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Goals
I Learn about Polynomial Interpolation.

I Uniqueness of the Interpolating Polynomial.

I Computation of the Interpolating Polynomials.

I Different Polynomial Basis.
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Polynomial Interpolation.
I Given data

x1 x2 · · · xn

f1 f2 · · · fn

(think of fi = f(xi)) we want to compute a polynomial pn−1 of
degree at most n− 1 such that

pn−1(xi) = fi, i = 1, . . . , n.

I A polynomial that satisfies these conditions is called interpolating
polynomial. The points xi are called interpolation points or
interpolation nodes.

I We will show that there exists a unique interpolation polynomial.
Depending on how we represent the interpolation polynomial it can
be computed more or less efficiently.

I Notation: We denote the interpolating polynomial by

P (f |x1, . . . , xn)(x)
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Uniqueness of the Interpolating Polynomial.

Theorem (Fundamental Theorem of Algebra)
Every polynomial of degree n that is not identically zero, has exactly n
roots (including multiplicities). These roots may be real of complex.

Theorem (Uniqueness of the Interpolating Polynomial)
Given n unequal points x1, x2, . . . , xn and arbitrary values f1, f2, . . . , fn

there is at most one polynomial p of degree less or equal to n− 1 such
that

p(xi) = fi, i = 1, . . . , n.

Proof.
Suppose there exist two polynomials p1, p2 of degree less or equal to
n− 1 with p1(xi) = p2(xi) = fi for i = 1, . . . , n. Then the difference
polynomial q = p1 − p2 is a polynomial of degree less or equal to n− 1
that satisfies q(xi) = 0 for i = 1, . . . , n. Since the number of roots of a
nonzero polynomial is equal to its degree, it follows that
q = p1 − p2 = 0.
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Construction of the Interpolating Polynomial.
I Given a basis p1, p2, . . . , pn of the space of polynomials of degree

less or equal to n− 1, we write

p(x) = a1p1(x) + a2p2(x) + · · ·+ anpn(x).

I We want to find coefficients a1, a2, . . . , an such that

p(x1) = a1p1(x1) + a2p2(x1) + · · ·+ anpn(x1) = f1

p(x2) = a1p1(x2) + a2p2(x2) + · · ·+ anpn(x2) = f2

...
p(xn) = a1p1(xn) + a2p2(xn) + · · ·+ anpn(xn) = fn.

I This leads to the linear system
p1(x1) p2(x1) . . . pn(x1)
p1(x2) p2(x2) . . . pn(x2)

...
...

...
p1(xn) p2(xn) . . . pn(xn)




a1

a2

...
an

 =


f1

f2

...
fn

 .
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Construction of the Interpolating Polynomial.

I In the linear system
p1(x1) p2(x1) . . . pn(x1)
p1(x2) p2(x2) . . . pn(x2)

...
...

...
p1(xn) p2(xn) . . . pn(xn)




a1

a2

...
an

 =


f1

f2

...
fn

 .

if xi = xj for i 6= j, then the ith and the jth row of the systems
matrix above are identical. If fi 6= fj , there is no solution. If
fi = fj , there are infinitely many solutions.

I We assume that xi 6= xj for i 6= j.
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Construction of the Interpolating Polynomial.
I The choice of the basis polynomials p1, . . . , pn determines how easily

p1(x1) p2(x1) . . . pn(x1)
p1(x2) p2(x2) . . . pn(x2)

...
...

...
p1(xn) p2(xn) . . . pn(xn)




a1

a2

...
an

 =


f1

f2

...
fn

 .

can be solved.

I We consider
Monomial Basis:

pi(x) = Mi(x) = xi−1, i = 1, . . . , n

Lagrange Basis:

pi(x) = Li(x) =
n∏

j=1
j 6=i

x− xj

xi − xj
, i = 1, . . . , n

Newton Basis:

pi(x) = Ni(x) =
i−1∏
j=1

(x− xj), i = 1, . . . , n

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics Linear Least Squares – 6



Construction of the Interpolating Polynomial.
I The choice of the basis polynomials p1, . . . , pn determines how easily

p1(x1) p2(x1) . . . pn(x1)
p1(x2) p2(x2) . . . pn(x2)

...
...

...
p1(xn) p2(xn) . . . pn(xn)




a1

a2

...
an

 =


f1

f2

...
fn

 .

can be solved.
I We consider

Monomial Basis:
pi(x) = Mi(x) = xi−1, i = 1, . . . , n

Lagrange Basis:

pi(x) = Li(x) =
n∏

j=1
j 6=i

x− xj

xi − xj
, i = 1, . . . , n

Newton Basis:

pi(x) = Ni(x) =
i−1∏
j=1

(x− xj), i = 1, . . . , n

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics Linear Least Squares – 6



Monomial Basis.

I If we select

pi(x) = Mi(x) = xi−1, i = 1, . . . , n

we can write the interpolating polynomial in the form

P (f |x1, . . . , xn)(x) = a1 + a2x + a3x
2 + a4x

3 · · ·+ anxn−1

I The linear system associated with the polynomial interpolation
problem is then given by

1 x1 x2
1 x3

1 . . . xn−1
1

1 x2 x2
2 x3

2 . . . xn−1
2

...
...

...
...

...
1 xn x2

n x3
n . . . xn−1

n




a1

a2

...
an

 =


f1

f2

...
fn

 .
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Monomial Basis.

The matrix

Vn =


1 x1 x2

1 x3
1 . . . xn−1

1

1 x2 x2
2 x3

2 . . . xn−1
2

...
...

...
...

...
1 xn x2

n x3
n . . . xn−1

n


is called the Vandermonde matrix.
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Monomial Basis.

Example

xi 0 1 −1 2 −2
fi −5 −3 −15 39 −9

For these data the linear system associated with the polynomial
interpolation problem is given by

1 0 0 0 0
1 1 1 1 1
1 −1 1 −1 1
1 2 4 8 16
1 −2 4 −8 16




a1

a2

a3

a4

a5

 =


−5
−3
−15

39
−9

 .
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Monomial Basis.

The solution of this system is given
by

(a1, a2, a3, a4, a5) = (−5, 4,−7, 2, 3),

which gives the interpolating poly-
nomial

P (f |x1, . . . , xn)(x)

=− 5 + 4x− 7x2 + 2x3 + 3x4.
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Horners Scheme.

From

p(x) = a1 + a2x + ... + anxn−1

= a1 +
[
a2 +

[
a3 + [a4 + · · ·+ [an−1 + anx] . . . ]x

]
x

]
x

we see that the polynomial represented in the in monomial basis can be
evaluated using Horners Scheme:
Input: The interpolation points x1, . . . , xn.
The coefficients a1, . . . , an of the polynomial in monomial basis.
The point x at which the polynomial is to be evaluated.
Output: p the value of the polynomial at x.

1. p = an

2. For i = n− 1, n− 2, . . . , 1 do

3. p = p ∗ x + ai

4. End
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Monomial Basis.

I Computing the interpolation polynomial using the monomial basis,
leads to a dense n× n linear system.

I This linear system has to be solved using the LUdecomposition (or
another matrix decomposition), which is rather expensive.

I The system matrix is the Vandermonde matrix, which we have seen
in our discussion of the condition number of matrices. The
Vandermonde matrix tends to have a large condition number.

I The ill-conditioning of the Vandermonde matrix is also reflected in
the plot below, where we observe that the graphs of the monomials
x, x2, . . . are nearly indistinguishable near x = 0.
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Monomial Basis.
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Lagrange Basis.

I Given unequal points x1, . . . , xn, the ith Lagrange polynomial is
given by

Li(x) =
n∏

j=1
j 6=i

x− xj

xi − xj
.

I The Lagrange polynomials Li are polynomials of degree n− 1 and
satisfy

Li(xk) =
{

1, if k = i
0, if k 6= i
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Lagrange Interpolating Polynomial.

I With the basis functions pi(x) = Li(x), the linear system associated
with the polynomial interpolation problem is

1 0 0 · · · 0
0 1 0 · · · 0
...

...
0 0 0 · · · 1




a1

a2

...
an

 =


f1

f2

...
fn

 .

I The interpolating polynomial is given by

P (f |x1, . . . , xn)(x) =
n∑

i=1

fiLi(x)
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Lagrange Interpolating Polynomial.
Example

xi 0 1 −1 2 −2
fi −5 −3 −15 39 −9

Interpolation polynomial

P (f |x1, . . . , x5)(x)

= −5 + 4x− 7x2 + 2x3 + 3x4 Monomial basis

= −5
(x− 1)(x + 1)(x− 2)(x + 2)

4

− 3
x(x + 1)(x− 2)(x + 2)

−6

− 15
x(x− 1)(x− 2)(x + 2)

−6

+ 39
x(x− 1)(x + 1)(x + 2)

24

− 9
x(x− 1)(x + 1)(x− 2)

24
Lagrange basis.
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Lagrange Basis.
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Newton Basis.

I The Newton polynomials are given by

N1(x) = 1, N2(x) = x− x1,

N3(x) = (x− x1)(x− x2), . . . , Nn(x) =
n−1∏
j=1

(x− xj).

I Ni is a polynomial of degree i− 1. They satisfy Ni(xj) = 0 for all
j < i.

I With the basis functions pi(x) = Ni(x), the corresponding matrix
associated with the polynomial interpolation problem is

1 0 · · · 0 0
1 x2 − x1 0 0 0
...

...
. . .

. . .
...

1 xn−1 − x1 . . .
∏n−2

j=1 (xn−1 − xj) 0
1 xn − x1 . . .

∏n−2
j=1 (xn − xj)

∏n−1
j=1 (xn − xj)
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Newton Basis.

The system matrix is lower triangular. If all interpolation nodes
x1, . . . , xn are unequal, then the diagonal entries of the system matrix in
are nonzero and we can compute the coefficients by forward substitution,

a1 = f1

a2 =
f2 − a1

x2 − x1

...

an =
fn −

∑n−1
i=1 ai

∏i−1
j=1(xn − xj)∏n−1

j=1 (xn − xj)
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Newtone Interpolating Polynomial.

Example

xi 0 1 −1 2 −2
fi −5 −3 −15 39 −9

Interpolation polynomial

P (f |x1, . . . , x5)(x)

= −5 + 4x− 7x2 + 2x3 + 3x4 Monomial basis

= −5
(x− 1)(x + 1)(x− 2)(x + 2)

4
− 3

x(x + 1)(x− 2)(x + 2)
−6

− 15
x(x− 1)(x− 2)(x + 2)

−6
+ 39

x(x− 1)(x + 1)(x + 2)
24

− 9
x(x− 1)(x + 1)(x− 2)

24
Lagrange basis

= −5 + 2x− 4x(x− 1) + 8x(x− 1)(x + 1) + 3x(x− 1)(x + 1)(x− 2)
Newton basis.
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Newton Basis.
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Construction of the Interpolating Polynomial. Summary.

I If xi 6= xj for i 6= j, there exists a unique polynomial of degree
n− 1, denoted by P (f |x1, . . . , xn)(x) such that

P (f |x1, . . . , xn)(xi) = fi, i = 1, . . . , n.

I The interpolating polynomial can be written in different bases:

P (f |x1, . . . , xn)(x)

= aM
1 + aM

2 x + · · ·+ aM
n xn−1

= f1

n∏
j=1
j 6=1

x− xj

x1 − xj
+ f2

n∏
j=1
j 6=2

x− xj

x2 − xj
+ · · ·+ fn

n∏
j=1
j 6=n

x− xj

xn − xj

= aN
1 + aN

2 (x− x1) + · · ·+ aN
n (x− x1) . . . (x− xn−1).

I The representation of the interpolating polynomial depends on the
chosen basis.
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