MATH 3795
 Lecture 14. Polynomial Interpolation.

Dmitriy Leykekhman

Fall 2008

Goals

- Learn about Polynomial Interpolation.
- Uniqueness of the Interpolating Polynomial.
- Computation of the Interpolating Polynomials.
- Different Polynomial Basis.

Polynomial Interpolation.

- Given data

x_{1}	x_{2}	\cdots	x_{n}
f_{1}	f_{2}	\cdots	f_{n}

(think of $f_{i}=f\left(x_{i}\right)$) we want to compute a polynomial p_{n-1} of degree at most $n-1$ such that

$$
p_{n-1}\left(x_{i}\right)=f_{i}, \quad i=1, \ldots, n .
$$

- A polynomial that satisfies these conditions is called interpolating polynomial. The points x_{i} are called interpolation points or interpolation nodes.

Polynomial Interpolation.

- Given data

x_{1}	x_{2}	\cdots	x_{n}
f_{1}	f_{2}	\cdots	f_{n}

(think of $f_{i}=f\left(x_{i}\right)$) we want to compute a polynomial p_{n-1} of degree at most $n-1$ such that

$$
p_{n-1}\left(x_{i}\right)=f_{i}, \quad i=1, \ldots, n .
$$

- A polynomial that satisfies these conditions is called interpolating polynomial. The points x_{i} are called interpolation points or interpolation nodes.
- We will show that there exists a unique interpolation polynomial. Depending on how we represent the interpolation polynomial it can be computed more or less efficiently.
- Notation: We denote the interpolating polynomial by

$$
P\left(f \mid x_{1}, \ldots, x_{n}\right)(x)
$$

Uniqueness of the Interpolating Polynomial.

Theorem (Fundamental Theorem of Algebra)
Every polynomial of degree n that is not identically zero, has exactly n roots (including multiplicities). These roots may be real of complex.

Uniqueness of the Interpolating Polynomial.

Theorem (Fundamental Theorem of Algebra)

Every polynomial of degree n that is not identically zero, has exactly n roots (including multiplicities). These roots may be real of complex.

Theorem (Uniqueness of the Interpolating Polynomial)

Given n unequal points $x_{1}, x_{2}, \ldots, x_{n}$ and arbitrary values $f_{1}, f_{2}, \ldots, f_{n}$ there is at most one polynomial p of degree less or equal to $n-1$ such that

$$
p\left(x_{i}\right)=f_{i}, \quad i=1, \ldots, n
$$

Proof.

Suppose there exist two polynomials p_{1}, p_{2} of degree less or equal to $n-1$ with $p_{1}\left(x_{i}\right)=p_{2}\left(x_{i}\right)=f_{i}$ for $i=1, \ldots, n$. Then the difference polynomial $q=p_{1}-p_{2}$ is a polynomial of degree less or equal to $n-1$ that satisfies $q\left(x_{i}\right)=0$ for $i=1, \ldots, n$. Since the number of roots of a nonzero polynomial is equal to its degree, it follows that $q=p_{1}-p_{2}=0$.

Construction of the Interpolating Polynomial.

- Given a basis $p_{1}, p_{2}, \ldots, p_{n}$ of the space of polynomials of degree less or equal to $n-1$, we write

$$
p(x)=a_{1} p_{1}(x)+a_{2} p_{2}(x)+\cdots+a_{n} p_{n}(x) .
$$

Construction of the Interpolating Polynomial.

- Given a basis $p_{1}, p_{2}, \ldots, p_{n}$ of the space of polynomials of degree less or equal to $n-1$, we write

$$
p(x)=a_{1} p_{1}(x)+a_{2} p_{2}(x)+\cdots+a_{n} p_{n}(x)
$$

- We want to find coefficients $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
\begin{aligned}
p\left(x_{1}\right) & =a_{1} p_{1}\left(x_{1}\right)+a_{2} p_{2}\left(x_{1}\right)+\cdots+a_{n} p_{n}\left(x_{1}\right) \\
p\left(x_{2}\right) & =f_{1} \\
\vdots & \\
p\left(x_{n}\right) & =p_{1}\left(x_{2}\right)+a_{2} p_{2}\left(x_{2}\right)+\cdots+a_{n} p_{n}\left(x_{2}\right)=f_{2} p_{1}\left(x_{n}\right)+a_{2} p_{2}\left(x_{n}\right)+\cdots+a_{n} p_{n}\left(x_{n}\right)=f_{n}
\end{aligned}
$$

Construction of the Interpolating Polynomial.

- Given a basis $p_{1}, p_{2}, \ldots, p_{n}$ of the space of polynomials of degree less or equal to $n-1$, we write

$$
p(x)=a_{1} p_{1}(x)+a_{2} p_{2}(x)+\cdots+a_{n} p_{n}(x)
$$

- We want to find coefficients $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
\begin{aligned}
p\left(x_{1}\right) & =a_{1} p_{1}\left(x_{1}\right)+a_{2} p_{2}\left(x_{1}\right)+\cdots+a_{n} p_{n}\left(x_{1}\right) \\
p\left(x_{2}\right) & =f_{1} \\
\vdots & \\
p\left(x_{n}\right) & =p_{1}\left(x_{2}\right)+a_{2} p_{2}\left(x_{2}\right)+\cdots+a_{n} p_{n}\left(x_{2}\right)=f_{2}\left(x_{n}\right)+a_{2} p_{2}\left(x_{n}\right)+\cdots+a_{n} p_{n}\left(x_{n}\right)=f_{n}
\end{aligned}
$$

- This leads to the linear system

$$
\left(\begin{array}{cccc}
p_{1}\left(x_{1}\right) & p_{2}\left(x_{1}\right) & \ldots & p_{n}\left(x_{1}\right) \\
p_{1}\left(x_{2}\right) & p_{2}\left(x_{2}\right) & \ldots & p_{n}\left(x_{2}\right) \\
\vdots & \vdots & & \vdots \\
p_{1}\left(x_{n}\right) & p_{2}\left(x_{n}\right) & \ldots & p_{n}\left(x_{n}\right)
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right)
$$

Construction of the Interpolating Polynomial.

- In the linear system

$$
\left(\begin{array}{cccc}
p_{1}\left(x_{1}\right) & p_{2}\left(x_{1}\right) & \ldots & p_{n}\left(x_{1}\right) \\
p_{1}\left(x_{2}\right) & p_{2}\left(x_{2}\right) & \ldots & p_{n}\left(x_{2}\right) \\
\vdots & \vdots & & \vdots \\
p_{1}\left(x_{n}\right) & p_{2}\left(x_{n}\right) & \ldots & p_{n}\left(x_{n}\right)
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right) .
$$

if $x_{i}=x_{j}$ for $i \neq j$, then the i th and the j th row of the systems matrix above are identical. If $f_{i} \neq f_{j}$, there is no solution. If $f_{i}=f_{j}$, there are infinitely many solutions.

- We assume that $x_{i} \neq x_{j}$ for $i \neq j$.

Construction of the Interpolating Polynomial.

- The choice of the basis polynomials p_{1}, \ldots, p_{n} determines how easily

$$
\left(\begin{array}{cccc}
p_{1}\left(x_{1}\right) & p_{2}\left(x_{1}\right) & \ldots & p_{n}\left(x_{1}\right) \\
p_{1}\left(x_{2}\right) & p_{2}\left(x_{2}\right) & \ldots & p_{n}\left(x_{2}\right) \\
\vdots & \vdots & & \vdots \\
p_{1}\left(x_{n}\right) & p_{2}\left(x_{n}\right) & \ldots & p_{n}\left(x_{n}\right)
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right)
$$

can be solved.

Construction of the Interpolating Polynomial.

- The choice of the basis polynomials p_{1}, \ldots, p_{n} determines how easily

$$
\left(\begin{array}{cccc}
p_{1}\left(x_{1}\right) & p_{2}\left(x_{1}\right) & \ldots & p_{n}\left(x_{1}\right) \\
p_{1}\left(x_{2}\right) & p_{2}\left(x_{2}\right) & \ldots & p_{n}\left(x_{2}\right) \\
\vdots & \vdots & & \vdots \\
p_{1}\left(x_{n}\right) & p_{2}\left(x_{n}\right) & \ldots & p_{n}\left(x_{n}\right)
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right)
$$

can be solved.

- We consider

Monomial Basis:

$$
p_{i}(x)=M_{i}(x)=x^{i-1}, \quad i=1, \ldots, n
$$

Lagrange Basis:

$$
p_{i}(x)=L_{i}(x)=\prod_{\substack{j=1 \\ j \neq i}}^{n} \frac{x-x_{j}}{x_{i}-x_{j}}, \quad i=1, \ldots, n
$$

Newton Basis:

$$
p_{i}(x)=N_{i}(x)=\prod_{j=1}^{i-1}\left(x-x_{j}\right), \quad i=1, \ldots, n
$$

Monomial Basis.

- If we select

$$
p_{i}(x)=M_{i}(x)=x^{i-1}, \quad i=1, \ldots, n
$$

we can write the interpolating polynomial in the form

$$
P\left(f \mid x_{1}, \ldots, x_{n}\right)(x)=a_{1}+a_{2} x+a_{3} x^{2}+a_{4} x^{3} \cdots+a_{n} x^{n-1}
$$

- The linear system associated with the polynomial interpolation problem is then given by

$$
\left(\begin{array}{cccccc}
1 & x_{1} & x_{1}^{2} & x_{1}^{3} & \ldots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & x_{2}^{3} & \ldots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
1 & x_{n} & x_{n}^{2} & x_{n}^{3} & \ldots & x_{n}^{n-1}
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right)
$$

Monomial Basis.

The matrix

$$
V_{n}=\left(\begin{array}{cccccc}
1 & x_{1} & x_{1}^{2} & x_{1}^{3} & \ldots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & x_{2}^{3} & \ldots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
1 & x_{n} & x_{n}^{2} & x_{n}^{3} & \ldots & x_{n}^{n-1}
\end{array}\right)
$$

is called the Vandermonde matrix.

Monomial Basis.

Example

x_{i}	0	1	-1	2	-2
f_{i}	-5	-3	-15	39	-9

For these data the linear system associated with the polynomial interpolation problem is given by

$$
\left(\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 \\
1 & 2 & 4 & 8 & 16 \\
1 & -2 & 4 & -8 & 16
\end{array}\right)\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right)=\left(\begin{array}{r}
-5 \\
-3 \\
-15 \\
39 \\
-9
\end{array}\right) .
$$

Monomial Basis.

The solution of this system is given by
$\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=(-5,4,-7,2,3)$
which gives the interpolating polynomial

$$
\begin{aligned}
& P\left(f \mid x_{1}, \ldots, x_{n}\right)(x) \\
= & -5+4 x-7 x^{2}+2 x^{3}+3 x^{4} .
\end{aligned}
$$

Horners Scheme.

From

$$
\begin{aligned}
p(x) & =a_{1}+a_{2} x+\ldots+a_{n} x^{n-1} \\
& =a_{1}+\left[a_{2}+\left[a_{3}+\left[a_{4}+\cdots+\left[a_{n-1}+a_{n} x\right] \ldots\right] x\right] x\right] x
\end{aligned}
$$

we see that the polynomial represented in the in monomial basis can be evaluated using Horners Scheme:
Input: The interpolation points x_{1}, \ldots, x_{n}.
The coefficients a_{1}, \ldots, a_{n} of the polynomial in monomial basis.
The point x at which the polynomial is to be evaluated.
Output: p the value of the polynomial at x .

1. $p=a_{n}$
2. For $i=n-1, n-2, \ldots, 1$ do
3. $p=p * x+a_{i}$
4. End

Monomial Basis.

- Computing the interpolation polynomial using the monomial basis, leads to a dense $n \times n$ linear system.
- This linear system has to be solved using the LUdecomposition (or another matrix decomposition), which is rather expensive.
- The system matrix is the Vandermonde matrix, which we have seen in our discussion of the condition number of matrices. The Vandermonde matrix tends to have a large condition number.
- The ill-conditioning of the Vandermonde matrix is also reflected in the plot below, where we observe that the graphs of the monomials x, x^{2}, \ldots are nearly indistinguishable near $x=0$.

Monomial Basis.

Lagrange Basis.

- Given unequal points x_{1}, \ldots, x_{n}, the i th Lagrange polynomial is given by

$$
L_{i}(x)=\prod_{\substack{j=1 \\ j \neq i}}^{n} \frac{x-x_{j}}{x_{i}-x_{j}}
$$

- The Lagrange polynomials L_{i} are polynomials of degree $n-1$ and satisfy

$$
L_{i}\left(x_{k}\right)=\left\{\begin{array}{lll}
1, & \text { if } & k=i \\
0, & \text { if } & k \neq i
\end{array}\right.
$$

Lagrange Interpolating Polynomial.

- With the basis functions $p_{i}(x)=L_{i}(x)$, the linear system associated with the polynomial interpolation problem is

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & & & \vdots & \\
0 & 0 & 0 & \cdots & 1
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right) .
$$

- The interpolating polynomial is given by

$$
P\left(f \mid x_{1}, \ldots, x_{n}\right)(x)=\sum_{i=1}^{n} f_{i} L_{i}(x)
$$

Lagrange Interpolating Polynomial.

Example

x_{i}	0	1	-1	2	-2
f_{i}	-5	-3	-15	39	-9

Interpolation polynomial

$$
\begin{aligned}
& P\left(f \mid x_{1}, \ldots, x_{5}\right)(x) \\
& =-5+4 x-7 x^{2}+2 x^{3}+3 x^{4} \quad \text { Monomial basis } \\
& =-5 \frac{(x-1)(x+1)(x-2)(x+2)}{4} \\
& -3 \frac{x(x+1)(x-2)(x+2)}{-6} \\
& -15 \frac{x(x-1)(x-2)(x+2)}{-6} \\
& +39 \frac{x(x-1)(x+1)(x+2)}{24} \\
& -9 \frac{x(x-1)(x+1)(x-2)}{24} \quad \text { Lagrange basis. }
\end{aligned}
$$

Lagrange Basis.

Lagrange Basis

Newton Basis.

- The Newton polynomials are given by

$$
\begin{aligned}
& N_{1}(x)=1, \quad N_{2}(x)=x-x_{1}, \\
& N_{3}(x)=\left(x-x_{1}\right)\left(x-x_{2}\right), \ldots, N_{n}(x)=\prod_{j=1}^{n-1}\left(x-x_{j}\right) .
\end{aligned}
$$

- N_{i} is a polynomial of degree $i-1$. They satisfy $N_{i}\left(x_{j}\right)=0$ for all $j<i$.
- With the basis functions $p_{i}(x)=N_{i}(x)$, the corresponding matrix associated with the polynomial interpolation problem is

$$
\left(\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
1 & x_{2}-x_{1} & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
1 & x_{n-1}-x_{1} & \cdots & \prod_{j=1}^{n-2}\left(x_{n-1}-x_{j}\right) & 0 \\
1 & x_{n}-x_{1} & \ldots & \prod_{j=1}^{n-2}\left(x_{n}-x_{j}\right) & \prod_{j=1}^{n-1}\left(x_{n}-x_{j}\right)
\end{array}\right)
$$

Newton Basis.

The system matrix is lower triangular. If all interpolation nodes x_{1}, \ldots, x_{n} are unequal, then the diagonal entries of the system matrix in are nonzero and we can compute the coefficients by forward substitution,

$$
\begin{aligned}
& a_{1}=f_{1} \\
& a_{2}=\frac{f_{2}-a_{1}}{x_{2}-x_{1}} \\
& \vdots \\
& a_{n}=\frac{f_{n}-\sum_{i=1}^{n-1} a_{i} \prod_{j=1}^{i-1}\left(x_{n}-x_{j}\right)}{\prod_{j=1}^{n-1}\left(x_{n}-x_{j}\right)}
\end{aligned}
$$

Newtone Interpolating Polynomial.

Example

x_{i}	0	1	-1	2	-2
f_{i}	-5	-3	-15	39	-9

Interpolation polynomial

$$
\begin{aligned}
& P\left(f \mid x_{1}, \ldots, x_{5}\right)(x) \\
& =-5+4 x-7 x^{2}+2 x^{3}+3 x^{4} \quad \text { Monomial basis } \\
& =-5 \frac{(x-1)(x+1)(x-2)(x+2)}{4}-3 \frac{x(x+1)(x-2)(x+2)}{-6} \\
& -15 \frac{x(x-1)(x-2)(x+2)}{-6}+39 \frac{x(x-1)(x+1)(x+2)}{24} \\
& -9 \frac{x(x-1)(x+1)(x-2)}{24} \quad \text { Lagrange basis } \\
& =-5+2 x-4 x(x-1)+8 x(x-1)(x+1)+3 x(x-1)(x+1)(x-2)
\end{aligned}
$$

Newton basis.

Newton Basis.

Construction of the Interpolating Polynomial. Summary.

- If $x_{i} \neq x_{j}$ for $i \neq j$, there exists a unique polynomial of degree $n-1$, denoted by $P\left(f \mid x_{1}, \ldots, x_{n}\right)(x)$ such that

$$
P\left(f \mid x_{1}, \ldots, x_{n}\right)\left(x_{i}\right)=f_{i}, \quad i=1, \ldots, n .
$$

- The interpolating polynomial can be written in different bases:

$$
\begin{aligned}
P & \left(f \mid x_{1}, \ldots, x_{n}\right)(x) \\
& =a_{1}^{M}+a_{2}^{M} x+\cdots+a_{n}^{M} x^{n-1} \\
& =f_{1} \prod_{\substack{j=1 \\
j \neq 1}}^{n} \frac{x-x_{j}}{x_{1}-x_{j}}+f_{2} \prod_{\substack{j=1 \\
j \neq 2}}^{n} \frac{x-x_{j}}{x_{2}-x_{j}}+\cdots+f_{n} \prod_{\substack{j=1 \\
j \neq n}}^{n} \frac{x-x_{j}}{x_{n}-x_{j}} \\
& =a_{1}^{N}+a_{2}^{N}\left(x-x_{1}\right)+\cdots+a_{n}^{N}\left(x-x_{1}\right) \ldots\left(x-x_{n-1}\right)
\end{aligned}
$$

- The representation of the interpolating polynomial depends on the chosen basis.

