MATH 1131 - Calculus I

Practice Exam 3. Solutions.

1. Find the linear approximation of $\sqrt[4]{x}$ at point a=2 and using it estimate $\sqrt[4]{16.04}$.

Solution: The formula for the linear approximation is

$$L(x) = f(16) + f'(16)(x - 16),$$

where $f(x) = \sqrt[4]{x}$. Thus $f(16) = \sqrt[4]{16} = 2$ and $f'(16) = \frac{1}{4}16^{-3/4} = \frac{1}{4 \cdot 8} = \frac{1}{32}$. Hence

$$L(x) = 2 + \frac{1}{32}(x - 16),$$

and as a result

$$\sqrt[4]{16.04} \approx L(16.04) = 2 + \frac{1}{32}(16.04 - 16) = 2\frac{1}{800}.$$

2. Evaluate the following limits:

(a)

$$\lim_{x \to 0} \frac{\tan(3x)}{\sin(2x)}$$

Solution: Since $\tan 0 = \sin 0 = 0$, the limit is in the indeterminate form $\frac{0}{0}$. Thus be the L'Hopital's Rule

$$\lim_{x \to 0} \frac{\tan(3x)}{\sin(2x)} = \lim_{x \to 0} \frac{3\sec^2(3x)}{2\cos(2x)} = \frac{3}{2}.$$

(b)

$$\lim_{x \to \infty} \frac{e^{x^2}}{x^2}$$

Solution: The limit is in the indeterminate form $\frac{\infty}{\infty}$. Thus be the L'Hopital's Rule

$$\lim_{x \to \infty} \frac{e^{x^2}}{x^2} = \lim_{x \to \infty} \frac{2xe^{x^2}}{2x} = \lim_{x \to \infty} e^{x^2} = \infty.$$

(c)

$$\lim_{x \to \infty} \left(1 + \frac{1}{2x} \right)^x$$

Solution: The limit is in the indeterminate form 1^{∞} . Using logarithm, we have

$$\left(1 + \frac{1}{2x}\right)^x = e^{x\ln\left(1 + \frac{1}{2x}\right)}.$$

The limit

$$\lim_{x \to \infty} x \ln \left(1 + \frac{1}{2x} \right) = \lim_{x \to \infty} \frac{\ln \left(1 + \frac{1}{2x} \right)}{\frac{1}{x}}$$

is in indeterminate form $\frac{\infty}{\infty}.$ Using the L'Hopital's Rule

$$\lim_{x \to \infty} \frac{\ln\left(1 + \frac{1}{2x}\right)}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\frac{2x}{2x+1} \cdot \frac{-1}{2x^2}}{\frac{1}{x^2}} = \lim_{x \to \infty} \frac{x}{2x+1} = \frac{1}{2}.$$

Hence the answer is $e^{1/2} = \sqrt{e}$.

3. Find the minimum value of 5a + 3b for a > 0 and b > 0, such that ab = 25.

Solution: From ab=25 we have a=25/b. Hence we need to maximize 125/b+3b, which is a function of b. Taking derivative we have $-125/b^2+3$. The critical point is when $-125/b^2+3=0$ or $b^2=\frac{125}{3}$ or $b=\frac{5\sqrt{5}}{\sqrt{3}}$, hence $a=\frac{25\sqrt{3}}{5\sqrt{5}}=\sqrt{15}$. Since the second derivative is $250/b^3>0$, the minimum is

$$\frac{5\sqrt{5}}{\sqrt{3}} + \sqrt{15}.$$

- 4. Using the following graphing guidelines sketch the function $f(x) = x \ln^2 x$:
 - (a) What's the domain of f(x)?

Solution:

Because the domain of $\ln x$, x > 0, the domain of f(x) is also x > 0 or $(0, \infty)$.

(b) Is f(x) even or odd?

Solution:

Neither.

(c) Find f'(x).

Solution:

Using the product and chain rules

$$f'(x) = \ln^2 x + 2\ln x.$$

(d) Find f''(x).

Solution:

Using the chain rule

$$f''(x) = \frac{2\ln x}{x} + \frac{2}{x}.$$

(e) Find the critical points (i.e. where f'(x) = 0).

Solution:

$$f'(x) = \ln^2 x + 2 \ln x = \ln x (\ln x + 2) = 0 \implies \ln x = 0 \text{ or } \ln x + 2 = 0.$$

Thus x = 1 or $x = e^{-2}$.

(f) Find inflection points (i.e. where f''(x) = 0).

Solution:

$$f''(x) = 0 \implies 2 \ln x + 2 = 0 \implies x = e^{-1}$$
.

(g) Find the intervals on which the function is increasing, decreasing.

Solution:

Since f'>0 on the intervals $(0,e^{-2})$ and $(1,\infty),\ f(x)$ is increasing on $(0,e^{-2})$ and $(1,\infty)$. Consequently, f'<0 on $(e^{-2},1)$ and as a result f(x) is decreasing on $(e^{-2},1)$.

(h) Find the intervals on which the function is concave up, concave down.

Solution:

Since f'' > 0 on (e^{-1}, ∞) , f(x) is concave up on (e^{-1}, ∞) . Consequently, f'' < 0 on $(0, e^{-1})$ and as a result f(x) is concave down on $(0, e^{-1})$.

(i) Identify extreme points.

Solution:

 $x = e^{-2}$ is local maximum, x = 1 is local minimum, $x = e^{-1}$ is an inflection point.

(j) Locate vertical asymptotes

Solution:

There is no vertical asymptotes. Notice that

$$\lim_{x \to 0^+} x \ln^2 x = 0.$$

(k) Locate horizontal asymptotes

Solution:

There is no horizontal asymptotes,

$$\lim_{x \to \infty} x \ln^2 x = \infty.$$

(1) Find x-intercepts (i.e. where f(x) = 0).

Solution:

$$f(x) = 0 \implies x \ln^2 x = 0 \implies \ln x = 0 \implies x = 1.$$

(m) Find y-intercept (i.e. when f(0)).

Solution:

x = 0 is not in the domain of f(x), but $\lim_{x\to 0^+} x \ln^2 x = 0$.

(n) Sketch the graph

Solution:

See next page.

5. Find the interval on which Rolle's Theorem applied to $f(x) = x^2(x+3)$. Find a point c in that interval at which f'(c) = 0.

Solution: Since f(0) = f(-3) = 0 we can take the interval [-3, 0]. The function is a polynomial hence it is continuous and differentiable everywhere and the conditions of the Rolle's Theorem are satisfied. The Rolle's Theorem guarantees a point c such that f'(c) = 0.

Computing $f'(x) = 3x^2 + 6x$. Thus f'(c) = 0 implies $3c^2 + 6c = 0$. Thus c = 0 or c = -2. The point $c = -2 \in (-3, 0)$.

