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1. Introduction

Gaining an intuitive feel for the relative growth of functions is important if you really
want to understand their behavior. It also helps you better grasp topics in calculus such as
convergence of improper integrals and infinite series.

We want to compare the growth of three different kinds of functions of x, as x→∞:

• power functions xr for r > 0 (such as x3 or
√
x = x1/2),

• exponential functions ax for a > 1,
• logarithmic functions logb x for b > 1.

Some examples are plotted in Figure 1 over the interval [1, 10]. The relative sizes are quite
different for x near 1 and for larger x. (Some coefficients are included on 2x and x2 to keep
them from blowing up too quickly in the picture.)
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Figure 1. Graphs of several functions for x ∈ [1, 10]

All power functions, exponential functions, and logarithmic functions (as defined above)
tend to ∞ as x → ∞. But these three classes of functions tend to ∞ at different rates.
The main result we want to focus on is the following one. It says ex grows faster than any
power function while log x grows slower than any power function. (A power function means
xr with r > 0, so 1/x2 = x−2 doesn’t count.)

Theorem 1.1. For each r > 0, lim
x→∞

xr

ex
= 0 and lim

x→∞

log x

xr
= 0.

This is illustrated in Figure 2. At first the functions are increasing, but for larger x they
tend to 0.
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Figure 2. Graphs of x3/ex and log(x)/x for x ∈ [1, 10]

After we prove Theorem 1.1 and look at some consequences of it in Section 2, we will
compare power, exponential, and log functions with the sequences n! and nn and eventually
show that between any two functions with different orders of growth we can insert infinitely
many functions with different orders of growth between them.

2. Proof of Theorem 1.1 and some corollaries

Proof. (of Theorem 1.1) First we focus on the limit xr/ex → 0. When r = 1 this says

(2.1)
x

ex
→ 0 as x→∞.

This result follows from L’Hopital’s rule.
To derive the general case from this special case, write

(2.2)
xr

ex
= rr

(
x/r

ex/r

)r

.

With r staying fixed, as x→∞ also x/r →∞, so (x/r)/ex/r → 0 by (2.1) with x/r in place
of x. Then the right side of (2.2) tends to 0 as x→∞, so we’re done.

Now we show (log x)/xr → 0 as x→∞. Writing y for log(xr) = r log x,

log x

xr
=
y/r

ey
=

1

r
· y
ey
.

As x→∞, also y →∞, so (1/r)(y/ey)→ 0 by (2.1) with y in place of x. Thus (log x)/xr →
0. �

Corollary 2.1. For any polynomial p(x), lim
x→∞

p(x)

ex
= 0.

Proof. By Theorem 1.1, for any k > 0 we have xk/ex → 0 as x→∞. This is also true when
k = 0. Writing p(x) = adx

d + ad−1x
d−1 + · · ·+ a1x+ a0, we have

p(x)

ex
= ad

xd

ex
+ ad−1

xd−1

ex
+ · · ·+ a1

x

ex
+ a0

1

ex
.

Each xk/ex appearing here tends to 0 as x→∞, so p(x)/ex tends to 0 as x→∞. �

Corollary 2.2. For any r > 0 and k > 0, lim
x→∞

(log x)k

xr
= 0.

Proof. Let y = log(xr) = r log x, so

(log x)k

xr
=
yk/rk

ey
=

1

rk
· y

k

ey
.

As x→∞, also y →∞. Therefore (1/rk)(yk/ey)→ 0 by Theorem 1.1 (since rk > 0). �
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We derived Corollary 2.2 from Theorem 1.1, but the argument can be reversed too. (So
we could consider Corollary 2.2 as the main result and Theorem 1.1 as a consequence of
it.) Take k = 1 in Corollary 2.2 to get the log part of Theorem 1.1 and use the change of
variables y = ex in xr/ex to get the exponential part of Theorem 1.1 from Corollary 2.2.
Specifically, when y = ex

xr

ex
=

(log y)r

y
,

and as x → ∞ we have y = ex → ∞, so by Corollary 2.2 we get (log y)r/y → 0. Therefore
xr/ex → 0 as x→∞.

Corollary 2.3. For any nonconstant polynomial p(x) and positive k, lim
x→∞

(log x)k

p(x)
= 0.

Proof. For large x, p(x) 6= 0 since nonzero polynomials have only a finite number of roots.
Write p(x) = adx

d + ad−1x
d−1 + · · ·+ a1x+ a0, where d > 0 and ad 6= 0. Then

(log x)k

p(x)
=

(log x)k

xd
· 1

ad + ad−1/x+ · · ·+ a0/xd
.

As x → ∞, the first factor tends to 0 by Corollary 2.2 while the second factor tends to
1/ad 6= 0, so the product tends to 0. �

Corollary 2.4. As x→∞, x1/x → 1.

Proof. The logarithm of x1/x is log(x1/x) = (log x)/x, which tends to 0 as x → ∞. Expo-
nentiating,

x1/x = e(log x)/x → e0 = 1.

�

Replacing ex with ax for any a > 1 and log x with logb x for any b > 1 leads to completely
analogous results.

Theorem 2.5. Fix real numbers a > 1 and b > 1. For any r > 0 and integer k > 0,

lim
x→∞

xr

ax
= 0, lim

x→∞

(logb x)k

xr
= 0.

Proof. To deduce this theorem from the earlier results, write ax = e(log a)x and logb x =
(log x)/(log b). The numbers log a and log b are positive. Then, for instance, if we set
y = (log a)x,

xr

ax
=

xr

e(log a)x
=

1

(log a)r

yr

ey
.

When x → ∞, also y → ∞ since log a > 0, so the behavior of xr/ax follows from that
of yr/ey using Theorem 1.1. Since logb x = (log x)/(log b) is a constant multiple of log x,
carrying over the results on log x to logb x is just a matter of rescaling. For instance, if we
set y = log x, so logb x = y/ log b, then

(logb x)k

xr
=
yk/(log b)k

ery
=

1

(log b)k

yk

(er)y
.

As x→∞, also y →∞, so the exponential function (er)y dominates over the power function
yk: yk/(er)y → 0. Therefore (logb x)k/xr → 0 as x→∞. �
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For any nonconstant polynomial p(x), it follows from Theorem 2.5 that

lim
x→∞

p(x)

ax
= 0, lim

x→∞

(logb x)k

p(x)
= 0

in the same way we proved Corollaries 2.1 and 2.3.

3. Growth of basic sequences

We want to compare the growth of five kinds of sequences:

• power sequences nr for r > 0: 1, 2r, 3r, 4r, 5r, . . .
• exponential sequences an for a > 1: a, a2, a3, a4, a5, . . .
• log sequences logb n for b > 1: 0, logb 2, logb 3, logb 4, logb 5, . . .
• n!: 1, 2, 6, 24, 120, . . .
• nn: 1, 4, 27, 256, 3125, . . .

The first three sequences are just the functions we have already treated, except the real
variable x has been replaced by an integer variable n. That is, we are looking at those old
functions at integer values of x now.

Some notation to convey dominanting rates of growth will be convenient. For two se-
quences xn and yn, write xn ≺ yn to mean xn/yn → 0 as n→∞. In other words, xn grows
substantially slower than yn (if it just grew at half the rate, for instance, then xn/yn would
be around 1/2 rather than tend to 0). For instance, n ≺ n2 and

√
n ≺ n. (The notation ≺

is taken from [1, Chap. 9], which has a whole chapter on orders of growth.)

Remark 3.1. The notation xn ≺ yn does not mean xn < yn for all n. Maybe some initial
terms in the xn sequence are larger than the corresponding ones in the yn sequence, but this
will eventually stop and the long term growth of yn dominates. For instance, 1000000n ≺ n2

even though n2 < 1000000n for all small n. Indeed, the ratio

1000000n

n2
=

1000000

n

tends to 0 as n→∞, but the ratio is not small until n gets quite large.

Theorem 1.1 tells us that

(3.1) log n ≺ nr ≺ en

for any r > 0. By Theorem 2.5, we can say more generally that

(3.2) logb n ≺ nr ≺ an

for any a > 1 and b > 1. How do the sequences n! and nn fit into (3.2)? They belong on the
right, as follows.

Theorem 3.2. For any a > 1, an ≺ n! ≺ nn. Equivalently,

lim
n→∞

an

n!
= 0, lim

n→∞

n!

nn
= 0.

Proof. To compare an and n!, we use Euler’s integral formula for n!:

n! =

∫ ∞
0

xne−xdx.
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This integral has for a lower bound the same integral carried out just over [0, n]:

n! >

∫ n

0

xne−xdx.

On the interval [0, n], e−x has its smallest value at the right end: e−x ≥ e−n. Therefore
xne−x ≥ xne−n on [0, n]. Integrating both sides of this inequality from x = 0 to x = n gives∫ n

0

xne−xdx ≥
∫ n

0

xne−ndx

=
1

en

∫ n

0

xndx

=
1

en

nn+1

n+ 1

=
(n
e

)n n

n+ 1
.

Therefore n! >
(n
e

)n n

n+ 1
, so

an

n!
<

an

(n/e)n(n/(n+ 1))
=
(ae
n

)n n+ 1

n
.

This final expression is an upper bound on an/n!. How does it behave as n → ∞? For
large n, ae/n ≤ 1/2, so (ae/n)n ≤ (1/2)n. Therefore (ae/n)n → 0. Since the other factor
(n+ 1)/n tends to 1, we see our upper bound on an/n! tends to 0, so an/n!→ 0 as n→∞.

To show the other part of the theorem, that n!/nn → 0 as n → ∞, we will get an upper
bound on n! and divide the upper bound by nn. Write e−x as e−x/2e−x/2 in Euler’s factorial
integral:

n! =

∫ ∞
0

xne−xdx =

∫ ∞
0

(xne−x/2)e−x/2dx.

The function xne−x/2 drops off to 0 as x→∞. Where does it have its maximum value? The
derivative is xn−1e−x/2(n − x/2) (check this), so xne−x/2 vanishes at x = 2n. Checking the
signs of the derivative to the left and right of x = 2n, we see xne−x/2 has a maximum value
at x = 2n, where the value is (2n)ne−n. Therefore xne−x/2 ≤ (2n)ne−n for all x > 0, so

n! =

∫ ∞
0

(xne−x/2)e−x/2dx

≤
∫ ∞

0

(2n)ne−ne−x/2dx

= (2n)ne−n

∫ ∞
0

e−x/2dx

= (2n)ne−n · 2.

Dividing throughout by nn gives

n!

nn
≤ 2

(
2

e

)n

.

Since 2 < e, the right side tends to 0, so n!/nn → 0 as n→∞. �
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Remark 3.3. In the proof we showed

n

n+ 1

(n
e

)n

≤ n! ≤ 2n+1
(n
e

)n

.

The true order of magnitude of n! is (n/e)n
√

2πn, by Stirling’s formula [2, pp. 116–123].

The fact that an ≺ n! ≺ nn is intuitively reasonable, for the following reason: each of these
expressions (an, n!, and nn) is a product of n numbers, but the nature of these numbers is
different. In an, all n numbers are the same value a, which is independent of n:

an = a · a · · · a︸ ︷︷ ︸
n times

.

In n!, the n numbers are the integers from 1 to n:

n! = 1 · 2 · 3 · · · (n− 1) · n.

Since the terms in this product keep growing, while the terms in an stay the same, it makes
sense that n! grows faster than an (at least once n gets larger than a). In nn, all n numbers
equal n:

nn = n · n · · ·n︸ ︷︷ ︸
n times

.

Since all the terms in this product equal n, while in n! the terms are the numbers from 1 to
n, it is plausible that nn grows a lot faster than n!.

To summarize our results on sequences, we combine (3.2) and Theorem 3.2:

logb n ≺ nr ≺ an ≺ n! ≺ nn

Here a > 1, b > 1, and r > 0 (not just r > 1!). All sequences here tend to ∞ as n → ∞,
but the rates of growth are all different: any sequence which comes to the left of another
sequence on this list grows at a substantially smaller rate, in the sense that the ratio tends
to 0.

For example, can we find a (natural) sequence whose growth is intermediate between n
and nr for every r > 1? That is, we want to find a single sequence of numbers xn such that
n ≺ xn ≺ nr for every r > 1. One choice is xn = n log n. Indeed,

n

n log n
=

1

log n
→ 0,

so n ≺ n log n, and for any r > 1
n log n

nr
=

log n

nr−1
,

which tends to 0 since r − 1 > 0 and log n grows slower than any power function (with a
positive exponent) by Theorem 1.1.

Using powers of log n, we can write down infinitely many sequences with different rates of
growth between n and every sequence nr for r > 1:

n ≺ n log n ≺ n(log n)2 ≺ n(log n)3 ≺ · · · ≺ n(log n)k ≺ · · · ≺ nr,

where k runs through the positive integers.
Is it possible to insert infinitely many sequences with different rates of growth between

any two sequences with different rates of growth?
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Theorem 3.4. If xn ≺ yn, there are sequences {z(1)
n }, {z(2)

n }, {z(3)
n }, . . . such that

xn ≺ z(1)
n ≺ z(2)

n ≺ z(3)
n ≺ · · · ≺ yn.

Proof. Since xn/yn → 0, for large n the ratio xn/yn is small. Specifically, 0 < xn/yn < 1 for
large n. For small positive numbers, taking roots makes them larger but less than 1:

0 < a < 1 =⇒ 0 < a <
√
a < 3
√
a < · · · < k

√
a < · · · < 1.

Since xn/yn < 1 for large n, this presents us with the inequalities

0 <
xn

yn

<

√
xn

yn

< 3

√
xn

yn

< · · · < k

√
xn

yn

< · · · < 1

for large n and k = 1, 2, 3, . . . . Multiply through by yn:

(3.3) 0 < xn <
√
xn
√
yn < x1/3

n y2/3
n < · · · < x1/k

n y1−1/k
n < · · · < yn.

For k < `, the ratio of the k-th root sequence to the `-th root sequence is

x
1/k
n y

1−1/k
n

x
1/`
n y

1−1/`
n

=

(
xn

yn

)1/k−1/`

.

Since 1/k − 1/` > 0, this ratio tends to 0 as n → ∞. Therefore (3.3) leads to infinitely
many sequences with growth intermediate between {xn} and {yn}, namely the sequences

z
(k)
n = x

1/k
n y

1−1/k
n for k = 2, 3, 4, . . . :

(3.4) xn ≺
√
xn
√
yn ≺ x1/3

n y2/3
n ≺ · · · ≺ x1/k

n y1−1/k
n ≺ · · · ≺ yn.

(If you want to label the first sequence with k = 1, set z
(k)
n = x

1/(k+1)
n y

1−1/(k+1)
n for k =

1, 2, 3, . . . .) �

The difference between (3.3) and (3.4) is that (3.3) is a set of inequalities which is valid for
large n (namely n large enough to have xn/yn < 1), while (3.4) is a statement about rates of
growth between different sequences: it makes no sense to ask if (3.4) is true at a particular
value of n, any more than it would make sense to ask if the limit relation n

n+1
→ 1 is “true”

at n = 45.
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