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Goals

» Understanding the regularization.
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Review.

» Consider the linear least square problem
min || Az — b||3.
TeR™

From the last lecture:

» Let A= UXVT be the Singular Value Decomposition of A € R™*"
with singular values

01220, > 0pq] =" ::Uhﬁn{nun}zzo

» The minimum norm solution is

T
ul'b
Ty = E (7
g

i=1

> If even one singular value ¢; is small, then small perturbations in b
can lead to large errors in the solution.
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Regularized Linear Least Squares Problems.

» If 01/0, > 1, then it might be useful to consider the regularized
linear least squares problem (Tikhonov regularization)

1 A
in || Az — b|3 + = [|z)3.
min oAz = bz + 5 |l2ll2

Here \ > 0 is the regularization parameter.

» The regularization parameter A > 0 is not known a-priori and has to
be determined based on the problem data. See later.

» Observe that
A A (b
var ) Lo

2

1 :
min = || Az — b||2 + Z||z||2 = min .
z 2 2 z 9

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics Linear Least Squares - 3



Regularized Linear Least Squares Problems.

» Thus
2

(f%f)x‘(é’)

) c R(m+n) Xn

.1 A .
m1n7||Am—b||§+f||m||§ = min .
z 2 2 T 5

» For A > 0 the matrix
A
VI

has always full rank n. Hence, for A > 0, the regularized linear least
squares problem (1) has a unique solution.

» The normal equation corresponding to (1) are given by

<\/%I)T<\/%I)xz(ATAjLM)x:ATb:(\/%I)TG’))T.
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Regularized Linear Least Squares Problems.

» SVD Decomposition: A =UXVT, where U € R™*™ and
V € R™ ™ are orthogonal matrices and ¥ € R™*"™ is a 'diagonal’
matrix with diagonal entries

012+ 20p>0pyg1 = " = Omin {m,n} =0.
» Thus the normal to (1)
(ATA+ M)y = ATb,
can be written as
VTUTusvt + X I Hay=VETU"b.
—— ~~
=] =vvT
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Regularized Linear Least Squares Problems.

» SVD Decomposition: A =UXVT, where U € R™*™ and
V € R™ ™ are orthogonal matrices and ¥ € R™*"™ is a 'diagonal’
matrix with diagonal entries

012+ 20p>0pyg1 = " = Omin {m,n} =0.
» Thus the normal to (1)
(ATA + XDy = ATD,
can be written as
VTUTusvt + X I Hay=VETU"b.
—— ~~
=] =vvT
> Rearranging terms we obtain
VETS + ANV Tzy = VvETUTD,

multiplying both sides by V7' from the left and setting z = V)
we get
(TS 4+ M)z =XTUT.
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Regularized Linear Least Squares Problems.

» The normal equation corresponding to (1),
(ATA 4 ND)xy = ATb,

is equivalent to
(BTS + A 2z =2TU7b.
—_———

diagonal

where z = V7g,.

T
oi(u; b) S
Zi:{ TR t=1,...,7

0, t=r+1,...,n.

» Solution

» Sincexy =Vz= Z;;l ziv;, the solution of the regularized linear
least squares problem (1) is given by

T

oi(ul'b)
Ty = Z 0'1,2 T b\ V;.

=1
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Regularized Linear Least Squares Problems.

» Note that

oi(u; b )
hmxx—hmZUJr)\ Z;'Ui:mf
i=1 i=1 "

i.e., the solution of the regularized LLS problem (1) converges to the
minimum norm solution of the LLS problem as )\ goes to zero.

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics Linear Least Squares - 7



Regularized Linear Least Squares Problems.

» Note that

. 1 Zal u; b iu?b
lim 2 = lim v = Tt
0 o} 2 im1 7

i.e., the solution of the regularized LLS problem (1) converges to the
minimum norm solution of the LLS problem as )\ goes to zero.

» The representation
r T
oi(u; b)
Ty = ——=U;
A Z 0_2 + B\ 7
=1
of the solution of the regularized LLS also reveals the regularizing

property of adding the term 3 ||z[|3 to the (ordinary) least squares
functional. We have that

oi(ul'b) 0, if0~o; <A\
— Y =~ T
J? + A u;—i, if o > A,
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Regularized Linear Least Squares Problems.

> Hence, adding3||z||3 to the (ordinary) least squares functional acts
as a filter. Contributions from singular values which are large relative
to the regularization parameter \ are left (almost) unchanged
whereas contributions from small singular values are (almost)
eliminated.

» |t raises an important question:

How to choose \?
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Regularized Linear Least Squares Problems.

» Suppose that the data are b = b., + db. We want to compute the

minimum norm solution of the (ordinary) LLS with unperturbed data

bem
T Tb

uj
Lex = § (%
g5

=1

but we can only compute with b = b, + db, we don't know b,
» The solution of the regularized least squares problem is

oy — Z (cn(uZ bes) N oi(u; 5b)> .

—\ of+A o2+ A
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Regularized Linear Least Squares Problems.

» We observed that

yoalhe) L

i=1 01'2 +A
» On the other hand
O'Z(UJZT(Sb) 0, ifOoro; <A
—_— R T
o2+ A 4O gy >

which suggests to choose A sufficiently large to ensure that errors db
in the data are not magnified by small singular values.
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Regularized Linear Least Squares Problems.

% Compute A
t = 10.7(0:-1:-10)’;
A = [ ones(size(t)) t t.”2 t.”3 t.74 t.°5];

% compute exact data
xex = ones(6,1); bex = A*xxex;

% data perturbation of 0.1%
deltab = 0.001*(0.5-rand(size(bex))) .*bex;
b = bex+deltab;

% compute SVD of A
[U,S,V] = svd(A); sigma = diag(S);

for i = 0:7 % solve regularized LLS for different lambda
lambda(i+1) = 107(-1i)
xlambda = V * (sigma.*x(U’*b) ./ (sigma."2 + lambda(i+1)))
err(i+1) = norm(xlambda - xex);

end
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Regularized Linear Least Squares Problem.

» The error ||xe; — x5||2 for different values of A (loglog-scale):

10

X =x 1l

D. Leykekhman - MATH 3795 Introduction to Computational Mathematics Linear Least Squares - 12



Regularized Linear Least Squares Problem.

» The error ||xe; — x5||2 for different values of A (loglog-scale):

10

X =x 1l

» For this example A\ ~ 1072 is a good choice for the regularization
parameter . However, we could only create this figure with the
knowledge of the desired solution x;.

» How can we determine a A > 0 so that ||z, — 2|2 is small without
knowledge of x;.

» One approach is the Morozov discrepancy principle.
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Regularized Linear Least Squares Problem.

» Suppose b = b.,, + db. We do not know the perturbation db, but we
assume that we know its size ||9b]|.

» Suppose the unknown desired solution x., satisfies Aze; = bey.

» Hence,
|AZer — bl| = || A% ey — bea — 0b|| = ||6B]|.

> Since the exact solution satisfies || Az, — b|| = ||db|| we want to find
a regularization parameter A > 0 such that the solution x) of the
regularized least squares problem satisfies

[Azx — bl[ = [|60]

This is Morozov’s discrepancy principle.
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Regularized Linear Least Squares Problem.
Let's see now this works for the previous Matlab example.

) The residual ||Azyx — bl]2 and
The error ||z¢; —, |2 for different lob]|2 for different values of A

values of A (log-log-scale) (log-log- scale)

ol
REOELTA

e
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Regularized Linear Least Squares Problem.

» Morozov's discrepancy principle: Find A > 0 such that

[Azx —b]| = [|6b]
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Regularized Linear Least Squares Problem.

» Morozov's discrepancy principle: Find A > 0 such that
[Azx = bl| = [|5b]

» To compute | Az — b|| for given A > 0 we need to solve a

regularized linear least squares problem
A (b
Var ) o

to get ) and then we have to compute || Az — b|.

1 A 2
min §||Am — b||§ + §Hx||§ = min

2
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Regularized Linear Least Squares Problem.
» Morozov's discrepancy principle: Find A > 0 such that
[Azx = bl| = [|5b]

» To compute | Az — b|| for given A > 0 we need to solve a

regularized linear least squares problem
A (b
Var ) o

to get ) and then we have to compute || Az — b|.
> Let f(N\) = ||Azy — b|| — ||0b]]. Finding A > 0 such that

fA) =0

is a root finding problem. We will discuss in the future how to
solve such problems. In this case f maps a scalar A into a scalar
f(A) = || Az — b|| — ||60]|, but the evaluation of f requires the
solution of a regularized LLS problems and can be rather expensive.
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1 A .
min §||Am — b||§ + §Hx||§ = min
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