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Goals
I Review of basic linear algebra (matrix computations).

I Solution of simple linear systems.

I Gaussian elimination.
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Matrix-Vector Multiplication

Let A ∈ Rm×n and x ∈ Rn. The i-th component of the matrix-vector
product y = Ax is defined by

yi =
n∑

j=1

aijxj (1)

i.e., yi is the dot product (inner product) of the i-th row of A with the
vector x.


...
yi

...

 =


...

...
...

ai1 ai2 ain

...
...

...




x1

x2

...
xn


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Matrix-Vector Multiplication

Another useful point of view is to look at entire vector y = Ax



y1

...
yi

...
ym

 =



a11 a12 a1n

...
...

...
ai1 ai2 ain

...
...

...
am1 am2 amn




x1

x2

...
xn



= x1



a11

...
ai1

...
am1

+ x2



a12

...
ai2

...
am2

+ · · ·+ xn



a1n

...
ain

...
amn

 .

Thus, y is a linear combination of the columns of matrix A.
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Matrix-Matrix Multiplication

If A ∈ Rm×p and B ∈ Rp×n, then AB = C ∈ Rm×n defined by

cij =
p∑

k=1

aikbkj ,

i.e. the ij-th element of the product matrix is the dot product between
i-th row of A and j-th column of B.

 cij

 =

 ai1 · · · aip




∣∣∣∣∣∣∣
b1j

...
bpj

∣∣∣∣∣∣∣


Thus, y is a linear combination of the columns of matrix A.
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Matrix-Matrix Multiplication

Another useful point of view is to look at j-th column of C


c1j

...
cij

...
cmj

 = b1j


a11

...
ai1

...
am1

+ b2j


a12

...
ai2

...
am2

+ · · ·+ bnj


a1n

...
ain

...
amn

 .

Thus, j-th column of C is a linear combination of the columns of matrix
A.
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Matrix-Matrix Multiplication (cont.)

Sometimes it is useful to consider matrices partitioned into blocks. For
example,

A =
(

A11 A12

A21 A22

)
B =

(
B11 B12

B21 B22

)
with m1 + m2 = m, p1 + p2 = p, and n1 + n2 = n.

This time C = AB can be expressed as

C =
(

A11B11 + A12B21 A11B12 + A12B22

A21B21 + A22B21 A12B12 + A22B22

)
.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics Floating Point Arithmetic – 6



Matrix-Matrix Multiplication (cont.)

Sometimes it is useful to consider matrices partitioned into blocks. For
example,

A =
(

A11 A12

A21 A22

)
B =

(
B11 B12

B21 B22

)
with m1 + m2 = m, p1 + p2 = p, and n1 + n2 = n.

This time C = AB can be expressed as

C =
(

A11B11 + A12B21 A11B12 + A12B22

A21B21 + A22B21 A12B12 + A22B22

)
.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics Floating Point Arithmetic – 6



Matrix-Matrix Multiplication (cont.)
For example, if

A =

 1 2 3
4 5 6
7 8 9

 B =

 1 2
3 4
5 6

 ,

then

This time C = AB can be expressed as

C =


(

1 2
4 5

)(
1
3

)
+
(

3
6

)
5

(
1 2
4 5

)(
2
4

)
+
(

3
6

)
6

(
7 8

)( 1
3

)
+ 9 · 5

(
7 8

)( 2
4

)
+ 9 · 6


=

 22 28
49 64
76 100

 .
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Basic Linear Algebra Subroutines (BLAS)

I There are many mathematically equivalent ways to organize basic
linear algebra tasks, such as matrix-vector multiplications,
matrix-matrix-multiplications, etc.

I Which one is best depends depends on the programming language
and the type of computer used (parallel vs. serial, memory
hierarchies,...).

I Write code in terms of Basic Linear Algebra Subroutines (BLAS)
BLAS level 1: vector operations such as x + y.
BLAS level 2: matrix vector operations such as Ax.
BLAS level 3: matrix matrix operations such as AB.

I Use Automatically Tuned Linear Algebra Software (ATLAS)
http://math-atlas.sourceforge.net/ or other tuned (to the computer
system of interest) BLAS.
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Solution of Linear Systems

I Let A ∈ Rm×n and x ∈ Rn. Then Ax is a linear combination of the
columns of A.
Hence Ax = b has a solution if b ∈ Rm can be written as a linear
combination of the columns of A.

I Solvability:
Ax = b is solvable for every b ∈ Rm iff the columns of A span Rm

(necessary n ≥ m).

I Uniqueness:
If Ax = b has a solution, then the solution is unique iff the columns
of A are linearly independent (necessary n ≤ m).

I Hence, for any b ∈ Rm, the system Ax = b has a unique solution iff
n = m and the columns of A are linearly independent.
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Transpose of a Matrix

I Let

A =

 1 2 3
4 5 6
7 8 9



then AT =

 1 4 7
2 5 8
3 6 9



.

I If A ∈ Rm×n and B ∈ Rn×k, then

(AB)T = BT AT .

More generally,

(A1A2 . . . Aj)T = AT
j . . . AT

2 AT
1 .

I If A ∈ Rn×n is invertible, then AT is invertible and

(AT )−1 = (A−1)T .

We will write A−T .
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Solution of Triangular Systems

I A matrix L ∈ Rn×n is called lower triangular matrix if all matrix
entries above the diagonal are equal to zero, i.e., if

lij = 0 for j > i.

I A matrix U ∈ Rn×n is called upper triangular matrix if all matrix
entries below the diagonal are equal to zero, i.e., if

lij = 0 for i > j.

I A Linear system with lower (upper) triangular matrix can be solved
by forward substitution (backward substitution).
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Solution of Triangular Systems

Example
Consider the system 2 0 0

1 4 0
4 3 3

 x1

x2

x3

 =

 4
2
5


Forward substitution gives

x1 = 4/2 = 2, x2 = (2− 1 · 2)/4 = 0, x3 = (5− 4 · 2− 3 · 0)/3 = −1.
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Solution of Triangular Systems

Example
Consider the system 2 4 2

0 −2 4
0 0 3

 x1

x2

x3

 =

 4
2
6


Backward substitution gives

x3 = 6/3 = 2, x2 = (2−4·2)/(−2) = 3, x1 = (4−2·2−4·3)/2 = −6.
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Solution of Triangular Systems. Back substitution.
Solution of Upper Triangular Systems (Row-Oriented Version).
Input: Upper triangular matrix U ∈ Rn×n, right hand side vector b ∈ Rn.
Output: Solution x ∈ Rn of Ux = b.
Mathematically,

xi =

bi −
n∑

j=i+1

uijxj

 /uii, if uii 6= 0.

MATLAB code that overwrites b with the solution to Ux = b.

if all(diag(u)) == 0
disp(’the matrix is singular’)

else
b(n) = b(n)/U(n,n);
for i = n-1:-1:1

b(i)= (b(i) - U(i,i+1:n)*b(i+1:n))/U(i,i);
end

end
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Solution of Triangular Systems. Back substitution.

Solution of Upper Triangular Systems (Column-Oriented Version).
Input: Upper triangular matrix U ∈ Rn×n, right hand side vector b ∈ Rn.
Output: Solution x ∈ Rn of Ux = b.
MATLAB code that overwrites b with the solution to Ux = b.

if all(diag(u)) == 0
disp(’the matrix is singular’)

else

for j = n:-1:2
b(j) = b(j)/U(j,j) ;
b(1:j-1) = b(1:j-1) - b(j)*U(1:j-1,j);

end

b(1) = b(1)/U(1,1);
end
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Gaussian Elimination

Gaussian elimination for the solution of a linear system transforms the
system Ax = b into an equivalent system with upper triangular matrix.

This is done by applying three types of transformations to the augmented
matrix (A|b).

I Type 1: Replace an equation with the sum of the same equation and
a multiple of another equation;

I Type 2: Interchange two equations; and

I Type 3: Multiply an equation by a nonzero number.

Once the augmented matrix (A|b) is transformed into (U |y), where U is
an upper triangular matrix, we can use the techniques discussed
previously to solve this transformed system Ux = y.
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Gaussian Elimination (cont.)

Consider a linear system Ax = b with

A =

 1 2 -1
2 1 0

-1 2 2

 , b =

 0
2
1

 .

The augmented system is 1 2 -1 0
2 1 0 2

-1 2 2 1

 .

Step 1.  1 2 -1 0
0 -3 2 2
0 4 1 1

 (1)
(2)← (2)− 2 ∗ (1)
(3)← (3) + 1 ∗ (2).
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Gaussian Elimination (cont.)

Consider a linear system Ax = b with

A =

 1 2 -1
2 1 0

-1 2 2

 , b =

 0
2
1

 .

The augmented system is 1 2 -1 0
2 1 0 2

-1 2 2 1

 .

Step 2.  1 2 -1 0
0 -3 2 2
0 0 11/3 11/3

 (1)
(2)
(3)← (3) + 4/3 ∗ (2).

Solving the triangular system we obtain x3 = 1, x2 = 0, x1 = 1.
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Gaussian Elimination

We need to modify Gaussian elimination for two reasons

I improve numerical stability (change how we perform pivoting)

I make it more versatile (leads to LU-decomposition)
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Gaussian Elimination (cont.)

Partial pivoting: In step i, find row j with j > i such that |aji| ≥ |aki|
for all k > i and exchange rows i and j. Such numbers aji we call pivots.
Again consider the augmented system 1 2 -1 0

2 1 0 2
-1 2 2 1

 .

Step 1.  2 1 0 2
1 2 -1 0

-1 2 2 1

 (1)← (2)
(2)← (1)
(3).
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Gaussian Elimination (cont.)
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Gaussian Elimination (cont.)

Partial pivoting: In step i, find row j with j > i such that |aji| ≥ |aki|
for all k > i and exchange rows i and j. Such numbers aji we call pivots.
Again consider the augmented system 1 2 -1 0

2 1 0 2
-1 2 2 1

 .

Step 4.  2 1 0 2
0 5/2 2 2
0 0 − 11

8 − 11
8

 (1)
(2)
(3)← (3)− 3/2

5/2 ∗ (2).

Solving the triangular system we obtain x3 = 1, x2 = 0, x1 = 1.
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Gaussian Elimination

Why do we need partial pivoting?

It doesn’t matter if we use exact arithmetic. Without partial pivoting
with floating point arithmetic the method can be unstable

How expensive is Gaussian elimination?

Using
n∑

j=1

j2 =
n(n + 1)(2n + 1)

6

we can calculate that for large n the number of flops in the Gaussian
elimination with partial pivoting approximately equal to 2n3/3.
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