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Goals
I Orthogonal matrices.

I QR-decomposition.

I Solving LLS with QR-decomposition.
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Orthogonal matrices.

I A matrix Q ∈ Rm×n is called orthogonal if QTQ = In, i.e., if its
columns are orthogonal and have 2-norm one.

I If Q ∈ Rn×n is orthogonal, then QTQ = I implies that Q−1 = QT .

I If Q ∈ Rn×n is an orthogonal matrix, then QT is an orthogonal
matrix.

I If Q1, Q2 ∈ Rn×n are orthogonal matrices, then Q1Q2 is an
orthogonal matrix.

I If Q ∈ Rn×n is an orthogonal matrix, then

(Qx)T (Qy) = xT y x, y ∈ Rn

i.e. the angle between Qx and Qy is equal to the angle between x
and y

I As a result
‖Qx‖2 = ‖x‖2

i.e. orthogonal matrices preserve the 2-norm.
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Matrix Norms

Example
In two dimensions a rotation matrix

Q =
(

cos θ sin θ
− sin θ cos θ

)
is orthogonal matrix. This fact can easily be checked

QTQ =
(

cos θ − sin θ
sin θ cos θ

)(
cos θ sin θ
− sin θ cos θ

)
=
(

cos2 θ + sin2 θ 0
0 cos2 θ + sin2 θ

)
=
(

1 0
0 1

)
.
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QR-Decomposition.

I Let m ≥ n. For each A ∈ Rm×n there exists a permutation matrix
P ∈ Rmn×n, an orthogonal matrix Q ∈ Rm×m, and an upper
triangular matrix R ∈ Rn×n such that

AP = Q

(
R
0

)
} n
} m− n QR-decomposition.

I The QR decomposition of A can be computed using the Matlab
command [Q,R, P ] = qr(A).

I We will not go into the details of how Q,P,R are computed. If you
interested check Chapter 5 of the book

Gene Golub and Charles Van Loan, Matrix Computations
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Solving LLS using QR-Decomposition: Rank(A)=n

Assume that A ∈ Rm×n, has full rank n. (Rank deficient case will be
considered later.)

I Let

AP = Q

(
R
0

)
} n
} m− n ⇔ QTAP =

(
R
0

)
} n
} m− n

where R ∈ Rn×n is upper triangular matrix.

I Since A has full rank n the matrix R also has rank n and, therefore,
is nonsingular.

I Moreover, since Q is orthogonal it obeys QQT = I. Hence

‖QT y‖2 = ‖y‖2 ∀y ∈ Rm.

In addition, the permutation matrix satisfies PPT = I.
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Solving LLS using QR-Decomposition: Rank(A)=n

Using these properties of Q we get Let

‖Ax− b‖22 = ‖QT (Ax− b)‖22
= ‖QT (APPTx− b)‖22
= ‖(QTAP )PTx−QT b‖22

= ‖
(
R
0

)
PTx−QT b‖22
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Solving LLS using QR-Decomposition: Rank(A)=n

Partitioning QT b as

QT b =
(
c
d

)
} n
} m− n

and putting y = PTx we get

‖Ax− b‖22 =
∥∥∥∥( R

0

)
y −

(
c
d

)∥∥∥∥2

2

=
∥∥∥∥( Ry − c

−d

)∥∥∥∥2

2

= ‖Ry − c‖22 + ‖d‖22.

Thus,
min

x
‖Ax− b‖22 ⇔ min

y
‖Ry − c‖22 + ‖d‖22

and the solution is y = R−1c.
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Solving LLS using QR-Decomposition: Rank(A)=n

Thus,
min

x
‖Ax− b‖22 ⇔ min

y
‖Ry − c‖22 + ‖d‖22

and the solution is y = R−1c.

Recall
y = PTx, PPT = I, ⇒ x = Py.

Hence the solution is x = Py = PR−1c.
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Solving LLS using QR-Decomposition. Summary.

To solve a Linear Least Squares Problem using the QR-Decomposition
with matrix A ∈ Rm×n, of rank n and b ∈ Rm:

1. Compute an orthogonal matrix Q ∈ Rm×m, an upper triangular
matrix R ∈ Rn×n, and a permutation matrix P ∈ Rn×n such that

QTAP =
(
R
0

)
.

2. Compute

QT b =
(
c
d

)
.

3. Solve
Ry = c.

4. Set
x = Py.
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Solving LLS using QR-Decomposition. MATLAB
Implementation.

[m,n] = size(A);
[Q,R,P] = qr(A);
c = Q’*b;
y = R(1:n,1:n) \ c(1:n);
x = P*y;

If you type
x = A\b;

in Matlab, then Matlab computes the solution of the linear least squares
problem

min
x
‖Ax− b‖22

using the QR decomposition as described above.
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Solving LLS using QR-Decomposition: Rank(A)<n

The Rank Deficient Case: Assume that A ∈ Rm×n, m ≥ n has rank
r < n. (The case m < n can be handled analogously.)
Suppose that

AP = QR,

where Q ∈ Rm×m is orthogonal, P ∈ Rn×n is a permutation matrix, and
R ∈ Rn×n is an upper triangular matrix of the form

R =
(
R1 R2

0 0

)
with nonsingular upper triangle R1 ∈ Rr×r and R2 ∈ Rr×(n−r)

We can write

‖Ax− b‖22 = ‖QT (APPTx− b)‖22

=
∥∥∥∥( R1R2

0

)
PTx−QT b

∥∥∥∥2

2

.
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Solving LLS using QR-Decomposition: Rank(A)<n

Partition QT b as

QT b =

 c1
c2
d

 } r
} n− r
} m− n

and put y = PTx.
Partition

y =
(
y1
y2

)
} r
} n− r

This give us

‖Ax− b‖22 =

∥∥∥∥∥∥
 R1y1 +R2y2 − c1

c2
d

∥∥∥∥∥∥
2

2

= ‖R1y1 +R2y2 − c1‖22 + ‖c2‖22 + ‖d‖22.
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Solving LLS using QR-Decomposition: Rank(A)<n
Linear least squares problem minx ‖Ax− b‖22 is equivalent to

‖R1y1 +R2y2 − c1‖22 + ‖c2‖22 + ‖d‖22,

where R1 ∈ Rr×r is nonsingular.

Solution is
y1 = R−1

1 (c1 −R2y2)

for any y2 ∈ Rn−r.
Since y = PTx and PTP = I,

x = Py = P

(
R−1

1 (c1 −R2y2)
y2

)
We have infinitely many solutions since y2 is arbitrary. Which one to

choose?
If we use Matlab x = A\b, then Matlab computes the one with y2 = 0

x = P

(
R−1

1 c1
0

)
.
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Solving LLS using QR-Decomposition. MATLAB
Implementation.

[m,n] = size(A);
[Q,R,P] = qr(A);
c = Q’*b;
% Determine rank of A.
% The diagonal entries of R satisfy
%|R(1,1)| >= |R(2,2)| >= |R(3,3)| >= ..
% Find the smallest integer r such that
%|R(r+1,r+1)| < max(size(A))*eps*|R(1,1)|
tol = max(size(A))*eps*abs(R(1,1));
r = 1;
while ( abs(R(r+1,r+1)) >= tol & r < n ); r = r+1; end
y1 = R(1:r,1:r) \ c(1:r);
y2 = zeros(n-r,1);
x = P*[y1;y2];
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Solving LLS using QR-Decomposition: Rank(A)<n

All solutions of
min

x
‖Ax− b‖22

are given by

x = Py = P

(
R−1

1 (c1 −R2y2)
y2

)
where y2 ∈ Rn−r is arbitrary.

Minimum norm solution:
Of all solutions, pick the one with the smallest 2-norm. This leads to

min
y2

∥∥∥∥P ( R−1
1 (c1 −R2y2)

y2

)∥∥∥∥2

2
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Solving LLS using QR-Decomposition: Rank(A)<n

Since permutation matrix P is orthogonal∥∥∥∥P ( R−1
1 (c1 −R2y2)

y2

)∥∥∥∥2

2

=∥∥∥∥ R−1
1 (c1 −R2y2)

y2

∥∥∥∥2

2

=∥∥∥∥ R−1
1 (c1 −R2y2)
−y2

∥∥∥∥2

2

=∥∥∥∥( R−1
1 R2

I

)
y2 −

(
R−1

1 c1
0

)∥∥∥∥2

2

which is another linear least squares problem with unknown y2. This
problem is n× (n− r) and it has full rank. It can be solved using the
techniques discussed earlier.
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Solving LLS using QR-Decomposition. MATLAB
Implementation.

[m,n] = size(A);
[Q,R,P] = qr(A);
c = Q’*b;
% Determine rank of A (as before).
tol = max(size(A))*eps*abs(R(1,1));
r = 1;
while ( abs(R(r+1,r+1)) >= tol & r < n ); r = r+1; end
% Solve least squares problem to get y2
S = [ R(1:r,1:r) \ R(1:r,r+1:n);
eye(n-r) ];
t = [ R(1:r,1:r) \ c(1:r);
zeros(n-r,1) ];
y2 = S \ t; % solve least squares problem using backslash
% Compute x
y1 = R(1:r,1:r) \ ( c(1:r) - R(1:r,r+1:n) * y2 );
x = P*[y1;y2];
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Solving LLS using QR-Decomposition: Rank(A)<n

I Determination of the effective rank of A ∈ Rn×n using the QR
decomposition

AP = QR,

where the diagonal entries of R satisfy |R11| ≥ |R22| ≥ . . . .
I The effective rank r of A ∈ Rn×n is the smallest integer r such that

|Rr+1,r+1| < εmax {m,n}|R11|

I tol = max(size(A))*eps*abs(R(1,1));
r = 0;
while ( abs(R(r+1,r+1)) >= tol & r < n )
r = r+1;
end
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