x(0)− y(0))
y(0)(t0 − x(0)− 2y(0))

)
=

(
2
1

)
+

1

2
·
(

2(2− 4− 1)
1(0− 2− 2)

)
=

(
2
1

)
+

1

2

(
−6
−4

)
=

(
−1
−1

)
.

Thus x1 = −1 and y1 = −1, and t1 = 1
2 . Hence

~z2 =

(
x1

y1

)
+ ∆t ·

(
x1(2− 2x1 − y1)
y1(t1 − x1 − 2y1)

)
=

(
−1
−1

)
+

1

2
·
(
−1(2 + 2 + 1)
−1(1/2 + 1 + 1)

)
=

(
−1
−1

)
+

1

2

(
−5
−5/2

)
=

(
−7/2
−9/4

)
.

Thus x(1) ≈ x2 = −3.5 and y(1) ≈ y2 = −2.25 .

6. Consider the linear system ~Y ′ = A~Y , where

~Y =

(
x
y

)
and A =

(
−4 −4
−6 −2

)
(a) Compute the eigenvalues of A.

(b) Classify the equilibrium at the origin (sink, spiral source, etc). Explain your answer.

(c) What is the general solution to the system? Sketch the phase plane.

Solution:

The characteristic polynomial is

det

(
−4− λ −4
−6 −2− λ

)
= (−4− λ)(−2− λ)− 24 = λ2 + 6λ− 16 = (λ+ 8)(λ− 2).

Hence the matrix A has two real eigenvalues λ1 = −8 and λ2 = 2 . Since we have two real eigenvectors,

one positive and one negative the equilibrium is a node (saddle).

In order to find straight line solution method we need to find the corresponding eigenvectors.

For λ1 = −8 we have (
−4 + 8 −4
−6 −2 + 8

)
=

(
4 −4
−6 6

)
.

Thus the corresponding eigenvector ~v1 =

(
1
1

)
.

For λ2 = 2 we have (
−4− 2 −4
−6 −2− 2

)
=

(
−6 −4
−6 −4

)
.

Thus the corresponding eigenvector ~v2 =

(
2
−3

)
. Hence the straight line solution is

~Y (t) = c1e
−8t

(
1
1

)
+ c2e

2t

(
2
−3

)
, c1, c2 ∈ R.



7. Compute the general solution to the linear system ~Y ′ = A~Y , where

~Y =

(
x
y

)
and A =

(
−1 4
−4 −1

)
Sketch the phase plane.

Solution:

The characteristic polynomial is

det

(
−1− λ 4
−4 −1− λ

)
= (−1− λ)2 + 42.

Hence the matrix A has two complex eigenvalues λ1 = −1 + 4i and λ2 = −1− 4i. For λ = −1 + 4i we
have (

−1− (−1 + 4i) 4
−4 −1− (−1 + 4i)

)
=

(
−4i 4
−4 −4i

)
.

Thus the corresponding eigenvector ~v =

(
1
i

)
. Thus

e(−1+4i)t

(
1
i

)
= e−t(cos (4t) + i sin (4t))

(
1
i

)
= e−t

((
cos (4t)
− sin (4t)

)
+ i

(
sin (4t)
cos (4t)

))
As a result the general solution is

c1e
−t

(
cos (4t)
− sin (4t)

)
+ c2e

−t
(

sin (4t)
cos (4t)

)

8. Consider the spring-mass system whose motion is governed by

y′′ + 4y′ + 5y = 2− t.



(a) Compute the solution to the above equation if y(0) = 0, y′(0) = 0.

(b) Describe (in words) the long term behavior of the mass.

Solution.

a). First we consider the homogeneous problem

y′′ + 4y′ + 5y = 0.

The corresponding characteristic equation is

r2 + 4r + 5 = (r + 2)2 + 1 = 0 =⇒ r = −2± i.

Since the roots are complex, the general solution to the homogeneous problem is

yH = c1e
−2t cos t+ c2e

−2t sin t.

The particular solution is of the form yp = A+Bt. Inserting it into the equation we obtain

4B + 5A+ 5Bt = 2− t =⇒ 5B = −1 =⇒ B = −1

5
; =⇒ 4B + 5A = 2 =⇒ A =

14

25
.

Thus the general solution is

y(t) = c1e
−2t cos t+ c2e

−2t sin t+
14

25
− t

5

and as a result

0 = y(0) = c1 + 0 +
14

25
=⇒ c1 = −14

25

Differentiating, we find

y′(t) = −3c1e
−3t cos (5t)− 5c1e

−3t sin (5t)− 3c2e
−3t sin (5t) + 5c2e

−3t cos (5t)− 2

29
e−t



and as a result

0 = y′(0) = −3c1 + 5c2 −
2

29
=⇒ 5c2 = 3c1 +

2

29
=⇒ c2 = − 6

145
+

2

145
= − 4

145
.

Thus the solution to initial value problem is

y(t) = − 2

29
e−3t cos (5t)− 4

145
e−3t sin (5t) +

2

29
e−t.

b). Since e−t dominates e−3t for t sufficiently large, the solution starting at (0, 0) after ossilationg a

little bit will be almost indistinguishable from e−t and of course approaches zero at t→∞.

9. Find the general solution for the damped spring-mass problem

y′′ + 4y = cos (2t).

Solve with initial conditions y(0) = 0, y′(0) = 1.

Solutions: Since the equation is linear, the general solution is of the form,

y(t) = yH(t) + yP (t),

where yH is the general solution to homogeneous problem y′′+4y = 0 and yP is any particular solution.
Looking yH(t) of the form est, we easily find that s must satisfy

s2 + 4 = 0 =⇒ s = ±2i.

Hence the general solution to the homogeneous equation is

yH(t) = c1 cos (2t) + c2 sin (2t).

To look for a particular solution, we use that sin (2t) = Im(e2it). Since sin (2t) is part of the homoge-
neous solution, the particular solution we are looking for is of the form

yP (t) = Cte2it.

Since
y′P (t) = Ce2it + 2Cite2it, y′′P (t) = 4Cie2it − 4Cte2it,

we have
y′′P (t) + 4yP (t) = 4Cie2it − 4Cte2it + 4Cte2it = 4Cie2it = e2it.

Thus, we find that C = 1
4i = − i

4 and as a result

yP (t) = Re

(
− i

4
te2it

)
= Re

(
− i

4
t[cos (2t) + i sin (2t)]

)
=
t

4
sin (2t).

Hence the general solution is

y(t) = c1 cos (2t) + c2 sin (2t) +
t

4
sin (2t).

To find the constants c1 and c2, we use the initial conditions y(0) = 0 and y′(0) = 0. The first initial
condition gives us 0 = y(0) = c1. Thus the solution reduces to

y(t) = c2 sin (2t) +
t

4
sin (2t).

Since

y′(t) = 2c2 cos (2t) +
1

4
sin (2t) +

t

2
cos (2t),



the second initial condition gives us

1 = y′(0) = 2c2 =⇒ =⇒ c2 =
1

2
.

As a result finally we obtain that the solution to the initial value problem is

y(t) =
1

2
sin (2t) +

t

4
sin (2t).

10. Consider the equation
y′ + 6y = e−2t

with initial conditions y(0) = 1. Using the Laplace transform, find y(t).

Solutions:

Taking Laplace transform L on both sides of the equation and using that

L[e−2t] =
1

s+ 2

and
L[y′] = sL[y]− y(0)

we obtain,

sL[y]− 1 + 6L[y] =
1

s+ 2
.

Solving for L[y], we obtain

(s+ 6)L[y] =
1

s+ 2
+ 1, =⇒ L[y] =

1

(s+ 6)(s+ 2)
+

1

s+ 6
.

Using that
1

(s+ 6)(s+ 2)
=

1

4

(
1

s+ 2
− 1

s+ 6

)
,

inverting the Laplace transform and using that L[eat] = 1
s−a for s > a, we obtain

y(t) = L−1
[

1

4

1

(s+ 2)
+

3

4

1

(s+ 6)

]
=

1

4
L−1

[
1

s+ 2

]
+

3

4
L−1

[
1

s+ 6

]
=

1

4
e−2t +

3

4
e−6t.

Thus,

y(t) =
1

4
e−2t +

3

4
e−6t

11. Consider the equation
y′ + 8y = 2 +H3(t)

with initial conditions y(0) = 0, where H3(t) is the Heavyside function,

H3(t) =

{
0, 0 ≤ t < 3
1, t ≥ 3.

Using the Laplace transform, find y(t).

Solutions:

Taking Laplace transform L on both sides of the equation and using that

L[2] =
2

s
,L[H3] =

e−3s

s
, and L[y′] = sL[y]− y(0)



we obtain,

sL[y] + 8L[y] =
1

s2
+
e−3s

s
.

Solving for L[y], we obtain

(s+ 8)L[y] =
2

s
+
e−3s

s
, =⇒ L[y] =

2

s(s+ 8)
+

e−3s

s(s+ 8)
.

Using that
1

s(s+ 8)
=

1

8

(
1

s
− 1

s+ 8

)
,

inverting the Laplace transform and using that L[eat] = 1
s−a for s > a, and L[Ha(t)f(t − a)] =

e−asL[f(t)], we obtain

y(t) =
1

8
L−1

[
1

s
− 1

s+ 8

]
+

1

8
L−1

[
e−3s

s
− e−3s

s+ 8

]
=

1

8
− 1

8
e−8t +

1

8
H3(t)− 1

8
H3(t)e−8(t−3).

Thus,

y(t) =
1

8

(
1− e−8t

)
+

1

8
H3(t)

(
1− e−8(t−3)

)


