Practice Exam 3

No calculators. Show your work. Clearly mark each answer.

- 1. Find the linear approximation of $\sqrt[4]{x}$ at point a = 16 and using it estimate $\sqrt[4]{16.04}$.
- 2. Evaluate the following limits:
 - (a)

(b)

$$\lim_{x \to 0} \frac{\tan\left(3x\right)}{\sin\left(2x\right)}$$

$$\lim_{x \to \infty} \frac{e^{x^2}}{x^2}$$

(c)

$$\lim_{x \to \infty} \left(1 + \frac{1}{2x} \right)^x$$

- 3. Find the minimum value of 5a + 3b for a > 0 and b > 0, such that ab = 25.
- 4. Using the following graphing guidelines sketch the function $f(x) = x \ln^2 x$:
 - (a) What's the domain of f(x)?
 - (b) Is f(x) even or odd?
 - (c) Find f'(x).
 - (d) Find f''(x).
 - (e) Find the critical points (i.e. where f'(x) = 0).
 - (f) Find inflection points (i.e. where f''(x) = 0).
 - (g) Find the intervals on which the function is increasing, decreasing.
 - (h) Find the intervals on which the function is concave up, concave down.
 - (i) Identify extreme points.
 - (j) Locate vertical asymptotes
 - (k) Locate horizontal asymptotes
 - (1) Find x-intercepts (i.e. where f(x) = 0).
 - (m) Find *y*-intercept (i.e. when f(0)).
 - (n) Sketch the graph
- 5. Find the interval on which Rolle's Theorem applied to $f(x) = x^2(x+3)$. Find a point c in that interval at which f'(c) = 0.