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Goals
I Approximation Properties of Interpolating Polynomials.

I Interpolation at Chebyshev Points.

I Spline Interpolation.

I Some MATLAB’s interpolation tools.
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Approximation Properties of Interpolating Polynomials.

One motivation for the investigation of interpolation by polynomials is
the attempt to use interpolating polynomials to approximate unknown
function values from a discrete set of given function values.

How well does the interpolating polynomial P (f |x1, . . . , xn) approximate
the function f?

Theorem
Let x1, x2, . . . , xn be unequal points. If f is n times differentiable, then
for each x̄ there exists ξ(x̄) in the smallest interval containing the points
x1, x2, . . . , xn, x̄ such that

f(x̄)− P (f |x1, x2, . . . , xn)(x̄) =
1
n!
ω(x̄)f (n)(ξ(x̄))

where ω(x) =
∏n

j=1(x− xj).
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Approximation Properties of Interpolating Polynomials.

Corollary (Convergence of Interpolating Polynomials)
If P (f |x1, . . . , xn) is the polynomial of degree less or equal to n− 1 that
interpolates f at the n distinct nodes x1, x2, . . . , xn belonging to the
interval [a, b] and if the nth derivative f (n) of f is continuous on [a, b],
then

max
x∈[a,b]

|f(x)−P (f |x1, . . . , xn)(x)| ≤ 1
n!

max
x∈[a,b]

|f (n)(x)| max
x∈[a,b]

∣∣∣∣∣
n∏

i=1

(x− xi)

∣∣∣∣∣ .

The size of the error between the interpolating polynomial
P (f |x1, . . . , xn) and f depends on

I the smoothness of the function (maxx∈[a,b]|f (n)(x)|) and

I he interpolation nodes (maxx∈[a,b] |
∏n

i=1(x− xi)|).
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Approximation Properties of Interpolating Polynomials.

Example
Consider the function

f(x) = sin (x).

For n = 0, 1, . . . , it holds that

f (n)(x) =
{

(−1)k sin (x), if n = 2k
(−1)k cos (x), if n = 2k + 1.

Since |f (n)(x)| ≤ 1 for all x we obtain that

max
x∈[a,b]

|f(x)− P (f |x1, . . . , xn)(x)| ≤ 1
n!

(b− a)n.

Thus, on any interval [a, b] the sine function can be uniformly
approximated by interpolating polynomials.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics Linear Least Squares – 4



Interpolation at Equidistant Points.
I The interpolation points are xi = a+ ih, i = 1, . . . , n, where
h = b−a

n−1 .

I With this choice of nodes, one can show that for arbitrary x ∈ [a, b],∣∣∣∣∣
n∏

i=1

(x− xi)

∣∣∣∣∣ ≤ 1
4
hn(n− 1)!

I The error between the interpolating polynomial P (f |x1, . . . , xn) and
f is bounded by

max
x∈[a,b]

|f(x)− P (f |x1, . . . , xn)(x)|

≤ 1
n!

max
x∈[a,b]

|f (n)(x)| max
x∈[a,b]

∣∣∣∣∣
n∏

i=1

(x− xi)

∣∣∣∣∣
≤ hn

4n
max

x∈[a,b]
|f (n)(x)|

provided that the nth derivative f (n) of f is continuous on [a, b].
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Interpolation at Chebyshev Points.

I Is there a choice x∗1, x
∗
2, . . . , x

∗
n of nodes such that

max
x∈[a,b]

∣∣∣∣∣
n∏

i=1

(x− x∗i )

∣∣∣∣∣
is minimal?

I This leads to the minmax, or Chebyshev approximation problem

min
x1,...,xn

max
x∈[a,b]

∣∣∣∣∣
n∏

i=1

(x− x∗i )

∣∣∣∣∣ .
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Interpolation at Chebyshev Points.

I The solution x∗1, . . . , x
∗
n of this problem are the socalled Chebyshev

points

x∗i =
1
2

(a+ b) +
1
2

(b− a) cos
(

(2i− 1)π
2n

)
, i = 1, . . . , n,

max
x∈[a,b]

∣∣∣∣∣
n∏

i=1

(x− x∗i )

∣∣∣∣∣ ≤ 21−2n(b− a)n.

I Error between the interpolating polynomial P (f |x∗1, . . . , x∗n) and f :

max
x∈[a,b]

|f(x)−P (f |x∗1, . . . , x∗n)(x)| ≤ 21−2n(b− a)n

n!
max

x∈[a,b]
|f (n)(x)|,

provided that the nth derivative f (n) of f is continuous on [a, b].
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Interpolation at Chebyshev Points.
Example
The polynomial

∏n
i=1(x− xi) with 10 equidistant points and 10

Chebychev points on [−1, 1].
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Polynomial Interpolation.
I Given data

x1 x2 · · · xn

f1 f2 · · · fn

(think of fi = f(xi)) we want to compute a polynomial pn−1 of
degree at most n− 1 such that

pn−1(xi) = fi, i = 1, . . . , n.

I If xi 6= xj for i 6= j, there exists a unique interpolation polynomial.

I The larger n, the interpolation polynomial tends to become more
oscillatory.

I Let x1, x2, . . . , xn be unequal points. If f is n times differentiable,
then for each x̄ there exists ξ(x̄) in the smallest interval containing
the points x1, x2, . . . , xn, x̄ such that

f(x̄)− P (f |x1, x2, . . . , xn)(x̄) =
1
n!

 n∏
j=1

(x̄− xj)

 f (n)(ξ(x̄)).
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Spline Interpolation.

I We do not use polynomials globally, but locally.

I Subdivide the interval [a, b] such that

a = x0 < x1 < · · · < xn = b.

Approximate the function f by a piecewise polynomial S such that
I on each subinterval [xi, xi+1] the function S is a polynomial Si of

degree k,
I Si(xi) = f(xi) and Si(xi+1) = f(xi+1), i = 0, . . . , n− 1 (S

interpolates f at x0, . . . , xn),
I

S
(l)
i−1(xi) = S

(l)
i (xi), i = 1, . . . , n− 1, l = 1, . . . , k − 1

(the derivatives up to order k − 1 of S are continuous at
x1, . . . , xn−1).

The function S is called a spline of degree k.

I We consider linear splines (k = 1) and cubic splines (k = 3).
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Linear Splines.
I Let a = x0 < x1 < · · · < xn = b be a partition of [a, b].
I We want to approximate f by piecewise linear polynomials.
I On each subinterval [xi, xi+1], i = 0, 1, . . . , n− 1, we consider the

linear polynomials

Si(x) = ai + bi(x− xi).

I The linear spline S satisfies the following properties:
1. S(x) = Si(x) = ai + bi(x− xi), x ∈ [xi, xi+1] for i = 0, . . . , n− 1,
2. S(xi) = f(xi) for i = 0, . . . , n,
3. Si(xi+1) = Si+1(xi+1) for i = 0, . . . , n− 2,

I The conditions (1-3) uniquely determine the linear functions
Si(x) = ai + bi(x− xi). If we consider the ith subinterval [xi, xi+1],
then ai, bi must satisfy

f(xi) = S(xi) = Si(xi) = ai + bi(xi − xi), and

f(xi+1) = Si+1(xi+1) = Si(xi+1) = ai + bi(xi+1 − xi).

This is a 2× 2 system for the unknowns ai, bi. Its solution is given
by

ai = f(xi), bi = (f(xi+1)− f(xi))/(xi+1 − xi).
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MATLAB’s interp1.

MATLAB has a build-in function called interp1 that do 1−D data
interpolation.

Syntax:

yi = interp1(x,Y,xi)
yi = interp1(Y,xi)
yi = interp1(x,Y,xi,method)
yi = interp1(x,Y,xi,method,’extrap’)
yi = interp1(x,Y,xi,method,extrapval)
pp = interp1(x,Y,method,’pp’)
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MATLAB’s interp1.

yi = interp1(x,Y,xi)

interpolates to find yi, the values of the underlying function Y at the
points in the vector or array xi. x must be a vector. Y can be a scalar, a
vector, or an array of any dimension, subject to the some conditions.
To find out more, type

help interp1
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MATLAB’s interp1.

Example
Consider,

>> x = linspace(0,1,10);
>> y = sin(x);

Thus we entered 10 uniform points of the sine function on the interval
[0, 1]. Let’s say we want to approximate the value at π/6 by linear
interpolation. This can be done by

>> interp1(x,y,pi/6)

and give the answer

ans = 0.4994

which is rather crude since the exact answer is sin (π/6) = 0.5.
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Cubic Splines.

I Let a = x0 < x1 < · · · < xn = b be a partition of [a, b].
I On each subinterval [xi, xi+1], i = 0, 1, . . . , n− 1, we consider the

cubic polynomial Si(x) = ai + bi(x−xi) + ci(x−xi)2 + di(x−xi)3.
I The cubic spline S satisfies the following properties:

1. S(x) = Si(x), x ∈ [xi, xi+1] for i = 0, . . . , n− 1,
2. S(xi) = f(xi) for i = 0, . . . , n,
3. Si(xi+1) = Si+1(xi+1) for i = 0, . . . , n− 2,
4. S′i(xi+1) = S′i+1(xi+1) for i = 0, . . . , n− 2,
5. S′′i (xi+1) = S′′i+1(xi+1) for i = 0, . . . , n− 2,

I To determine S we have to determine 4n parameters

ai, bi, ci, di, i = 0, . . . , n− 1.

I Equations (2-5) impose
(n+ 1) + (n− 1) + (n− 1) + (n− 1) = 4n− 2 conditions on S.
Therefore we need two additional conditions on S to specify the
parameters uniquely.
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Cubic Splines.

I The two conditions are either

S′′(x0) = S′′(xn) = 0 (natural or free boundary), (1)

or

S′(x0) = f ′(x0), S′(xn) = f ′(xn) (clamped boundary), (2)

or

S(i)(x0) = S(i)(xn), i = 0, 1, 2 (periodic spline). (3)

I A function S satisfying (1) is called a natural cubic spline,
a function S satisfying (2) is called a clamped cubic spline, and
a function S satisfying (3) is called a periodic cubic spline.
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Convergence of Clamped Cubic Splines.

Theorem (Convergence of Clamped Cubic Splines)
Let f ∈ C4([a, b]) and suppose that there exists K > 0 such that

hmax = max
i=0,...,n−1

hi ≤ K min
i=0,...,n−1

hi,

where hi = xi+1 − xi.
If S is the clamped cubic spline, i.e. spline satisfying (1), then there exist
constants Ck such that

max
x∈[a,b]

|f (k)(x)− S(k)(x)| ≤ Ckh
4−k
max max

x∈[a,b]
|f (4)(x)|, k = 0, 1, 2,

and

|f (3)(x)− S(3)(x)| ≤ C3hmax max
x∈[a,b]

|f (4)(x)|, x ∈ ∪n−1
i=0 (xi, xi+1).
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MATLAB’s interp1 (cont).

The MATLAB’s function interp1 gives a choice the specify the method
of interpolation.

yi = interp1(x,Y,xi,method)

interpolates using alternative methods:

’nearest’ Nearest neighbor interpolation

’linear’ Linear interpolation (default)

’spline’ Cubic spline interpolation

’pchip’ Piecewise cubic Hermite interpolation

yi = interp1(x,Y,xi,method)
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MATLAB’s interp1 (cont).

Example
In the previous example

>> x = linspace(0,1,10);
>> y = sin(x);

Typing

>> interp1(x,y,pi/6,’spline’)

gives

ans = 0.499999897030974

which is much closer to 0.5 then 0.4994 from the linear interpolation.
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MATLAB’s interp1 (cont). Example.
Consider

>> x = 1:10;
>> y = sin(x);
plot(x,y)

produces a graph, that looks rather rough.
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MATLAB’s interp1 (cont). Example.
We can obtain a smoother graph by

>> xx = (1:10,100);
>> yy = interp1(x,y,’spline’,xx);
plot(xx,yy)
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Cubic Splines.
I Let g be twice continuously differentiable on [a, b].
I The curvature of g at x ∈ [a, b] is given by g′′(x)/(1 + (g′(x))2)3/2.

I We approximate the curvature of g on [a, b] by
(∫ b

a
[g′′(x)]2dx

)1/2

.

I Let S be a cubic spline. If g is a twice continuously differentiable
function that satisfies

g(xi) = f(xi), i = 0, , n,

and

S′′(x0)[S′(x0)− g′(x0)] = 0, S′′(xn)[S′(xn)− g′(xn)] = 0, (6)

then (∫ b

a

[S′′(x)]2dx

)1/2

≤

(∫ b

a

[g′′(x)]2dx

)1/2

.

A cubic spline is the function with smallest curvature among the
twice continuously differentiable functions that interpolate f at
x0, . . . , xn and satisfy (6).
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