
MATH 1132 – Calculus II March 7, 2017

Practice Exam 2. Solutions.

No calculators. Show your work. Clearly mark each answer.

1. Find the limits of the following sequences {an}.

(a)

an =
2n2 − n + 1

3n3 + 5

(b)

an =
cosn√

n

(c)

an =
5n2 − n + 1

2n2 + 5

Solution:

(a) Dividing numerator and denominator by n3 we obtain

an =
2n2 − n + 1

3n3 + 5
=

2
n −

1
n2 + 1

n3

3 + 5
n3

.

Hence

lim
n→∞

an =
0− 0 + 0

3 + 0
= 0.

(b) Since −1 ≤ cosx ≤ 1 for any x, we have

− 1√
n
≤ cosn√

n
≤ 1√

n
.

Because limn→∞
1√
n

= 0 by the Squeeze (Sandwich) theorem it follows that

lim
n→∞

cosn√
n

= 0.

(c) Dividing numerator and denominator by n2 we obtain

an =
5n2 − n + 1

2n2 + 5
=

5− 1
n + 1

n2

2 + 5
n2

.

Hence

lim
n→∞

an =
5− 0 + 0

2 + 0
=

5

2
.

2. Which of the following series converge or diverge? Give reasons to your answers.

(a)
∞∑

n=2

n2 + 1

(n2 − 1)2



(b)
∞∑

n=2

(−1)n+1

n lnn

(c)
∞∑

n=0

(−1)n
n

n + 1

(d)
∞∑

n=1

n2

n!

Solution:

(a) Since terms of the series are positive we can use the Limit Comparison Test. The leading term in
the numerator is n2 and n4 in the denominator we compare the original series to

∑
1
n2 . Since

lim
n→∞

n2+1
(n2−1)2

1
n2

= lim
n→∞

n2(n2 + 1)

(n2 − 1)2
= lim

n→∞

1 + 1
n2

(1− 1
n2 )2

= 1 > 0

and we know that
∑

1
n2 converges as a p-series with p = 2, it follows that

∑∞
n=2

n2+1
(n2−1)2 converges

as well.

(b) This is an alternating series. To show convergence we need to show that 1
n lnn monotonically

going to 0. Obviously

lim
n→∞

1

n lnn
= 0

and x lnx is monotonically increasing function (since both x and lnx are). Thus by the Alternating

Series Theorem
∑∞

n=2
(−1)n+1

n lnn converges.

(c) Since

lim
n→∞

n

n + 1
= lim

n→∞

1

1 + 1
n

= 1,

the necessary condition for the convergence of the series is not satisfied and hence the series
diverges.

(d) Since terms of the series are positive we can use the Ratio Comparison Test.

lim
n→∞

an+1

an
= lim

n→∞

(n+1)2

(n+1)!

n2

n!

= lim
n→∞

(n + 1)2

n2

1

n + 1
= lim

n→∞

(n + 1)2

n2
· lim
n→∞

1

n + 1
= 1 · 0 = 0 < 1.

Hence the series converges.

3. Using partial fractions show that the following improper integral converges.∫ ∞
1

dx

x(x + 1)

What can you say about convergence of the following series?

∞∑
n=1

1

n(n + 1)

Solution:



Since 1
x(x+1) = 1

x −
1

x+1 , we have∫ ∞
1

dx

x(x + 1)
= lim

M→∞

∫ M

1

(
1

x
− 1

x + 1

)
dx = lim

M→∞
[lnx− ln (x + 1)] |M1 = lim

M→∞
ln

(
M

M + 1

)
+ln 2 = ln 2.

Since the improper integral converges, the series

∞∑
n=1

1

n(n + 1)

consisting of positive terms by the integral test converges as well.

4. Express the following number as a ratio of two integers.

1.13131313 . . .

Solution: We can rewrite the number as

1.13131313 · · · = 1 +
13

102
+

13

104
+

13

106
+ · · · = 1 + 13 ·

∞∑
n=1

(
1

100

)n

.

Using the properties of geometric series
∑∞

n=1 r
n = r

1−r with r = 1
100 , we obtain,

1.13131313 · · · = 1 + 13 ·
∞∑

n=1

(
1

100

)n

= 1 + 13 ·
1

100

1− 1
100

= 1 +
13

99
=

112

99
.

5. Find the value of the following series
∞∑

n=2

2

5n
.

Solution: We can rewrite the series as

∞∑
n=2

2

5n
= 2 ·

∞∑
n=2

(
1

5

)n

.

Using the properties of geometric series
∑∞

n=2 r
n = 1

1−r − 1− r with r = 1
5 , we obtain,

∞∑
n=2

(
1

5

)n

=
1

1− 1
5

− 1− 1

5
=

5

4
− 1− 1

5
=

1

20
,

hence
∞∑

n=2

2

5n
= 2 · 1

20
=

1

10
.


