
MATH 1132 – Calculus II April 16, 2019

Practice Exam 3. Solutions.

No calculators. Show your work. Clearly mark each answer.

1. Find the radii and the intervals of convergence of the following power series.

(a)
∞∑

n=1

(x− 1)n

2nn

Solution. Using the n-Root Test we have

lim
n→∞

n
√
|an| = lim

n→∞

|x− 1|
2 n
√
n

=
|x− 1|

2
,

since limn→∞
n
√
n = 1. Thus for the series to converge we need

|x− 1|
2

< 1 =⇒ |x− 1| < 2 =⇒ −1 < x < 3.

Thus the radius of convergence is 2. To find the interval of convergence we need to check the end
points x = −1 and x = 3. When x = 3 we have

∞∑
n=1

(3− 1)n

2nn
=

∞∑
n=1

1

n

a Harmonic series which diverges. When x = −1 we have

∞∑
n=1

(−1− 1)n

2nn
=

∞∑
n=1

(−1)n

n

an alternating series which converges by the Alternating Series Theorem. Thus the interval of
convergence is [−1, 3).

(b)
∞∑

n=0

x2n

4n

Solution. Using the n-Root Test we have

lim
n→∞

n
√
|an| = lim

n→∞

|x|2

4
=
|x|2

4
.

Thus for the series to converge we need

|x|2

4
< 1 =⇒ |x|2 < 4 =⇒ |x| < 2 =⇒ −2 < x < 2.

Thus the radius of convergence is 2. To find the interval of convergence we need to check the end
points x = −2 and x = 2. When x = 2 we have

∞∑
n=1

(2)2n

4n
=

∞∑
n=1

1

which diverges. When x = −2 we have again

∞∑
n=1

(−2)2n

4n
=

∞∑
n=1

1

which diverges again. Thus the interval of convergence is (−2, 2).



(c)
∞∑

n=0

n2(x + 2)n

2n

Solution. Using the n-Root Test we have

lim
n→∞

n
√
|an| = lim

n→∞

n
√
n2|x + 2|

2
=
|x + 2|

2
,

since limn→∞
n
√
n2 = 1. Thus for the series to converge we need

|x + 2|
2

< 1 =⇒ |x + 2| < 2 =⇒ −4 < x < 0.

Thus the radius of convergence is 2. To find the interval of convergence we need to check the end
points x = −4 and x = 0. When x = 0 we have

∞∑
n=1

n22n

2n
=

∞∑
n=1

n2

which diverges. When x = −4 we have

∞∑
n=1

n2(−1− 1)n

2n
=

∞∑
n=1

(−1)nn2

an alternating series which diverges since n-term does not go to zero. Thus the interval of con-
vergence is (−4, 0).

2. Using Maclaurin series, compute the following limits.

(a)

lim
x→0

e2x − 1− 2x

x2

Solution. Since the Maclaurin series for e2x is

1 + 2x +
(2x)2

2
+

(2x)3

3!
+

(2x)4

4!
+ · · · =

∞∑
n=0

(2x)n

n!

we have

lim
x→0

e2x − 1− 2x

x2
= lim

x→0

(2x)2

2 + (2x)3

3! + (2x)4

4! + · · ·
x2

= lim
x→0

(
22

2
+

(2)3x

3!
+

(2)4x2

4!
+ · · ·

)
= 2.

(b)

lim
x→0

sinx− x + x3

6

x5

Solution. Since the Maclaurin series for sinx is

x− x3

3!
+

x5

5!
− x7

7!
+ · · · =

∞∑
n=0

(−1)n
x2n+1

(2n + 1)!

we have

lim
x→0

sinx− x + x3

6

x5
= lim

x→0

x5

5! −
x7

7! + · · ·
x5

= lim
x→0

(
1

5!
− x2

7!
+ · · ·

)
=

1

5!
=

1

120
.



3. Find the quadratic (n = 2) Taylor polynomial at a = 1 of the following function

x3/2.

Solution. To use the formula

T2(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2,

we need to compute f(1), f ′(1) and f ′′(1).

Since f(x) = x3/2, f ′(x) = 3
2x

1/2 and f ′′(x) = 3
4x
−1/2, we have f(1) = 1, f ′(1) = 3

2 and f ′′(1) = 3
4 .

Thus

T2(x) = 1 +
3

2
(x− 1) +

3

8
(x− 1)2.

4. What is the largest d can be such that the approximation

cosx ≈ 1− x2/2

is accurate to 4 decimal places for |x| ≤ d?

Solution. Since the Maclaurin series for cosx is

1− x2

2!
+

x4

4!
− · · · =

∞∑
n=0

(−1)n
x2n

(2n)!
,

it is alternating series, so we can estimate the remainder R2(x) = cosx−T2(x) = cosx− (1− x2/2) as

|R2(x)| ≤ |x|
4

4!
.

Thus we need to find largest d > 0 such that d4

4! ≤ 10−4. Solving for d we find

d4 ≤ 4!

104
=⇒ d ≤

4
√

24

10
.

Hence the largest d =
4√24
10 .

5. Find the Maclaurin series of the following functions and find the radii of convergence.

(a)
sin(x2/4)

Solution.

Since the Maclaurin series for sinx is

sinx =

∞∑
n=0

(−1)n
x2n+1

(2n + 1)!
,

and has infinite radius of convergence, we have

sin (x2/4) =

∞∑
n=0

(−1)n
(x2/4)2n+1

(2n + 1)!
=

∞∑
n=0

(−1)n
x4n+2

24n+2(2n + 1)!
,

and also has infinite radius of convergence.



(b)
ln (1− 4x)

Solution.

Since
d

dx
ln (1− 4x) =

−4

1− 4x

we know the geometric series

1

1− x
=

∞∑
n=0

xn, |x| < 1,

we have
−4

1− 4x
= −4

∞∑
n=0

(4x)n, |x| < 1/4, .

Integrating we obtain

ln (1− 4x) =

∫
−4dx

1− 4x
= C − 4

∞∑
n=0

4nxn+1

n + 1
.

Taking x = 0 in the above expression and noting that since ln 1 = 0, we have C = 0 and as a
result

ln (1− 4x) = −4

∞∑
n=0

4nxn+1

n + 1
, R =

1

4
.

6. Find the Taylor series of the following functions at a = 1

(a)
1

x

Solution.

To use the Taylor formula

f(x) ∼
∞∑

n=0

f (n)(1)(x− 1)n

n!
,

with f(x) = 1/x, we need to compute f (n)(1) for all n. Since

dn

dxn

(
1

x

)
=

(−1)nn!

xn+1
,

we have f (n)(1) = (−1)nn!, and as a result the Taylor formula is

1

x
∼
∞∑

n=0

(−1)n(x− 1)n.

(b)
xe2x

Solution.

Since the Taylor series for e2x at a = 1 is

ex =

∞∑
n=0

fn(1)(x− 1)n

n!
,



and
dn

dxn

(
e2x
)

= 2ne2x,

we obtain

e2x =

∞∑
n=0

2ne2(x− 1)n

n!
.

Since x = 1 + (x− 1), we obtain

xe2x = (1 + (x− 1))

∞∑
n=0

2ne2(x− 1)n

n!

=

∞∑
n=0

2ne2(x− 1)n

n!
+

∞∑
n=0

2ne2(x− 1)n+1

n!

=

∞∑
n=0

2ne2(x− 1)n

n!
+

∞∑
n=1

2n−1e2(x− 1)n

(n− 1)!

= e2 + e2
∞∑

n=1

2n + n2n−1

n!
(x− 1)n.


