February 6, 2018

## Practice Exam 1. Solutions.

1. (20 points) Consider the autonomous differential equation

$$\frac{dy}{dt} = y(y-3)^2(y-5).$$

- (a) Compute the equilibrium solutions.
- (b) Sketch the phase line and classify the equilibria as sinks, sources, or nodes.
- (c) Describe the long term behavior of the solution to the above differential equation with initial condition y(0) = 4 and y(0) = 1.

## Solution.

- (a) The equation is autonomous. The function  $f(y) = y(y-3)^2(y-5)$  has 3 roots, namely 0, 3, 5, hence the equilibrium solutions are y = 0, y = 3, and y = 5.
- (b)



2. (20 points)



Consider the autonomous differential equation

$$\frac{dy}{dt} = f(y),$$

with the graph of f(y) on the right. Sketch the phase line and classify the equilibria as sinks, sources, or nodes.

Solution.



3. (20 points) Consider the equation.

$$\frac{dy}{dt} = 2y(t^2 + 1)$$

- (a) Find the general solution of the above equation
- (b) Using the Euler method approximate y(1) with initial condition y(0) = 1 and the time step  $\Delta t = 0.5$ .

## Solution.

(a) The equation is separable. In addition y = 0 is a solution. For  $y \neq 0$ , we have

$$\frac{dy}{y} = 2(t^2 + 1)dt.$$

Integrating, we find

$$\ln|y| = \frac{2}{3}t^3 + 2t + C, \quad C \in \mathbb{R}$$

 $\operatorname{or}$ 

$$y = C_1 e^{\frac{2}{3}t^3 + 2t}, \quad C_1 > 0.$$

(b) The Euler method is

$$y^{n+1} = y^n + \Delta t f(t_n, y^n),$$

In this problem  $f(t_n, y^n) = 2y^n(t_n^2 + 1), y^0 = 1, \Delta t = 0.5, t_0 = 0, t_1 = 0.5, t_2 = 1$  and as a result we need to compute  $y^2$ .

$$y^{1} = y^{0} + \Delta t 2y^{0}(t_{0}^{2} + 1) = 1 + 0.5 * 2 * 1 * (0 + 1) = 2,$$
  
$$y^{2} = y^{1} + \Delta t 2y^{1}(t_{1}^{2} + 1) = 2 + 0.5 * 2 * 2(0.25 + 1) = 2 + 2.5 = 4.5$$

Thus, we compute that with two time steps the approximate value of y(1) is 4.5.

4. (20 points) Consider the differential equation

$$\frac{dy}{dt} = yt^{\frac{2}{5}}.$$

- (a) Compute the general solution to the above differential equation.
- (b) Is there a unique solution y(t) to the above differential equation such that y(0) = 0? Why or why not?
- (c) Is there a unique solution y(t) to the above differential equation such that y(0) = 1? Why or why not?

## Solution.

(a) he equation is separable. In addition y = 0 is a solution. For  $y \neq 0$ , we have

$$\frac{dy}{y} = t^{\frac{2}{5}} dt.$$

Integrating, we find

$$\ln|y| = \frac{5}{7}t^{\frac{7}{5}} + C, \quad C \in \mathbb{R}$$
$$y = C_1 e^{\frac{5}{7}t^{\frac{7}{5}}}, \quad C_1 > 0.$$

or

- (b) The function  $f(t, y) = yt^{\frac{2}{5}}$  is continuous everywhere. In addition  $\frac{\partial f}{\partial y} = t^{\frac{2}{5}}$  is continuous everywhere as well. So by the existence and uniqueness theorem for any initial condition there is a unique solution in the neighborhood of this point.
- (c) Same as above.
- 5. (20 points) A 400-gallon tank initially contains 1 pound of sugar. Suppose water containing 0.5 pounds of sugar per gallon flows into the top of the tank at a rate of 2 gallons per minute. The water in the tank is kept well mixed and well-mixed solution leaves the bottom of the tank at the same rate, 2 gallons per minute. How much sugar will be in the tank after 10 minutes? What does the concentration approach in the long run?

**Solution.** Let C(t) denote the amount of sugar (in pounds) in the tank at time t. Thus C(0) = 1 and

$$\frac{dC}{dt} = C_{in} - C_{out}$$

The amount of sugar that gets in  $C_{in} = 2 \ gal/min * 0.5 \ lb/gal = 1 \ lb/min$ . The amount of sugar that gets out  $C_{out} = C(t)/400 lb/gal * 2 \ gal/min = C(t)/200 \ lb/min$ . Thus the differential equation is

$$\frac{dC}{dt} = 1 - \frac{C(t)}{200} = \frac{200 - C}{200}.$$

The equation is separable and for  $C \neq 200$  we have

$$\frac{dC}{200-C} = \frac{dt}{200}$$

Integrating, we find

$$-\ln|200 - C| = \frac{t}{200} + C, \quad C \in \mathbb{R}$$
$$\ln|200 - C| = -\frac{t}{200} + C, \quad C \in \mathbb{R}$$
$$200 - C = C_1 e^{-\frac{t}{200}}, \quad C_1 > 0,$$

using the initial condition C(0) = 1, we find  $C_1 = 199$ , and as a result the amount of sugar at time t is

$$C(t) = 200 - 199e^{-\frac{t}{200}}.$$

After the 10 minutes the amount of sugar in the tank is

$$C(10) = 200 - 199e^{-\frac{1}{20}} lb.$$

Taking the limit as  $t \to \infty$  we find that

$$\lim_{t \to \infty} C(t) = \lim_{t \to \infty} \left( 200 - 199e^{-\frac{t}{200}} \right) = 200 \ lb,$$

hence the concentration in the long run approaches  $\frac{200 \ lb}{400 \ gal} = 0.5 \ lb/gal$ , the same concentration that the sugar flows in.