# MATH 3795 <br> Lecture 15. Polynomial Interpolation. Splines. 

Dmitriy Leykekhman

## Fall 2008

## Goals

- Approximation Properties of Interpolating Polynomials.
- Interpolation at Chebyshev Points.
- Spline Interpolation.
- Some MATLAB's interpolation tools.


## Approximation Properties of Interpolating Polynomials.

One motivation for the investigation of interpolation by polynomials is the attempt to use interpolating polynomials to approximate unknown function values from a discrete set of given function values.

How well does the interpolating polynomial $P\left(f \mid x_{1}, \ldots, x_{n}\right)$ approximate the function $f$ ?

## Approximation Properties of Interpolating Polynomials.

One motivation for the investigation of interpolation by polynomials is the attempt to use interpolating polynomials to approximate unknown function values from a discrete set of given function values.

How well does the interpolating polynomial $P\left(f \mid x_{1}, \ldots, x_{n}\right)$ approximate the function $f$ ?

## Theorem

Let $x_{1}, x_{2}, \ldots, x_{n}$ be unequal points. If $f$ is $n$ times differentiable, then for each $\bar{x}$ there exists $\xi(\bar{x})$ in the smallest interval containing the points $x_{1}, x_{2}, \ldots, x_{n}, \bar{x}$ such that

$$
f(\bar{x})-P\left(f \mid x_{1}, x_{2}, \ldots, x_{n}\right)(\bar{x})=\frac{1}{n!} \omega(\bar{x}) f^{(n)}(\xi(\bar{x}))
$$

where $\omega(x)=\prod_{j=1}^{n}\left(x-x_{j}\right)$.

## Approximation Properties of Interpolating Polynomials.

## Corollary (Convergence of Interpolating Polynomials)

If $P\left(f \mid x_{1}, \ldots, x_{n}\right)$ is the polynomial of degree less or equal to $n-1$ that interpolates $f$ at the $n$ distinct nodes $x_{1}, x_{2}, \ldots, x_{n}$ belonging to the interval $[a, b]$ and if the $n$th derivative $f^{(n)}$ of $f$ is continuous on $[a, b]$, then

$$
\max _{x \in[a, b]}\left|f(x)-P\left(f \mid x_{1}, \ldots, x_{n}\right)(x)\right| \leq \frac{1}{n!} \max _{x \in[a, b]}\left|f^{(n)}(x)\right| \max _{x \in[a, b]}\left|\prod_{i=1}^{n}\left(x-x_{i}\right)\right|
$$

## Approximation Properties of Interpolating Polynomials.

## Corollary (Convergence of Interpolating Polynomials)

If $P\left(f \mid x_{1}, \ldots, x_{n}\right)$ is the polynomial of degree less or equal to $n-1$ that interpolates $f$ at the $n$ distinct nodes $x_{1}, x_{2}, \ldots, x_{n}$ belonging to the interval $[a, b]$ and if the $n$th derivative $f^{(n)}$ of $f$ is continuous on $[a, b]$, then

$$
\max _{x \in[a, b]}\left|f(x)-P\left(f \mid x_{1}, \ldots, x_{n}\right)(x)\right| \leq \frac{1}{n!} \max _{x \in[a, b]}\left|f^{(n)}(x)\right| \max _{x \in[a, b]}\left|\prod_{i=1}^{n}\left(x-x_{i}\right)\right|
$$

The size of the error between the interpolating polynomial $P\left(f \mid x_{1}, \ldots, x_{n}\right)$ and $f$ depends on

- the smoothness of the function $\left(\max _{x \in[a, b]}\left|f^{(n)}(x)\right|\right)$ and
- he interpolation nodes $\left(\max _{x \in[a, b]}\left|\prod_{i=1}^{n}\left(x-x_{i}\right)\right|\right)$.


## Approximation Properties of Interpolating Polynomials.

## Example

Consider the function

$$
f(x)=\sin (x)
$$

For $n=0,1, \ldots$, it holds that

$$
f^{(n)}(x)=\left\{\begin{array}{lll}
(-1)^{k} \sin (x), & \text { if } \quad n=2 k \\
(-1)^{k} \cos (x), & \text { if } \quad n=2 k+1
\end{array}\right.
$$

Since $\left|f^{(n)}(x)\right| \leq 1$ for all $x$ we obtain that

$$
\max _{x \in[a, b]}\left|f(x)-P\left(f \mid x_{1}, \ldots, x_{n}\right)(x)\right| \leq \frac{1}{n!}(b-a)^{n} .
$$

Thus, on any interval $[a, b]$ the sine function can be uniformly approximated by interpolating polynomials.

## Interpolation at Equidistant Points.

- The interpolation points are $x_{i}=a+i h, i=1, \ldots, n$, where $h=\frac{b-a}{n-1}$.
- With this choice of nodes, one can show that for arbitrary $x \in[a, b]$,

$$
\left|\prod_{i=1}^{n}\left(x-x_{i}\right)\right| \leq \frac{1}{4} h^{n}(n-1)!
$$

- The error between the interpolating polynomial $P\left(f \mid x_{1}, \ldots, x_{n}\right)$ and $f$ is bounded by

$$
\begin{aligned}
& \max _{x \in[a, b]}\left|f(x)-P\left(f \mid x_{1}, \ldots, x_{n}\right)(x)\right| \\
& \leq \frac{1}{n!} \max _{x \in[a, b]}\left|f^{(n)}(x)\right| \max _{x \in[a, b]}\left|\prod_{i=1}^{n}\left(x-x_{i}\right)\right| \\
& \leq \frac{h^{n}}{4 n} \max _{x \in[a, b]}\left|f^{(n)}(x)\right|
\end{aligned}
$$

provided that the $n$th derivative $f^{(n)}$ of $f$ is continuous on $[a, b]$.

## Interpolation at Chebyshev Points.

- Is there a choice $x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}$ of nodes such that

$$
\max _{x \in[a, b]}\left|\prod_{i=1}^{n}\left(x-x_{i}^{*}\right)\right|
$$

is minimal?

- This leads to the minmax, or Chebyshev approximation problem

$$
\min _{x_{1}, \ldots, x_{n}} \max _{x \in[a, b]}\left|\prod_{i=1}^{n}\left(x-x_{i}^{*}\right)\right|
$$

## Interpolation at Chebyshev Points.

- The solution $x_{1}^{*}, \ldots, x_{n}^{*}$ of this problem are the socalled Chebyshev points

$$
\begin{gathered}
x_{i}^{*}=\frac{1}{2}(a+b)+\frac{1}{2}(b-a) \cos \left(\frac{(2 i-1) \pi}{2 n}\right), \quad i=1, \ldots, n, \\
\max _{x \in[a, b]}\left|\prod_{i=1}^{n}\left(x-x_{i}^{*}\right)\right| \leq 2^{1-2 n}(b-a)^{n} .
\end{gathered}
$$

## Interpolation at Chebyshev Points.

- The solution $x_{1}^{*}, \ldots, x_{n}^{*}$ of this problem are the socalled Chebyshev points

$$
\begin{gathered}
x_{i}^{*}=\frac{1}{2}(a+b)+\frac{1}{2}(b-a) \cos \left(\frac{(2 i-1) \pi}{2 n}\right), \quad i=1, \ldots, n, \\
\max _{x \in[a, b]}\left|\prod_{i=1}^{n}\left(x-x_{i}^{*}\right)\right| \leq 2^{1-2 n}(b-a)^{n} .
\end{gathered}
$$

- Error between the interpolating polynomial $P\left(f \mid x_{1}^{*}, \ldots, x_{n}^{*}\right)$ and $f$ :

$$
\max _{x \in[a, b]}\left|f(x)-P\left(f \mid x_{1}^{*}, \ldots, x_{n}^{*}\right)(x)\right| \leq \frac{2^{1-2 n}(b-a)^{n}}{n!} \max _{x \in[a, b]}\left|f^{(n)}(x)\right|
$$

provided that the $n$th derivative $f^{(n)}$ of $f$ is continuous on $[a, b]$.

## Interpolation at Chebyshev Points.

Example
The polynomial $\prod_{i=1}^{n}\left(x-x_{i}\right)$ with 10 equidistant points and 10 Chebychev points on $[-1,1]$.


## Polynomial Interpolation.

- Given data

| $x_{1}$ | $x_{2}$ | $\cdots$ | $x_{n}$ |
| :--- | :--- | :--- | :--- |
| $f_{1}$ | $f_{2}$ | $\cdots$ | $f_{n}$ |

(think of $f_{i}=f\left(x_{i}\right)$ ) we want to compute a polynomial $p_{n-1}$ of degree at most $n-1$ such that

$$
p_{n-1}\left(x_{i}\right)=f_{i}, \quad i=1, \ldots, n .
$$

- If $x_{i} \neq x_{j}$ for $i \neq j$, there exists a unique interpolation polynomial.
- The larger $n$, the interpolation polynomial tends to become more oscillatory.
- Let $x_{1}, x_{2}, \ldots, x_{n}$ be unequal points. If $f$ is $n$ times differentiable, then for each $\bar{x}$ there exists $\xi(\bar{x})$ in the smallest interval containing the points $x_{1}, x_{2}, \ldots, x_{n}, \bar{x}$ such that

$$
f(\bar{x})-P\left(f \mid x_{1}, x_{2}, \ldots, x_{n}\right)(\bar{x})=\frac{1}{n!}\left(\prod_{j=1}^{n}\left(\bar{x}-x_{j}\right)\right) f^{(n)}(\xi(\bar{x}))
$$

## Spline Interpolation.

- We do not use polynomials globally, but locally.
- Subdivide the interval $[a, b]$ such that

$$
a=x_{0}<x_{1}<\cdots<x_{n}=b
$$

Approximate the function $f$ by a piecewise polynomial $S$ such that

- on each subinterval $\left[x_{i}, x_{i+1}\right]$ the function $S$ is a polynomial $S_{i}$ of degree $k$,
- $S_{i}\left(x_{i}\right)=f\left(x_{i}\right)$ and $S_{i}\left(x_{i+1}\right)=f\left(x_{i+1}\right), i=0, \ldots, n-1(S$ interpolates $f$ at $\left.x_{0}, \ldots, x_{n}\right)$,

$$
S_{i-1}^{(l)}\left(x_{i}\right)=S_{i}^{(l)}\left(x_{i}\right), \quad i=1, \ldots, n-1, \quad l=1, \ldots, k-1
$$

(the derivatives up to order $k-1$ of $S$ are continuous at $\left.x_{1}, \ldots, x_{n-1}\right)$.
The function S is called a spline of degree $k$.

- We consider linear splines $(k=1)$ and cubic splines $(k=3)$.


## Linear Splines.

- Let $a=x_{0}<x_{1}<\cdots<x_{n}=b$ be a partition of $[a, b]$.
- We want to approximate $f$ by piecewise linear polynomials.
- On each subinterval $\left[x_{i}, x_{i+1}\right], i=0,1, \ldots, n-1$, we consider the linear polynomials

$$
S_{i}(x)=a_{i}+b_{i}\left(x-x_{i}\right)
$$

- The linear spline $S$ satisfies the following properties:

1. $S(x)=S_{i}(x)=a_{i}+b_{i}\left(x-x_{i}\right), x \in\left[x_{i}, x_{i+1}\right]$ for $i=0, \ldots, n-1$,
2. $S\left(x_{i}\right)=f\left(x_{i}\right)$ for $i=0, \ldots, n$,
3. $S_{i}\left(x_{i+1}\right)=S_{i+1}\left(x_{i+1}\right)$ for $i=0, \ldots, n-2$,

- The conditions (1-3) uniquely determine the linear functions $S_{i}(x)=a_{i}+b_{i}\left(x-x_{i}\right)$. If we consider the $i$ th subinterval $\left[x_{i}, x_{i+1}\right]$, then $a_{i}, b_{i}$ must satisfy

$$
\begin{aligned}
f\left(x_{i}\right) & =S\left(x_{i}\right)=S_{i}\left(x_{i}\right)=a_{i}+b_{i}\left(x_{i}-x_{i}\right), \quad \text { and } \\
f\left(x_{i+1}\right) & =S_{i+1}\left(x_{i+1}\right)=S_{i}\left(x_{i+1}\right)=a_{i}+b_{i}\left(x_{i+1}-x_{i}\right)
\end{aligned}
$$

This is a $2 \times 2$ system for the unknowns $a_{i}, b_{i}$. Its solution is given by

$$
a_{i}=f\left(x_{i}\right), \quad b_{i}=\left(f\left(x_{i+1}\right)-f\left(x_{i}\right)\right) /\left(x_{i+1}-x_{i}\right)
$$

## MATLAB's interp1.

MATLAB has a build-in function called interp1 that do $1-D$ data interpolation.

Syntax:

```
yi = interp1(x,Y,xi)
yi = interp1(Y,xi)
yi = interp1(x,Y,xi,method)
yi = interp1(x,Y,xi,method,'extrap')
yi = interp1(x,Y,xi,method,extrapval)
pp = interp1(x,Y,method,'pp')
```


## MATLAB's interp1.

yi = interp1(x,Y,xi)
interpolates to find $y i$, the values of the underlying function $Y$ at the points in the vector or array xi. x must be a vector. Y can be a scalar, a vector, or an array of any dimension, subject to the some conditions. To find out more, type
help interp1

## MATLAB's interp1.

Example
Consider,
>> $\mathrm{x}=\operatorname{linspace(0,1,10)}$;
>> $\mathrm{y}=\sin (\mathrm{x})$;
Thus we entered 10 uniform points of the sine function on the interval $[0,1]$. Let's say we want to approximate the value at $\pi / 6$ by linear interpolation. This can be done by
>> interp1(x,y,pi/6)
and give the answer
ans $=0.4994$
which is rather crude since the exact answer is $\sin (\pi / 6)=0.5$.

## Cubic Splines.

- Let $a=x_{0}<x_{1}<\cdots<x_{n}=b$ be a partition of $[a, b]$.
- On each subinterval $\left[x_{i}, x_{i+1}\right], i=0,1, \ldots, n-1$, we consider the cubic polynomial $S_{i}(x)=a_{i}+b_{i}\left(x-x_{i}\right)+c_{i}\left(x-x_{i}\right)^{2}+d_{i}\left(x-x_{i}\right)^{3}$.
- The cubic spline $S$ satisfies the following properties:

1. $S(x)=S_{i}(x), \quad x \in\left[x_{i}, x_{i+1}\right]$ for $i=0, \ldots, n-1$,
2. $S\left(x_{i}\right)=f\left(x_{i}\right)$ for $i=0, \ldots, n$,
3. $S_{i}\left(x_{i+1}\right)=S_{i+1}\left(x_{i+1}\right)$ for $i=0, \ldots, n-2$,
4. $S_{i}^{\prime}\left(x_{i+1}\right)=S_{i+1}^{\prime}\left(x_{i+1}\right)$ for $i=0, \ldots, n-2$,
5. $S_{i}^{\prime \prime}\left(x_{i+1}\right)=S_{i+1}^{\prime \prime}\left(x_{i+1}\right)$ for $i=0, \ldots, n-2$,

- To determine $S$ we have to determine $4 n$ parameters

$$
a_{i}, b_{i}, c_{i}, d_{i}, \quad i=0, \ldots, n-1
$$

- Equations (2-5) impose $(n+1)+(n-1)+(n-1)+(n-1)=4 n-2$ conditions on $S$. Therefore we need two additional conditions on $S$ to specify the parameters uniquely.


## Cubic Splines.

- The two conditions are either

$$
\begin{equation*}
S^{\prime \prime}\left(x_{0}\right)=S^{\prime \prime}\left(x_{n}\right)=0 \quad \text { (natural or free boundary) } \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
S^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right), S^{\prime}\left(x_{n}\right)=f^{\prime}\left(x_{n}\right) \quad \text { (clamped boundary) } \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
S^{(i)}\left(x_{0}\right)=S^{(i)}\left(x_{n}\right), \quad i=0,1,2 \quad \text { (periodic spline). } \tag{3}
\end{equation*}
$$

- A function $S$ satisfying (1) is called a natural cubic spline, a function $S$ satisfying (2) is called a clamped cubic spline, and a function $S$ satisfying (3) is called a periodic cubic spline.


## Convergence of Clamped Cubic Splines.

Theorem (Convergence of Clamped Cubic Splines)
Let $f \in C^{4}([a, b])$ and suppose that there exists $K>0$ such that

$$
h_{\max }=\max _{i=0, \ldots, n-1} h_{i} \leq K \min _{i=0, \ldots, n-1} h_{i}
$$

where $h_{i}=x_{i+1}-x_{i}$.
If $S$ is the clamped cubic spline, i.e. spline satisfying (1), then there exist constants $C_{k}$ such that

$$
\max _{x \in[a, b]}\left|f^{(k)}(x)-S^{(k)}(x)\right| \leq C_{k} h_{\max }^{4-k} \max _{x \in[a, b]}\left|f^{(4)}(x)\right|, \quad k=0,1,2
$$

and

$$
\left|f^{(3)}(x)-S^{(3)}(x)\right| \leq C_{3} h_{\max } \max _{x \in[a, b]}\left|f^{(4)}(x)\right|, \quad x \in \cup_{i=0}^{n-1}\left(x_{i}, x_{i+1}\right)
$$

## MATLAB's interp1 (cont).

The MATLAB's function interp1 gives a choice the specify the method of interpolation.
yi = interp1 (x, $\mathrm{Y}, \mathrm{xi}$, method)
interpolates using alternative methods:

| 'nearest' | Nearest neighbor interpolation |
| :--- | :--- |
| 'linear' | Linear interpolation (default) |
| 'spline' | Cubic spline interpolation |
| 'pchip' | Piecewise cubic Hermite interpolation |
| $y i=$ interp1(x, $\mathrm{Y}, \mathrm{xi}$, method) |  |

## MATLAB's interp1 (cont).

## Example

In the previous example
>> $\mathrm{x}=\operatorname{linspace}(0,1,10)$;
>> $\mathrm{y}=\sin (\mathrm{x})$;
Typing
>> interp1(x,y,pi/6,'spline')
gives
ans $=0.499999897030974$
which is much closer to 0.5 then 0.4994 from the linear interpolation.

## MATLAB's interp1 (cont). Example.

Consider
>> $\mathrm{x}=1: 10$;
>> $\mathrm{y}=\sin (\mathrm{x})$;
plot ( $\mathrm{x}, \mathrm{y}$ )
produces a graph, that looks rather rough.


## MATLAB's interp1 (cont). Example.

We can obtain a smoother graph by
>> $x x=(1: 10,100)$;
>> yy = interp1(x,y,'spline',xx);
plot(xx,yy)


## Cubic Splines.

- Let $g$ be twice continuously differentiable on $[a, b]$.
- The curvature of $g$ at $x \in[a, b]$ is given by $g^{\prime \prime}(x) /\left(1+\left(g^{\prime}(x)\right)^{2}\right)^{3 / 2}$.
- We approximate the curvature of $g$ on $[a, b]$ by $\left(\int_{a}^{b}\left[g^{\prime \prime}(x)\right]^{2} d x\right)^{1 / 2}$.
- Let S be a cubic spline. If $g$ is a twice continuously differentiable function that satisfies

$$
g\left(x_{i}\right)=f\left(x_{i}\right), \quad i=0, \quad, n,
$$

and

$$
S^{\prime \prime}\left(x_{0}\right)\left[S^{\prime}\left(x_{0}\right)-g^{\prime}\left(x_{0}\right)\right]=0, \quad S^{\prime \prime}\left(x_{n}\right)\left[S^{\prime}\left(x_{n}\right)-g^{\prime}\left(x_{n}\right)\right]=0,(6)
$$

then

$$
\left(\int_{a}^{b}\left[S^{\prime \prime}(x)\right]^{2} d x\right)^{1 / 2} \leq\left(\int_{a}^{b}\left[g^{\prime \prime}(x)\right]^{2} d x\right)^{1 / 2}
$$

A cubic spline is the function with smallest curvature among the twice continuously differentiable functions that interpolate $f$ at $x_{0}, \ldots, x_{n}$ and satisfy (6).

