
MATH 2410 – Differential Equations April 25, 2017

Practice Final Exam. Solutions.

No calculators. Show your work. Clearly mark each answer.

1. Sketch the slope filed of the autonomous differential equation

y′ = (y + 1)(y − 3)2(y − 5).

Solution: Discussed in class.

2. Sketch the slope filed of the following differential equation

y′ = x− y.

Solution: Discussed in class.

3. A five gallon tank has 1 gallon of pure water. We open a spigot so 1 gal. leaves the tank and introduce
a mixture of 1/2 lb. per gal at 2 gal per minute. Assuming the mixture is well mixed, what is the
concentration at the time when the tank is full?

Solution:

Let c(t) be amount of the mixture in the tank. Then the concentration is C(t) = c(t)
V (t) , where is V (t)

is the volume of the fluid in the tank, which changes in time. Thus, C(0) = 0 and we need to find

C(4) = c(4)
5 , since V (4) = 5. The mixture enters the tank at the rate of

1

2
lb./gal.× 2 gal./min. = 1 lb./min.

and leaves at the rate of

c(t)

1 + t
lb./gal.× 1 gal./min. =

c(t)

1 + t
lb./min.

Thus, the rate of change rate for the amount of the mixture is

c′(t) = 1− c(t)

1 + t
.

Hence the equation for the amount of the mixture is

c′(t) +
c(t)

1 + t
= 1, c(0) = 0.

The integration factor is 1 + t hence

d

dt
(c(t)(1 + t)) = 1 + t

integration both sides we obtain

c(t)(1 + t) = t+
t2

2
+A, for any constant A.



From the condition c(0) = 0 we find that A = 0. Hence

c(t) =
t2/2 + t

1 + t
,

and as a result C(4) =
c(4)

5
=

8 + 4

(1 + 4)5
=

12

25
lb./gal.

4. Solve the initial value problem

y′ − 3y

t+ 1
= (t+ 1)2

y(0) = 3.

Solution:

The integrating factor is

τ(t) = e−
∫

3
1+tdt = e−3 ln (1+t) = eln (1+t)−3

= (1 + t)−3.

Multiplying by the integrating factor τ(t), we obtain

d

dt

(
y(t)

(1 + t)3

)
=

1

1 + t
.

Integrating both sides, we obtain
y(t)

(1 + t)3
= ln (1 + t) + C.

From the condition y(0) = 3, we find

y(0)

(1 + 0)3
= 3 = ln (1 + 0) + C ⇒ C = 3.

As a result

y(t) = (1 + t)3 (ln (1 + t) + 3) .

5. The following system describe a pair of competing species. Describe the long-time likely outcome of
the competition by plotting the direction field.

dx

dt
= x(1− x− y)

dy

dt
= y(2− 3x− y).

Draw the curves x(t) and y(t) if x(0) = 10 and y(0) = 1 in the phase plane. Solution: Discussed in

class.

6. Compute the Euler’s approximate solution at time t = 1 of the following system

dx

dt
= x(1− x− y)

dy

dt
= y(1− x− 2y).

With initial position x(0) = 2 and y(0) = 1 and time step ∆t = 0.5.



Solution: We can rewrite the above system in vector form

~z′(t) = ~F (~z(t)),

where ~z(t) =

(
x(t)
y(t)

)
, ~F (~z(t)) =

(
x(1− x− y)
y(1− x− 2y)

)
and ~z(0) =

(
2
1

)
.

The Euler’s method for this problem is

~zn+1 = ~zn + ∆t · ~F (~zn), n = 0, 1, . . . .

Since ∆t = 0.5, in order to approximate ~z(1), we only need two steps of the method. Since ~z(0) =(
2
1

)
, we find

~z1 =

(
x(0)
y(0)

)
+ ∆t ·

(
x(0)(1− x(0)− y(0))
y(0)(1− x(0)− 2y(0))

)
=

(
2
1

)
+

1

2
·
(

2(1− 2− 1)
1(1− 2− 2)

)
=

(
2
1

)
+

1

2

(
−4
−3

)
=

(
0
−1/2

)
.

Thus x1 = 0 and y1 = −1/2. Hence

~z2 =

(
x1

y1

)
+ ∆t ·

(
x1(1− x1 − y1)
y1(1− x1 − 2y1)

)
=

(
0
−1/2

)
+

1

2
·
(

0(1 + 0 + 1/2)
−1/2(1 + 0 + 1)

)
=

(
0
−1/2

)
+

1

2

(
0
−1

)
=

(
0
−1

)
.

Thus x(1) ≈ x2 = 0 and y(1) ≈ y2 = −1 .

7. Find the solution to the following linear system

dx

dt
= 2− 2x

dy

dt
= −x− 2y

with initial position x(0) = 1 and y(0) = 1.

Solution:

The system is decoupled. First we solve the equation for x(t). Thus

x(t) = xH(t) + xp(t),

where xH(t) is the general solution to the homogeneous problem x′(t) = −2x(t) and xp(t) is any
particular solution. Thus we find that

xH(t) = Ce−2t, xp(t) = 1.

As a result
x(t) = Ce−2t + 1,

and from the condition x(0) = 1 we find that C = 0 and hence x(t) = 1 . Using that we now know

that x(t) = 1, the equation for y(t) becomes

y′(t) = −1− 2y, y(0) = 1.



Again the solution is of the form
y(t) = yH(t) + yp(t),

where yH(t) is the general solution to the homogeneous problem y′(t) = −yx(t) and yp(t) is any
particular solution. Thus we find that

yH(t) = Ce−2t, yp(t) = −1/2.

As a result

y(t) = Ce−2t − 1

2
,

and from the condition y(0) = 1 we find that C = 3
2 and hence y(t) =

3

2
e−2t − 1

2
.

8. Consider the following second order equation

y′′ + 6y′ + 34y = 2e−t.

(a) Compute the solution to the above equation if y(0) = 0, y′(0) = 0.

(b) Describe (in words) the long term behavior of the mass.

Solution.

a). First we consider the homogeneous problem

y′′ + 6y′ + 34y = 0.

The corresponding characteristic equation is

r2 + 6r + 34 = (r + 3)2 + 52 = 0 =⇒ r = −3± 5i.

Since the roots are complex, the general solution to the homogeneous problem is

yH = c1e
−3t cos (5t) + c2e

−3t sin (5t).

The particular solution is of the form yp = Ae−t. Inserting it into the equation we obtain

A− 6A+ 34A = 2 =⇒ 29A = 2 =⇒ A =
2

29
.

Thus the general solution is

y(t) = c1e
−3t cos (5t) + c2e

−3t sin (5t) +
2

29
e−t

and as a result

0 = y(0) = c1 + 0 +
2

29
=⇒ c1 = − 2

29
Differentiating, we find

y′(t) = −3c1e
−3t cos (5t)− 5c1e

−3t sin (5t)− 3c2e
−3t sin (5t) + 5c2e

−3t cos (5t)− 2

29
e−t

and as a result

0 = y′(0) = −3c1 + 5c2 −
2

29
=⇒ 5c2 = 3c1 +

2

29
=⇒ c2 = − 6

145
+

2

145
= − 4

145
.

Thus the solution to initial value problem is

y(t) = − 2

29
e−3t cos (5t)− 4

145
e−3t sin (5t) +

2

29
e−t.

b). Since e−t dominates e−3t for t sufficiently large, the solution starting at (0, 0) after ossilationg a

little bit will be almost indistinguishable from e−t and of course approaches zero at t→∞.



9. Find the general solution for the damped spring-mass problem

y′′ + 4y = sin (2t).

Solve with initial conditions y(0) = 0, y′(0) = 1.

Solutions: Since the equation is linear, the general solution is of the form,

y(t) = yH(t) + yP (t),

where yH is the general solution to homogeneous problem y′′+4y = 0 and yP is any particular solution.
Looking yH(t) of the form est, we easily find that s must satisfy

s2 + 4 = 0 =⇒ s = ±2i.

Hence the general solution to the homogeneous equation is

yH(t) = c1 cos (2t) + c2 sin (2t).

To look for a particular solution, we use that sin (2t) = Im(e2it). Since sin (2t) is part of the homoge-
neous solution, the particular solution we are looking for is of the form

yP (t) = Cte2it.

Since
y′P (t) = Ce2it + 2Cite2it, y′′P (t) = 4Cie2it − 4Cte2it,

we have
y′′P (t) + 4yP (t) = 4Cie2it − 4Cte2it + 4Cte2it = 4Cie2it = e2it.

Thus, we find that C = 1
4i = − i

4 and as a result

yP (t) = Im

(
− i

4
te2it

)
= Im

(
− i

4
t(cos (2t) + i sin (2t)

)
= − t

4
cos (2t).

Quick check:

y′P (t) = −1

4
cos (2t) +

t

2
sin (2t), y′′P (t) = sin (2t) + t cos (2t),

and

y′′P (t) + 4yP (t) = sin (2t) + t cos (2t)− 4
t

4
cos (2t) = sin (2t).

Hence the general solution is

y(t) = c1 cos (2t) + c2 sin (2t)− t

4
cos (2t).

To find the constants c1 and c2, we use the initial conditions y(0) = 0 and y′(0) = 1. The first initial
condition gives us 0 = y(0) = c1. Thus the solution reduces to

y(t) = c2 sin (2t)− t

4
cos (2t).

Since

y′(t) = 2c2 cos (2t)− 1

4
cos (2t) +

t

2
sin (2t),

the second initial condition gives us

1 = y′(0) = 2c2 −
1

4
=⇒ 2c2 =

1

4
+ 1 =

5

4
=⇒ c2 =

5

8
.

As a result finally we obtain that the solution to the initial value problem is

y(t) =
5

8
sin (2t)− t

4
cos (2t).



10. Using the Laplace transform solve the following initial value problem

y′ + 6y = e−2t + 2, y(0) = 2.

Solution:

Taking Laplace transform L on both sides of the equation and using that

L[e−2t] =
1

s+ 2

and
L[y′] = sL[y]− y(0)

we obtain,

sL[y]− 1 + 6L[y] =
1

s+ 2
.

Solving for L[y], we obtain

(s+ 6)L[y] =
1

s+ 2
+ 1, =⇒ L[y] =

1

(s+ 6)(s+ 2)
+

1

s+ 6
.

Using that
1

(s+ 6)(s+ 2)
=

1

4

(
1

s+ 2
− 1

s+ 6

)
,

inverting the Laplace transform and using that L[eat] = 1
s−a for s > a, we obtain

y(t) = L−1
[

1

4

1

(s+ 2)
+

3

4

1

(s+ 6)

]
=

1

4
L−1

[
1

s+ 2

]
+

3

4
L−1

[
1

s+ 6

]
=

1

4
e−2t +

3

4
e−6t.

Thus,

y(t) =
1

4
e−2t +

3

4
e−6t

11. Using the Laplace transform solve the following initial value problem

y′ + 9y = 1 +H2(t), y(0) = 1,

where H2(t) is the Heavyside function,

H2(t) =

{
0, 0 ≤ t < 2
1, t ≥ 2.

Taking Laplace transform L on both sides of the equation and using that

L[1] =
1

s
,L[H2] =

e−2s

s
, and L[y′] = sL[y]− y(0)

we obtain,

sL[y] + 9L[y]− 1 =
1

s
+
e−2s

s
.

Solving for L[y], we obtain

(s+ 9)L[y] = 1 +
1

s
+
e−2s

s
, =⇒ L[y] =

1

s+ 9
+

1

s(s+ 9)
+

e−2s

s(s+ 9)
.



Using that
1

s(s+ 9)
=

1

9

(
1

s
− 1

s+ 9

)
,

inverting the Laplace transform and using that L[eat] = 1
s−a for s > a, and L[Ha(t)f(t − a)] =

e−asL[f(t)], we obtain

y(t) = L−1
[

1

s+ 9

]
+

1

9
L−1

[
1

s
− 1

s+ 9

]
+

1

9
L−1

[
e−2s

s
− e−2s

s+ 9

]
= e−9t+

1

9
−1

9
e−9t+

1

9
H2(t)−1

9
H2(t)e−9(t−2).

Thus,

y(t) = e−9t +
1

9

(
1− e−9t

)
+

1

9
H2(t)

(
1− e−9(t−2)

)


