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Goals
I Basic understanding of computer representation of numbers

I Basic understanding of floating point arithmetic

I Consequences of floating point arithmetic for numerical computation
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Representation of Real Numbers

In everyday life we use decimal representation of numbers. For example

1234.567

for us means

1 ∗ 104 + 2 ∗ 103 + 3 ∗ 102 + 4 ∗ 100 + 5 ∗ 10−1 + 6 ∗ 10−2 + 7 ∗ 10−3.

More generally
. . . dj . . . d1d0.d−1 . . . d−i . . .

represents

· · · dj ∗10j + · · ·+d1 ∗101 +d0 ∗100 +d−1 ∗10−1 + · · ·+d−i ∗10−i + · · · .
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Representation of Real Numbers

Let β ≥ 2 be an integer. For every x ∈ IR there exist integers e and
di ∈ {0, . . . , β − 1}, i = 0, 1, . . . , such that

x = sign(x)

( ∞∑
i=0

diβ
−i

)
βe. (1)

The representation is unique if one requires that d0 > 0 when x 6= 0.

Example

11
2

= 5 ∗ 100 + 5 ∗ 10−1 = (5.5)10,

11
2

= 1 ∗ 22 + 0 ∗ 21 + 1 ∗ 20 + 1 ∗ 2−1

= (1 ∗ 20 + 0 ∗ 2−1 + 1 ∗ 2−2 + 1 ∗ 2−3) ∗ 22 = (1.011)2 ∗ 22.
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Floating Point Numbers

In a computer only a finite subset of all real numbers can be represented.
These are the so–called floating point numbers and they are of the form

x̄ = (−1)s

(
m−1∑
i=0

diβ
−i

)
βe

with di ∈ {0, . . . , β − 1}, i = 0, 1, . . . ,m− 1, and e ∈ {emin, . . . , emax}.

I β is called the base,

I
∑m−1

i=0 diβ
−i is the significant or mantissa, m is the mantissa length,

I e is the exponent, and {emin, . . . , emax} is the exponent range.

I If β = 2, then we say the floating point number system is a binary
system. In this case the di’s are called bits.

I If β = 10, then we say the floating point number system is a decimal
system. In this case the di’s are called digits.

I A floating point number x̄ 6= 0 is said to be normalized if d0 > 0.
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A Toy Floating Point Number System
Consider the floating point number system
β = 2,m = 3, emin = −1, emax = 2.

The normalized floating point numbers x̄ 6= 0 are of the form

x̄ = ±1.d1d2 × 2e

since the normalization condition implies that d0 ∈ {1, . . . , β − 1} = {1}.

-

0

76547
2

35
2

27
4

3
2

5
4

17
8

3
4

5
8

1
2

Positive numbers with exponent e = 0 , 1 , 2 ,−1
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2

2

7
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3
2

5
4

1

7
8

3
4

5
8

1
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5
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7
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3
4

5
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Consider the floating point number system

x̄ = (−1)s

(
m−1∑
i=0

diβ
−i

)
βe

with di ∈ {0, . . . , β − 1}, i = 0, 1, . . . ,m− 1, and e ∈ {emin, . . . , emax}.

I The mantissa satisfies

m−1∑
i=0

diβ
−i ≤

m−1∑
i=0

(β − 1)β−i = β(1− β−m) < β.

I The mantissa of a normalized floating point number is always ≥ 1.

I The largest floating point number is

x̄max =

(
m−1∑
i=0

(β − 1)β−i

)
βemax = (1− β−m)βemax+1.

I The smallest positive normalized floating pt. number is x̄min = βemin .

I The distance between 1 and the next largest floating pt. number is β1−m.
Half this number, εmach = 1

2
β1−m, is called machine precision or unit

roundoff. (We will see later why).
The spacing between the floating pt. numbers in [1, β] is β−(m−1).
The spacing between the floating pt. numbers in [βe, ββe] is β−(m−1)βe.
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IEEE Floating Point Numbers
I Almost all every modern computer implements the IEEE binary (β = 2)

floating point standard.

I IEEE single precision floating point numbers are stored in 32 bits.

I IEEE double precision floating point numbers are stored in 64 bits.

I How these numbers are stored is quite interesting (clever), but a little too
involved to get into here. See the references [G91,O01,SUN] given at the
end of this lecture.

I Here are some important numbers.

Common Name (Approximate) Equivalent Value

Single Precision Double Precision

Unit roundoff 2−24 ≈ 6.e− 8 2−53 ≈ 1.1e− 16

Maximum normal number 3.4e+ 38 1.7e+ 308

Minimum positive normal number 1.2e− 38 2.3e− 308

Maximum subnormal number 1.1e− 38 2.2e− 308

Minimum positive subnormal number 1.5e− 45 5.0e− 324
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Rounding
Given a real number x we define

fl(x) = normalized floating point number closest to x.

A floating point number x̄ closest to x is obtained by rounding. If

x = sign(x)

(
∞∑

i=0

diβ
−i

)
βe,

then

fl(x) =

 sign(x)
(∑m−1

i=0 diβ
−i
)
βe, if dm < 1

2
β,

sign(x)
(∑m−1

i=0 diβ
−i + β−(m−1)

)
βe, if dm ≥ 1

2
β.

Example Let β = 10, m = 3. Then

fl(1.234 ∗ 10−1) = 1.23 ∗ 10−1,

fl(1.235 ∗ 10−1) = 1.24 ∗ 10−1,

fl(1.295 ∗ 10−1) = 1.30 ∗ 10−1.

Note, there may be two floating point numbers closest to x. fl(x) picks one of

them. For example, let β = 10, m = 3. Then 1.235− 1.24 = 0.005, but also

1.235− 1.23 = 0.005. See [G91,O01,SUN] for more details on ’breaking’ ties.
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Rounding Error

Theorem
If x is a number within the range of floating point numbers and
|x| ∈ [βe, βe+1), then the absolute error between x and the floating point
number fl(x) closest to x is given by

|fl(x)− x| ≤ 1
2
βe(1−m)

and, provided x 6= 0, the relative error is given by

|fl(x)− x|
|x|

≤ 1
2
β1−m. (2)

The number

εmach
def=

1
2
β1−m

is called machine precision or unit roundoff.
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Proof of the theorem:
If x = 0, then fl(x) = x and the assertion follows immediately.

Consider x > 0. (The case x < 0 can be treated in the same manner.)
Recall that the spacing between the floating point numbers

x̄ =

(
m−1∑
i=0

diβ
−i

)
βe ∈ [βe, βe+1)

is β−(m−1)βe. Hence if x ∈ [βe, βe+1), then the floating point number x̄
closest to x satisfies |x̄− x| ≤ 1

2
β−(m−1)βe. Since x ≥ βe,

|x̄− x|
|x| ≤ 1

2
β−(m−1).

fl(x) is a floating point number closest to x =
(∑∞

i=0 diβ
−i
)
βe, d0 > 0?
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Examples
Let β = 10, m = 3, thus εmach = 5 ∗ 10−3.

|fl(1.234 ∗ 10−1)− 1.234 ∗ 10−1| = 0.0004,

|fl(1.234 ∗ 10−1)− 1.234 ∗ 10−1|
1.234 ∗ 10−1

=
0.0004

1.234 ∗ 10−1
≈ 3.2 ∗ 10−3,

|fl(1.295 ∗ 10−1)− 1.295 ∗ 10−1| = 0.0005,

|fl(1.295 ∗ 10−1)− 1.295 ∗ 10−1|
1.295 ∗ 10−1

=
0.0005

1.295 ∗ 10−1
≈ 3.9 ∗ 10−3.
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Floating Point Arithmetic

I Let � represent one of the elementary operations +,−, ∗, /. If x̄ and
ȳ are floating point numbers, then x̄�ȳ may not be a floating point
number.
Example: β = 10, m = 4: 1.234 + 2.751 ∗ 10−1 = 1.5091.
What is the computed value for x̄�ȳ?

I In IEEE floating point arithmetic the result of the computation x̄�ȳ
is equal to the floating point number that is nearest to the exact
result x̄�ȳ. Therefore we use fl(x̄�ȳ) to denote the result of the
computation x̄�ȳ

I Model for the computation of x̄�ȳ, where � is one of the
elementary operations +,−, ∗, /.

1. Given floating point numbers x̄ and ȳ.
2. Compute x̄�ȳ exactly.
3. Round the exact result x̄�ȳ to the nearest floating point number

and normalize the result.

Example cont.: 1.234 + 2.751 ∗ 10−1 = 1.5091. Comp. result: 1.509
The actual implementation of the elementary operations is more
sophisticated. For more details see [DG91,O01].
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is equal to the floating point number that is nearest to the exact
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3. Round the exact result x̄�ȳ to the nearest floating point number

and normalize the result.

Example cont.: 1.234 + 2.751 ∗ 10−1 = 1.5091. Comp. result: 1.509
The actual implementation of the elementary operations is more
sophisticated. For more details see [DG91,O01].

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics Floating Point Arithmetic – 12



Floating Point Arithmetic (Cont.)
Given two numbers x̄, ȳ in floating point format, the computed result satisfies

|fl(x̄�ȳ)− (x̄�ȳ)|
x̄�ȳ

≤ εmach.

Examples
Consider the floating point system β = 10 and m = 4.

i. x̄ = 2.552 ∗ 103 and ȳ = 2.551 ∗ 103.
x̄− ȳ = 0.001 ∗ 103 = 1.000 ∗ 100. In this case x̄− ȳ is a floating point
number and nothing needs to done; no error occurs in the subtraction of
x̄, ȳ.

ii. x̄ = 2.552 ∗ 103 and ȳ = 2.551 ∗ 102.
x̄− ȳ = 2.2969 ∗ 103. This is not a floating point number. The floating
point number nearest to x̄− ȳ is fl(x̄− ȳ) = 2.297 ∗ 103.

|fl(x̄− ȳ)− (x̄− ȳ)|
|x̄− ȳ| =

|2.297 ∗ 103 − 2.2969 ∗ 103|
2.2969 ∗ 103

≈ 4.4 ∗ 10−5

< εmach = 5 ∗ 10−4.
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Floating Point Arithmetic: Cancellation
For the previous result on the error between x̄�ȳ and the computed fl(x̄�ȳ)
only holds if x̄, ȳ in floating point format. What happens when we operate with
numbers that are not in floating point format?

Example
Consider the floating point system β = 10 and m = 4.
Subtract the numbers x = 2.5515052 ∗ 103 and y = 2.5514911 ∗ 103.

1. Compute the floating point numbers x̄ and ȳ nearest to x and y,
respectively: x̄ = 2.552 ∗ 103 and ȳ = 2.551 ∗ 103.

2. Compute x̄− ȳ exactly: x̄− ȳ = 0.001 ∗ 103.

3. Round the exact result x̄− ȳ to the nearest floating point number:
fl(0.001 ∗ 103) = 0.001 ∗ 103. Normalize the number:
fl(0.001 ∗ 103) = 1.000. The last digits are filled with (spurious) zeros.

The exact result is 2.5515052 ∗ 103 − 2.5514911 ∗ 103 = 1.410 ∗ 10−2. The
relative error between exact and computed solution is

|1.000− 1.410 ∗ 10−2|
1.410 ∗ 10−2

≈ 70� εmach = 5 ∗ 10−4.

Note that this large error is not due the computation of fl(x̄− ȳ). The large
error is caused by the rounding of x and y at the beginning.
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Floating Point Arithmetic: Cancellation (cont.)
I To analyze the analyze the error incurred by the subtraction of two

numbers, the following representation is useful:
For every x ∈ IR, there exists ε with |ε| ≤ εmach such that

fl(x) = x(1 + ε).

Note that if x 6= 0, then the previous identity is satisfied for
ε

def
= (fl(x)− x)/x. The bound |ε| ≤ εmach follows from (2).

I For x, y ∈ IR we have ε1, ε2 with |ε1|, |ε2| ≤ εmach such that

fl(x) = x(1 + ε1), fl(y) = y(1 + ε2).

Moreover fl(fl(x)− fl(y)) = (fl(x)− fl(y))(1 + ε3), with |ε3| ≤ εmach.

I Thus,

fl(fl(x)− fl(y)) = (fl(x)− fl(y))(1 + ε3) = [x(1 + ε1)− y(1 + ε2)](1 + ε3)

= (x− y)(1 + ε3) + (xε1 − yε2)(1 + ε3)

and, if x− y 6= 0, then the relative error is given by

|fl(fl(x)− fl(y))− (x− y)|
|x− y| =

∣∣ε3 +
xε1 − yε2
x− y (1 + ε3)

∣∣ (3)

If ε1ε2 6= 0 and x− y is small, the quantity on the rhs could be � εmach.
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Floating Point Arithmetic: Cancelation (cont.)

I Similar analysis can be carried out for +,−, ∗, /.

I Catastrophic cancelation can only occur with +,−.

I Catastrophic cancelation can only occur if one subtracts two
numbers which are not both in floating point format and which have
the same sign and are of approximately the same size, see (3), or if
one adds two numbers which are not both in floating point format,
which have opposite sign and their absolute values of approximately
the same size.
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Floating Point Arithmetic: Cancelation Example 1

Evaluation of 1−cos(x) near x = 0.
(All computations were done using
single precision Fortran.)

x 1− cos

0.500000 0.122417E + 00
0.125000 0.780231E − 02
0.312500E − 01 0.488222E − 03
0.781250E − 02 0.305176E − 04
0.195312E − 02 0.190735E − 05
0.488281E − 03 0.119209E − 06
0.122070E − 03 0.
0.305176E − 04 0.
0.762939E − 05 0.
0.190735E − 05 0.

Since cos(0) = 1 we expect catastrophic cancelation. If x = 0.122070E − 03,
then

1− cos(x) ≈ 1.0000000000− 0.99999999254......

= 0.00000000745..... = 7.45054.....e− 09

1− fl(cos(x)) ≈ 1.000000− fl(9.999999︸ ︷︷ ︸
7 digits

9254...... ∗ 10−1)

= 1.000000− 1.000000 = 0.
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Floating Point Arithmetic: Cancelation Example 1 (cont.)
Two alternatives for small |x|.

I Since cos2(x) + sin2(x) = 1 it holds that
1− cos(x) = sin2(x)/(1 + cos(x)).

The formula sin2(x)/(1 + cos(x)) avoids subtraction of two number that
are not in floating point format and are almost the same (recall that we
consider the case |x| small).

I The Leibnitz criterion says that if the series S =
∑∞

i=1(−1)ici, ci ≥ 0,
converges, then

∣∣S −∑n
i=1(−1)ici

∣∣ < cn+1.

If we apply this to the Taylor expansion of cos(x),

cos(x) = 1− x2

2
+
x4

4!
− x6

6!
+
x8

8!
± . . . ,

then ∣∣∣ cos(x)−
(

1− x2

2
+
x4

4!
− x6

6!

) ∣∣∣ < x8

8!
.

After some rearrangements we can use the approximation

1− cos(x) ≈ x2

2

(
1− x2

12
+

x4

360

)
and we know that the difference is less than x8/(8!) which allows us to
control the error of the approximation.
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Floating Point Arithmetic: Cancelation Example 1 (cont.)

x 1− cos sin2 /(1 + cos) Taylor

0.500000 0.122417 0.122417 0.122418
0.125000 0.780231E − 02 0.780233E − 02 0.780233E − 02
0.312500E − 01 0.488222E − 03 0.488241E − 03 0.488242E − 03
0.781250E − 02 0.305176E − 04 0.305174E − 04 0.305174E − 04
0.195312E − 02 0.190735E − 05 0.190735E − 05 0.190735E − 05
0.488281E − 03 0.119209E − 06 0.119209E − 06 0.119209E − 06
0.122070E − 03 0. 0.745058E − 08 0.745058E − 08
0.305176E − 04 0. 0.465661E − 09 0.465661E − 09
0.762939E − 05 0. 0.291038E − 10 0.291038E − 10
0.190735E − 05 0. 0.181899E − 11 0.181899E − 11
0.476837E − 06 0. 0.113687E − 12 0.113687E − 12
0.119209E − 06 0. 0.710543E − 14 0.710543E − 14
0.298023E − 07 0. 0.444089E − 15 0.444089E − 15

Computations were performed using single precision Fortran.
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Floating Point Arithmetic: Cancelation Example 2
I The roots of the quadratic equation ax2 + bx+ c = 0 are given by

x± =
(
−b±

√
b2 − 4ac

)
/(2a).

I When a = 5 ∗ 10−4, b = 100, and c = 5 ∗ 10−3 the computed (using single
precision Fortran) first root is

x+ = 0.

Cannot be exact, since x = 0 is a solution of the quadratic equation if and
only if c = 0.

I Since fl(b2 − 4ac) = fl(b2) for the data given above, we suffer from
catastrophic cancellation.

I A remedy is the following reformulation of the formula for x+:

−b+
√
b2 − 4ac

2a
=

1

2a

(
−b+

√
b2 − 4ac

) (
−b−

√
b2 − 4ac

)
−b−

√
b2 − 4ac

=
2c

−b−
√
b2 − 4ac

Here the subtraction of two almost equal numbers is avoided and the
computation using this formula gives x+ = −0.5E − 04.

I A ‘stable’ (see later for a description of stability) formula for both roots

x1 =
(
−b− sign(b)

√
b2 − 4ac

)
/(2a), x2 = c/(ax1).
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b2 − 4ac

=
2c

−b−
√
b2 − 4ac

Here the subtraction of two almost equal numbers is avoided and the
computation using this formula gives x+ = −0.5E − 04.

I A ‘stable’ (see later for a description of stability) formula for both roots

x1 =
(
−b− sign(b)

√
b2 − 4ac

)
/(2a), x2 = c/(ax1).
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Floating Point Arithmetic: Cancelation Example 2
I The roots of the quadratic equation ax2 + bx+ c = 0 are given by

x± =
(
−b±

√
b2 − 4ac

)
/(2a).

I When a = 5 ∗ 10−4, b = 100, and c = 5 ∗ 10−3 the computed (using single
precision Fortran) first root is

x+ = 0.

Cannot be exact, since x = 0 is a solution of the quadratic equation if and
only if c = 0.

I Since fl(b2 − 4ac) = fl(b2) for the data given above, we suffer from
catastrophic cancellation.

I A remedy is the following reformulation of the formula for x+:
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−b−

√
b2 − 4ac

)
−b−

√
b2 − 4ac

=
2c

−b−
√
b2 − 4ac

Here the subtraction of two almost equal numbers is avoided and the
computation using this formula gives x+ = −0.5E − 04.

I A ‘stable’ (see later for a description of stability) formula for both roots

x1 =
(
−b− sign(b)

√
b2 − 4ac

)
/(2a), x2 = c/(ax1).
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Summary

I Introduced how numbers are represented on a computer.

I Only a small set of numbers can be represented on the computer.

I The relative error between x 6= 0 and its nearest floating point
number fl(x) is

|fl(x)− x|
|x|

≤ εmach
def=

1
2
β1−m.

I Introduced basic properties of floating point arithmetic.

I Catastrophic cancellation can occur if one subtracts [adds] two
numbers which are not both in floating point format and which have
the same [opposite] sign and [their absolute values] are of
approximately the same size.
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Additional Reading

G91 David Goldberg. What every computer scientist should know about
floating-point arithmetic, ACM Comput. Surv., Vol. 23 (1), 1991,
pp. 5 - 48.
http://docs.sun.com/source/806-3568/ncg goldberg.html

O01 Michael L. Overton. Numerical Computing with IEEE Floating Point
Arithmetic, SIAM, Philadelphia, 2001.

SUN SUN Microsystems Numerical Computation Guide
http://docs.sun.com/source/806-3568/
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