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Goals
I Understanding the regularization.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics Linear Least Squares – 1



Review.

I Consider the linear least square problem

min
x∈Rn

‖Ax− b‖22.

From the last lecture:

I Let A = UΣV T be the Singular Value Decomposition of A ∈ Rm×n
with singular values

σ1 ≥ · · · ≥ σr > σr+1 = · · · = σmin {m,n} = 0

I The minimum norm solution is

x† =
r∑
i=1

uTi b

σi
vi

I If even one singular value σi is small, then small perturbations in b
can lead to large errors in the solution.
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Regularized Linear Least Squares Problems.

I If σ1/σr � 1, then it might be useful to consider the regularized
linear least squares problem (Tikhonov regularization)

min
x∈Rn

1
2
‖Ax− b‖22 +

λ

2
‖x‖22.

Here λ > 0 is the regularization parameter.

I The regularization parameter λ > 0 is not known a-priori and has to
be determined based on the problem data. See later.

I Observe that

min
x

1
2
‖Ax− b‖22 +

λ

2
‖x‖22 = min

x

∥∥∥∥( A√
λI

)
x−

(
b
0

)∥∥∥∥2

2

.
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Regularized Linear Least Squares Problems.

I Thus

min
x

1
2
‖Ax− b‖22 +

λ

2
‖x‖22 = min

x

∥∥∥∥( A√
λI

)
x−

(
b
0

)∥∥∥∥2

2

. (1)

I For λ > 0 the matrix (
A√
λI

)
∈ R(m+n)×n

has always full rank n. Hence, for λ > 0, the regularized linear least
squares problem (1) has a unique solution.

I The normal equation corresponding to (1) are given by(
A√
λI

)T (
A√
λI

)
x = (ATA+λI)x = AT b =

(
A√
λI

)T (
b
0

)T
.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics Linear Least Squares – 4



Regularized Linear Least Squares Problems.
I SVD Decomposition: A = UΣV T , where U ∈ Rm×m and
V ∈ Rn×n are orthogonal matrices and Σ ∈ Rm×n is a ’diagonal’
matrix with diagonal entries

σ1 ≥ · · · ≥ σr > σr+1 = · · · = σmin {m,n} = 0.

I Thus the normal to (1)

(ATA+ λI)xλ = AT b,

can be written as

(V ΣT UTU︸ ︷︷ ︸
=I

ΣV T + λ I︸︷︷︸
=V V T

)xλ = V ΣTUT b.

I Rearranging terms we obtain

V (ΣTΣ + λI)V Txλ = V ΣTUT b,

multiplying both sides by V T from the left and setting z = V Txλ
we get

(ΣTΣ + λI)z = ΣTUT b.
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Regularized Linear Least Squares Problems.

I The normal equation corresponding to (1),

(ATA+ λI)xλ = AT b,

is equivalent to
(ΣTΣ + λI)︸ ︷︷ ︸

diagonal

z = ΣTUT b.

where z = V Txλ.

I Solution

zi =

{
σi(u

T
i b)

σ2
i +λ

, i = 1, . . . , r,
0, i = r + 1, . . . , n.

I Since xλ = V z =
∑n
i=1 zivi, the solution of the regularized linear

least squares problem (1) is given by

xλ =
r∑
i=1

σi(uTi b)
σ2
i + λ

vi.
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Regularized Linear Least Squares Problems.

I Note that

lim
λ→0

xλ = lim
λ→0

r∑
i=1

σi(uTi b)
σ2
i + λ

vi =
r∑
i=1

uTi b

σi
vi = x†

i.e., the solution of the regularized LLS problem (1) converges to the
minimum norm solution of the LLS problem as λ goes to zero.

I The representation

xλ =
r∑
i=1

σi(uTi b)
σ2
i + λ

vi

of the solution of the regularized LLS also reveals the regularizing
property of adding the term λ

2 ‖x‖
2
2 to the (ordinary) least squares

functional. We have that

σi(uTi b)
σ2
i + λ

≈

{
0, if 0 ≈ σi � λ
uT

i b
σi
, if σi � λ.
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Regularized Linear Least Squares Problems.

I Hence, addingλ2 ‖x‖
2
2 to the (ordinary) least squares functional acts

as a filter. Contributions from singular values which are large relative
to the regularization parameter λ are left (almost) unchanged
whereas contributions from small singular values are (almost)
eliminated.

I It raises an important question:

How to choose λ?
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Regularized Linear Least Squares Problems.

I Suppose that the data are b = bex + δb. We want to compute the
minimum norm solution of the (ordinary) LLS with unperturbed data
bex

xex =
r∑
i=1

uTi b

σi
vi

but we can only compute with b = bex + δb, we don’t know bex.

I The solution of the regularized least squares problem is

xλ =
r∑
i=1

(
σi(uTi bex)
σ2
i + λ

+
σi(uTi δb)
σ2
i + λ

)
vi.
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Regularized Linear Least Squares Problems.

I We observed that

r∑
i=1

σi(uTi bex)
σ2
i + λ

→ xex as λ→ 0.

I On the other hand

σi(uTi δb)
σ2
i + λ

≈

{
0, if 0 ≈ σi � λ
uT

i δb
σi

, if σi � λ,

which suggests to choose λ sufficiently large to ensure that errors δb
in the data are not magnified by small singular values.
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Regularized Linear Least Squares Problems.

% Compute A
t = 10.^(0:-1:-10)’;
A = [ ones(size(t)) t t.^2 t.^3 t.^4 t.^5];

% compute exact data
xex = ones(6,1); bex = A*xex;

% data perturbation of 0.1%
deltab = 0.001*(0.5-rand(size(bex))).*bex;
b = bex+deltab;

% compute SVD of A
[U,S,V] = svd(A); sigma = diag(S);

for i = 0:7 % solve regularized LLS for different lambda
lambda(i+1) = 10^(-i)
xlambda = V * (sigma.*(U’*b) ./ (sigma.^2 + lambda(i+1)))
err(i+1) = norm(xlambda - xex);

end
loglog(lambda,err,’*’); ylabel(’||x^{ex} - x_{\lambda}||_2’); xlabel(’\lambda’);D. Leykekhman - MATH 3795 Introduction to Computational Mathematics Linear Least Squares – 11



Regularized Linear Least Squares Problem.

I The error ‖xex − xλ‖2 for different values of λ (loglog-scale):

I For this example λ ≈ 10−3 is a good choice for the regularization
parameter λ. However, we could only create this figure with the
knowledge of the desired solution xex.

I How can we determine a λ ≥ 0 so that ‖xex − xλ‖2 is small without
knowledge of xex.

I One approach is the Morozov discrepancy principle.
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Regularized Linear Least Squares Problem.

I Suppose b = bex + δb. We do not know the perturbation δb, but we
assume that we know its size ‖δb‖.

I Suppose the unknown desired solution xex satisfies Axex = bex.

I Hence,
‖Axex − b‖ = ‖Axex − bex − δb‖ = ‖δb‖.

I Since the exact solution satisfies ‖Axex − b‖ = ‖δb‖ we want to find
a regularization parameter λ ≥ 0 such that the solution xλ of the
regularized least squares problem satisfies

‖Axλ − b‖ = ‖δb‖

This is Morozov’s discrepancy principle.
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Regularized Linear Least Squares Problem.

Let’s see now this works for the previous Matlab example.

The error ‖xex−xλ‖2 for different
values of λ (log-log-scale)

The residual ‖Axλ − b‖2 and
‖δb‖2 for different values of λ
(log-log- scale)
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Regularized Linear Least Squares Problem.
I Morozov’s discrepancy principle: Find λ ≥ 0 such that

‖Axλ − b‖ = ‖δb‖

I To compute ‖Axλ − b‖ for given λ ≥ 0 we need to solve a
regularized linear least squares problem

min
x

1
2
‖Ax− b‖22 +

λ

2
‖x‖22 = min

x

∥∥∥∥( A√
λI

)
x−

(
b
0

)∥∥∥∥2

2

to get xλ and then we have to compute ‖Axλ − b‖.
I Let f(λ) = ‖Axλ − b‖ − ‖δb‖. Finding λ ≥ 0 such that

f(λ) = 0

is a root finding problem. We will discuss in the future how to
solve such problems. In this case f maps a scalar λ into a scalar
f(λ) = ‖Axλ − b‖ − ‖δb‖, but the evaluation of f requires the
solution of a regularized LLS problems and can be rather expensive.
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