6. Vector Spaces

- Motivation

1. So many mathematical objects equipped with addition and scalar multiplication.
(e.g. $\mathbf{R}^{n}, \mathbf{C}^{n}, \mathcal{M}_{m n}, \mathcal{C}^{0}[a, b], \cdots$)
2. So many properties that all such objects have in common.
3. Collect only a few common properties as axioms, and prove all the other properties as consequences of the axioms once and for all.
4. To study a new object with addition and scalar multiplication, you have only to verify the axioms. All the other properties are automatically available!

- Definition

A vector space V is a set with two operations + and . satisfying the following properties. For $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $k, p \in \mathbf{F}$

1. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
2. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
3. $\exists \mathbf{0}$ s.t. $\mathbf{0}+\mathbf{u}=\mathbf{u}$ for each \mathbf{u}.
4. For each $\mathbf{u}, \exists-\mathbf{u}$ s.t. $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
5. $k \cdot(\mathbf{u}+\mathbf{v})=k \cdot \mathbf{u}+k \cdot \mathbf{v}, \quad(k+p) \cdot \mathbf{u}=k \cdot \mathbf{u}+p \cdot \mathbf{u}$
6. $(k p) \cdot \mathbf{u}=k \cdot(p \cdot \mathbf{u})$
7. $1 \cdot \mathbf{u}=\mathbf{u}$

Eg.

1. \mathbf{F}^{n} (i.e. $\mathbf{R}^{1}, \mathbf{R}^{2}, \cdots, \mathbf{C}^{1}, \mathbf{C}^{2}, \cdots$)
2. $\mathcal{M}_{m n}$: the set of all $m \times n$ matrices
3. \mathcal{P} : the set of all polynomials
4. $\mathcal{F}[a, b]$: the set of all real-valued functions on $[a, b] \in \mathbf{R}$

$$
\text { If } f(x)=\sin x \text { and } g(x)=\cos x \text {, then }
$$

$$
\begin{gathered}
(f+g)(x)=f(x)+g(x)=\sin x+\cos x, \\
(3 f)(x)=3 f(x)=3 \sin x .
\end{gathered}
$$

- Subspaces

If V is a vector space, a subset U of V is called a subspace of V if U is itself a vector space w.r.t. the operations in V.

Thm. Let U be a nonempty subset of V. Then U is a subspace of V if and only if U is closed under the addition and scalar multiplication, i.e. $\mathbf{u}+\mathbf{v} \in U$ and $k \mathbf{u} \in U$ for any $\mathbf{u}, \mathbf{v} \in U$ and $k \in \mathbf{F}$.

Cor. Every subspace U of V contains the zero vector $\mathbf{0}$ of V.

Eg. The set U of all polynomials in \mathcal{P} that have 3 as a root is a subspace of \mathcal{P}. Indeed, let $p, q \in U$. Then $(p+q)(3)=p(3)+q(3)=0$ and so $p+q \in U$. Similarly, $(k p)(3)=k p(3)=0$ and so $k p \in U$.

Eg. Let \mathcal{P}_{n} be the set of all polynomials of degree at most n. Then \mathcal{P}_{n} is a subspace of \mathcal{P} for each $n \geq 0$.

Eg. The subset $\mathcal{D}(a, b)$ of all differentiable functions on (a, b) is a subspace of $\mathcal{F}(a, b)$.

Eg. We define

$$
\begin{aligned}
& \mathcal{C}^{0}(a, b)=\{f \in \mathcal{F}(a, b) \mid f \text { is continuous }\} \\
& \mathcal{C}^{1}(a, b)=\left\{f \in \mathcal{F}(a, b) \mid f^{\prime} \text { exists and continuous }\right\} \\
& \mathcal{C}^{2}(a, b)=\left\{f \in \mathcal{F}(a, b) \mid f^{\prime \prime} \text { exists and continuous }\right\},
\end{aligned}
$$

:

$$
\mathcal{C}^{n}(a, b)=\left\{f \in \mathcal{F}(a, b) \mid f^{(n)} \text { exists and continuous }\right\}
$$

:

$$
\mathcal{C}^{\infty}(a, b)=\left\{f \in \mathcal{F}(a, b) \mid f^{(n)} \text { exists for all } n\right\}
$$

The sets $\mathcal{C}^{0}(a, b), \mathcal{C}^{1}(a, b), \cdots, \mathcal{C}^{\infty}(a, b)$ are subspaces of $\mathcal{F}(a, b)$.

- Bases and Dimension

1. An expression $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\cdots+a_{n} \mathbf{v}_{\mathbf{n}}$ is called a linear combination of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \cdots, \mathbf{v}_{\mathbf{n}}$. The span of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \cdots, \mathbf{v}_{\mathbf{n}}$, denoted by $\operatorname{span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \cdots, \mathbf{v}_{\mathbf{n}}\right\}$, is the set of all linear combinations of the vectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \cdots, \mathbf{v}_{\mathbf{n}}$.
2. A set of vectors $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \cdots, \mathbf{v}_{\mathbf{n}}\right\}$ is called linearly independent if $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\cdots+a_{n} \mathbf{v}_{n}=\mathbf{0}$ implies $a_{1}=a_{2}=\cdots=a_{n}=0$.
3. A set B of vectors in a vector space V is called a basis of V if B is linearly independent and B spans V.
4. The number of vectors in a basis is called the dimension of V.

Eg. Let $p_{1}=1+x+4 x^{2}$ and $p_{2}=1+5 x+x^{2}$. Determine whether p_{1} and p_{2} lie in $\operatorname{span}\left\{1+2 x-x^{2}, 3+5 x+2 x^{2}\right\}$. Solution.

$$
\begin{aligned}
& p_{1}= s\left(1+2 x-x^{2}\right)+t\left(3+5 x+2 x^{2}\right) \\
&=(s+3 t)+(2 s+5 t) x+(-2+2 t) x^{2} \\
& 1=s+3 t, 1=2 s+5 t, 4=-s+2 t . \\
& s=-2, t=1 . \\
& p_{2}= s\left(1+2 x-x^{2}\right)+t\left(3+5 x+2 x^{2}\right) \\
&=(s+3 t)+(2 s+5 t) x+(-2+2 t) x^{2} \\
& 1=s+3 t, 5=2 s+5 t, 1=-s+2 t . \\
& \text { No solution! }
\end{aligned}
$$

Eg. A set of polynomials of distinct degrees is linearly independent.

Eg. The set $\{1, \sin x, \cos x\} \subseteq \mathcal{C}^{0}[-\pi, \pi]$ is linearly independent. Actually,

$$
\{1, \sin x, \cos x, \sin 2 x, \cos 2 x, \cdots\} \subseteq \mathcal{C}^{0}[-\pi, \pi]
$$

is linearly independent.

Eg. The set $\left\{1, x, x^{2}, \cdots, x^{n}\right\}$ is a basis of \mathcal{P}_{n}. Thus $\operatorname{dim} \mathcal{P}_{n}=n+1$.

The set $\left\{1, x, x^{2}, \cdots\right\}$ is a basis of \mathcal{P}. Thus $\operatorname{dim} \mathcal{P}_{n}=\infty$.

Eg. Show that $\mathcal{P}_{3}=\operatorname{span}\left\{x^{2}+x^{3}, x, 1+2 x^{2}, 3\right\}$.
Solution. Since $\left\{1, x, x^{2}, x^{3}\right\}$ is a basis of \mathcal{P}_{3}, we have only to show

$$
1, x, x^{2}, x^{3} \in \operatorname{span}\left\{x^{2}+x^{3}, x, 1+2 x^{2}, 3\right\}
$$

Thm. Let V be a vector space and let U and W be subspaces of V. Then if $U \subseteq W$ and $\operatorname{dim} U=\operatorname{dim} W$, then $U=W$.

Eg. If a is a number, let W denote the subspace of all polynomials in \mathcal{P}_{n} with a as a root, i.e.

$$
W=\left\{p \in \mathcal{P}_{n} \mid p(a)=0\right\} .
$$

Show that $\left\{(x-a),(x-a)^{2}, \cdots,(x-a)^{n}\right\}$ is a basis of W.
Solution. Since the degrees are distinct, $(x-a),(x-$ $a)^{2}, \cdots,(x-a)^{n}$ are linearly independent. Write

$$
U=\operatorname{span}\left\{(x-a),(x-a)^{2}, \cdots,(x-a)^{n}\right\}
$$

Then we have $U \subseteq W \subseteq \mathcal{P}_{n}, \operatorname{dim} U=n$, and $\operatorname{dim} \mathcal{P}_{n}=$ $n+1$. Hence $n \leq \operatorname{dim} W \leq n+1$, so $\operatorname{dim} W=n$ or $\operatorname{dim} W=n+1$. Then it follows from Thm that $W=U$ or $W=\mathcal{P}_{n}$. Since $W \neq \mathcal{P}_{n}$, we have $W=U$.

Thm. Every n-dimensional vector space is isomorphic to the space \mathbf{F}^{n}.

Eg. $\quad \mathcal{P}_{n} \simeq \mathbf{F}^{n+1}$

$$
a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \leftrightarrow\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]
$$

