Practice Final Exam

1. Find the standard matrix for the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ such that

$$T\left(\begin{array}{c}1\\0\\0\end{array}\right)=\left(\begin{array}{c}0\\1\end{array}\right),\quad T\left(\begin{array}{c}0\\1\\0\end{array}\right)=\left(\begin{array}{c}1\\1\end{array}\right),\quad T\left(\begin{array}{c}0\\0\\1\end{array}\right)=\left(\begin{array}{c}3\\2\end{array}\right).$$

- 2. True or False. If $T: \mathbb{R}^2 \to \mathbb{R}^2$ rotates vectors about the origin though an angle $\pi/10$, then T is a linear transformation. Explain.
- 3. Find the eigenvalues and the eigenvectors of the matrix

$$\left(\begin{array}{ccc}
5 & -2 & 3 \\
0 & 1 & 0 \\
6 & 7 & -2
\end{array}\right)$$

4. Let

$$A = \left(\begin{array}{cc} -2 & 12 \\ -1 & 5 \end{array}\right)$$

Find a diagonal matrix D and an invertible matrix P such that $A = PDP^{-1}$. Compute A^{10} .

5. For the following matrices A find the basis for Nul(A), Row(A), Col(A). What is rank(A)?

$$A = \left(\begin{array}{ccccc} 1 & 2 & 2 & 0 & 1 \\ 0 & 2 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right).$$

- 6. If the null space of a 50×60 matrix A is 40-dimensional,
 - (a) What is the rank of A?
 - (b) Null(A) is a subspace of \mathbb{R}^n , what is n?
 - (c) Col(A) is a subspace of \mathbb{R}^n , what is n?
- 7. Let A be a n-by-n matrix that satisfies $A^2 = A$. What can you say about the determinant of A?
- 8. Suppose a 4×7 matrix A has four pivot columns. Is Col $A = \mathbb{R}^4$? Is Nul $A = \mathbb{R}^3$? Explain.
- 9. Show that the set $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal set in \mathbb{R}^3 . Then express a vector \mathbf{x} as a linear combination of $\mathbf{u}'s$, where

$$\mathbf{u}_1 = \begin{pmatrix} 3 \\ -3 \\ 0 \end{pmatrix}, \quad \mathbf{u}_2 = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}, \quad \mathbf{u}_3 = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} 5 \\ -3 \\ 1 \end{pmatrix}.$$

10. Using the Gram-Schmidt process to produce an orthogonal basis for $W = span\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, where

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ -4 \\ 0 \\ 1 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 7 \\ -7 \\ -4 \\ 1 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}.$$