MATH 3795
 Lecture 10. Regularized Linear Least Squares.

Dmitriy Leykekhman

Fall 2008

Goals

- Understanding the regularization.

Review.

- Consider the linear least square problem

$$
\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}^{2}
$$

From the last lecture:

- Let $A=U \Sigma V^{T}$ be the Singular Value Decomposition of $A \in \mathbb{R}^{m \times n}$ with singular values

$$
\sigma_{1} \geq \cdots \geq \sigma_{r}>\sigma_{r+1}=\cdots=\sigma_{\min \{m, n\}}=0
$$

- The minimum norm solution is

$$
x_{\dagger}=\sum_{i=1}^{r} \frac{u_{i}^{T} b}{\sigma_{i}} v_{i}
$$

- If even one singular value σ_{i} is small, then small perturbations in b can lead to large errors in the solution.

Regularized Linear Least Squares Problems.

- If $\sigma_{1} / \sigma_{r} \gg 1$, then it might be useful to consider the regularized linear least squares problem (Tikhonov regularization)

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{2}\|A x-b\|_{2}^{2}+\frac{\lambda}{2}\|x\|_{2}^{2} .
$$

Here $\lambda>0$ is the regularization parameter.

- The regularization parameter $\lambda>0$ is not known a-priori and has to be determined based on the problem data. See later.
- Observe that

$$
\min _{x} \frac{1}{2}\|A x-b\|_{2}^{2}+\frac{\lambda}{2}\|x\|_{2}^{2}=\min _{x}\left\|\binom{A}{\sqrt{\lambda} I} x-\binom{b}{0}\right\|_{2}^{2}
$$

Regularized Linear Least Squares Problems.

- Thus

$$
\begin{equation*}
\min _{x} \frac{1}{2}\|A x-b\|_{2}^{2}+\frac{\lambda}{2}\|x\|_{2}^{2}=\min _{x}\left\|\binom{A}{\sqrt{\lambda} I} x-\binom{b}{0}\right\|_{2}^{2} \tag{1}
\end{equation*}
$$

- For $\lambda>0$ the matrix

$$
\binom{A}{\sqrt{\lambda} I} \in \mathbb{R}^{(m+n) \times n}
$$

has always full rank n. Hence, for $\lambda>0$, the regularized linear least squares problem (1) has a unique solution.

- The normal equation corresponding to (1) are given by

$$
\binom{A}{\sqrt{\lambda} I}^{T}\binom{A}{\sqrt{\lambda} I} x=\left(A^{T} A+\lambda I\right) x=A^{T} b=\binom{A}{\sqrt{\lambda} I}^{T}\binom{b}{0}^{T} .
$$

Regularized Linear Least Squares Problems.

- SVD Decomposition: $A=U \Sigma V^{T}$, where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices and $\Sigma \in \mathbb{R}^{m \times n}$ is a 'diagonal' matrix with diagonal entries

$$
\sigma_{1} \geq \cdots \geq \sigma_{r}>\sigma_{r+1}=\cdots=\sigma_{\min \{m, n\}}=0
$$

- Thus the normal to (1)

$$
\left(A^{T} A+\lambda I\right) x_{\lambda}=A^{T} b,
$$

can be written as

$$
(V \Sigma^{T} \underbrace{U^{T} U}_{=I} \Sigma V^{T}+\lambda \underbrace{I}_{=V V^{T}}) x_{\lambda}=V \Sigma^{T} U^{T} b .
$$

Regularized Linear Least Squares Problems.

- SVD Decomposition: $A=U \Sigma V^{T}$, where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices and $\Sigma \in \mathbb{R}^{m \times n}$ is a 'diagonal' matrix with diagonal entries

$$
\sigma_{1} \geq \cdots \geq \sigma_{r}>\sigma_{r+1}=\cdots=\sigma_{\min \{m, n\}}=0
$$

- Thus the normal to (1)

$$
\left(A^{T} A+\lambda I\right) x_{\lambda}=A^{T} b,
$$

can be written as

$$
(V \Sigma^{T} \underbrace{U^{T} U}_{=I} \Sigma V^{T}+\lambda \underbrace{I}_{=V V^{T}}) x_{\lambda}=V \Sigma^{T} U^{T} b .
$$

- Rearranging terms we obtain

$$
V\left(\Sigma^{T} \Sigma+\lambda I\right) V^{T} x_{\lambda}=V \Sigma^{T} U^{T} b,
$$

multiplying both sides by V^{T} from the left and setting $z=V^{T} x_{\lambda}$ we get

$$
\left(\Sigma^{T} \Sigma+\lambda I\right) z=\Sigma^{T} U^{T} b
$$

Regularized Linear Least Squares Problems.

- The normal equation corresponding to (1),

$$
\left(A^{T} A+\lambda I\right) x_{\lambda}=A^{T} b
$$

is equivalent to

$$
\underbrace{\left(\Sigma^{T} \Sigma+\lambda I\right)}_{\text {diagonal }} z=\Sigma^{T} U^{T} b
$$

where $z=V^{T} x_{\lambda}$.

- Solution

$$
z_{i}= \begin{cases}\frac{\sigma_{i}\left(u_{i}^{T} b\right)}{\sigma_{i}^{2}+\lambda}, & i=1, \ldots, r \\ 0, & i=r+1, \ldots, n\end{cases}
$$

- Since $x_{\lambda}=V z=\sum_{i=1}^{n} z_{i} v_{i}$, the solution of the regularized linear least squares problem (1) is given by

$$
x_{\lambda}=\sum_{i=1}^{r} \frac{\sigma_{i}\left(u_{i}^{T} b\right)}{\sigma_{i}^{2}+\lambda} v_{i} .
$$

Regularized Linear Least Squares Problems.

- Note that

$$
\lim _{\lambda \rightarrow 0} x_{\lambda}=\lim _{\lambda \rightarrow 0} \sum_{i=1}^{r} \frac{\sigma_{i}\left(u_{i}^{T} b\right)}{\sigma_{i}^{2}+\lambda} v_{i}=\sum_{i=1}^{r} \frac{u_{i}^{T} b}{\sigma_{i}} v_{i}=x_{\dagger}
$$

i.e., the solution of the regularized LLS problem (1) converges to the minimum norm solution of the LLS problem as λ goes to zero.

Regularized Linear Least Squares Problems.

- Note that

$$
\lim _{\lambda \rightarrow 0} x_{\lambda}=\lim _{\lambda \rightarrow 0} \sum_{i=1}^{r} \frac{\sigma_{i}\left(u_{i}^{T} b\right)}{\sigma_{i}^{2}+\lambda} v_{i}=\sum_{i=1}^{r} \frac{u_{i}^{T} b}{\sigma_{i}} v_{i}=x_{\dagger}
$$

i.e., the solution of the regularized LLS problem (1) converges to the minimum norm solution of the LLS problem as λ goes to zero.

- The representation

$$
x_{\lambda}=\sum_{i=1}^{r} \frac{\sigma_{i}\left(u_{i}^{T} b\right)}{\sigma_{i}^{2}+\lambda} v_{i}
$$

of the solution of the regularized LLS also reveals the regularizing property of adding the term $\frac{\lambda}{2}\|x\|_{2}^{2}$ to the (ordinary) least squares functional. We have that

$$
\frac{\sigma_{i}\left(u_{i}^{T} b\right)}{\sigma_{i}^{2}+\lambda} \approx \begin{cases}0, & \text { if } 0 \approx \sigma_{i} \ll \lambda \\ \frac{u_{i}^{T} b}{\sigma_{i}}, & \text { if } \sigma_{i} \gg \lambda\end{cases}
$$

Regularized Linear Least Squares Problems.

- Hence, adding $\frac{\lambda}{2}\|x\|_{2}^{2}$ to the (ordinary) least squares functional acts as a filter. Contributions from singular values which are large relative to the regularization parameter λ are left (almost) unchanged whereas contributions from small singular values are (almost) eliminated.
- It raises an important question:

How to choose λ ?

Regularized Linear Least Squares Problems.

- Suppose that the data are $b=b_{e x}+\delta b$. We want to compute the minimum norm solution of the (ordinary) LLS with unperturbed data $b_{e x}$

$$
x_{e x}=\sum_{i=1}^{r} \frac{u_{i}^{T} b}{\sigma_{i}} v_{i}
$$

but we can only compute with $b=b_{e x}+\delta b$, we don't know $b_{e x}$.

- The solution of the regularized least squares problem is

$$
x_{\lambda}=\sum_{i=1}^{r}\left(\frac{\sigma_{i}\left(u_{i}^{T} b_{e x}\right)}{\sigma_{i}^{2}+\lambda}+\frac{\sigma_{i}\left(u_{i}^{T} \delta b\right)}{\sigma_{i}^{2}+\lambda}\right) v_{i} .
$$

Regularized Linear Least Squares Problems.

- We observed that

$$
\sum_{i=1}^{r} \frac{\sigma_{i}\left(u_{i}^{T} b_{e x}\right)}{\sigma_{i}^{2}+\lambda} \rightarrow x_{e x} \quad \text { as } \quad \lambda \rightarrow 0
$$

- On the other hand

$$
\frac{\sigma_{i}\left(u_{i}^{T} \delta b\right)}{\sigma_{i}^{2}+\lambda} \approx \begin{cases}0, & \text { if } 0 \approx \sigma_{i} \ll \lambda \\ \frac{u_{i}^{T} \delta b}{\sigma_{i}}, & \text { if } \sigma_{i} \gg \lambda,\end{cases}
$$

which suggests to choose λ sufficiently large to ensure that errors δb in the data are not magnified by small singular values.

Regularized Linear Least Squares Problems.

```
% Compute A
t = 10. ` (0:-1:-10)';
A = [ ones(size(t)) t t.^2 t.^3 t.^4 t.^ 5];
% compute exact data
xex = ones (6,1); bex = A*xex;
% data perturbation of 0.1%
deltab = 0.001*(0.5-rand(size(bex))).*bex;
b = bex+deltab;
% compute SVD of A
[U,S,V] = svd(A); sigma = diag(S);
for i = 0:7 % solve regularized LLS for different lambda
    lambda(i+1) = 10^(-i)
    xlambda = V * (sigma.*(U'*b) ./ (sigma.^2 + lambda(i+1)))
    err(i+1) = norm(xlambda - xex);
end
```


Regularized Linear Least Squares Problem.

- The error $\left\|x_{e x}-x_{\lambda}\right\|_{2}$ for different values of λ (loglog-scale):

Regularized Linear Least Squares Problem.

- The error $\left\|x_{e x}-x_{\lambda}\right\|_{2}$ for different values of λ (loglog-scale):

- For this example $\lambda \approx 10^{-3}$ is a good choice for the regularization parameter λ. However, we could only create this figure with the knowledge of the desired solution $x_{e x}$.
- How can we determine a $\lambda \geq 0$ so that $\left\|x_{e x}-x_{\lambda}\right\|_{2}$ is small without knowledge of $x_{e x}$.
- One approach is the Morozov discrepancy principle.

Regularized Linear Least Squares Problem.

- Suppose $b=b_{e x}+\delta b$. We do not know the perturbation δb, but we assume that we know its size $\|\delta b\|$.
- Suppose the unknown desired solution $x_{e x}$ satisfies $A x_{e x}=b_{e x}$.
- Hence,

$$
\left\|A x_{e x}-b\right\|=\left\|A x_{e x}-b_{e x}-\delta b\right\|=\|\delta b\| .
$$

- Since the exact solution satisfies $\left\|A x_{e x}-b\right\|=\|\delta b\|$ we want to find a regularization parameter $\lambda \geq 0$ such that the solution x_{λ} of the regularized least squares problem satisfies

$$
\left\|A x_{\lambda}-b\right\|=\|\delta b\|
$$

This is Morozov's discrepancy principle.

Regularized Linear Least Squares Problem.

Let's see now this works for the previous Matlab example.

The error $\left\|x_{e x}-x_{\lambda}\right\|_{2}$ for different values of λ (log-log-scale)
 $\|\delta b\|_{2}$ for different values of λ (log-log- scale)

Regularized Linear Least Squares Problem.

- Morozov's discrepancy principle: Find $\lambda \geq 0$ such that

$$
\left\|A x_{\lambda}-b\right\|=\|\delta b\|
$$

Regularized Linear Least Squares Problem.

- Morozov's discrepancy principle: Find $\lambda \geq 0$ such that

$$
\left\|A x_{\lambda}-b\right\|=\|\delta b\|
$$

- To compute $\left\|A x_{\lambda}-b\right\|$ for given $\lambda \geq 0$ we need to solve a regularized linear least squares problem

$$
\min _{x} \frac{1}{2}\|A x-b\|_{2}^{2}+\frac{\lambda}{2}\|x\|_{2}^{2}=\min _{x}\left\|\binom{A}{\sqrt{\lambda} I} x-\binom{b}{0}\right\|_{2}^{2}
$$

to get x_{λ} and then we have to compute $\left\|A x_{\lambda}-b\right\|$.

Regularized Linear Least Squares Problem.

- Morozov's discrepancy principle: Find $\lambda \geq 0$ such that

$$
\left\|A x_{\lambda}-b\right\|=\|\delta b\|
$$

- To compute $\left\|A x_{\lambda}-b\right\|$ for given $\lambda \geq 0$ we need to solve a regularized linear least squares problem

$$
\min _{x} \frac{1}{2}\|A x-b\|_{2}^{2}+\frac{\lambda}{2}\|x\|_{2}^{2}=\min _{x}\left\|\binom{A}{\sqrt{\lambda} I} x-\binom{b}{0}\right\|_{2}^{2}
$$

to get x_{λ} and then we have to compute $\left\|A x_{\lambda}-b\right\|$.

- Let $f(\lambda)=\left\|A x_{\lambda}-b\right\|-\|\delta b\|$. Finding $\lambda \geq 0$ such that

$$
f(\lambda)=0
$$

is a root finding problem. We will discuss in the future how to solve such problems. In this case f maps a scalar λ into a scalar $f(\lambda)=\left\|A x_{\lambda}-b\right\|-\|\delta b\|$, but the evaluation of f requires the solution of a regularized LLS problems and can be rather expensive.

