Linear Algebra

6. Vector Spaces

- Motivation
 - So many mathematical objects equipped with addition and scalar multiplication.
 (e.g. Rⁿ, Cⁿ, M_{mn}, C⁰[a, b], ···)
 - 2. So many properties that all such objects have in common.
 - Collect only a few common properties as axioms, and prove all the other properties as consequences of the axioms once and for all.
 - 4. To study a new object with addition and scalar multiplication, you have only to verify the axioms. All the other properties are automatically available!

• Definition

A vector space V is a set with two operations + and \cdot satisfying the following properties. For ${\bf u},\,{\bf v},\,{\bf w}\in V$ and $k,p\in {\bf F}$

1.
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

2. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
3. $\exists \mathbf{0} \text{ s.t. } \mathbf{0} + \mathbf{u} = \mathbf{u} \text{ for each } \mathbf{u}.$
4. For each $\mathbf{u}, \exists -\mathbf{u} \text{ s.t. } \mathbf{u} + (-\mathbf{u}) = \mathbf{0}.$
5. $k \cdot (\mathbf{u} + \mathbf{v}) = k \cdot \mathbf{u} + k \cdot \mathbf{v}, \quad (k + p) \cdot \mathbf{u} = k \cdot \mathbf{u} + p \cdot \mathbf{u}$
6. $(kp) \cdot \mathbf{u} = k \cdot (p \cdot \mathbf{u})$
7. $1 \cdot \mathbf{u} = \mathbf{u}$

Eg.

- 1. \mathbf{F}^{n} (i.e. $\mathbf{R}^{1}, \mathbf{R}^{2}, \cdots, \mathbf{C}^{1}, \mathbf{C}^{2}, \cdots$)
- 2. \mathcal{M}_{mn} : the set of all $m \times n$ matrices
- 3. \mathcal{P} : the set of all polynomials
- 4. $\mathcal{F}[a, b]$: the set of all real-valued functions on $[a, b] \in \mathbf{R}$

If
$$f(x) = \sin x$$
 and $g(x) = \cos x$, then
 $(f+g)(x) = f(x) + g(x) = \sin x + \cos x$,
 $(3f)(x) = 3f(x) = 3\sin x$.

• Subspaces

If V is a vector space, a subset U of V is called a subspace of V if U is itself a vector space w.r.t. the operations in V.

Thm. Let U be a nonempty subset of V. Then U is a subspace of V if and only if U is closed under the addition and scalar multiplication, i.e. $\mathbf{u} + \mathbf{v} \in U$ and $k\mathbf{u} \in U$ for any $\mathbf{u}, \mathbf{v} \in U$ and $k \in \mathbf{F}$.

Cor. Every subspace U of V contains the zero vector $\mathbf{0}$ of V.

Eg. The set U of all polynomials in \mathcal{P} that have 3 as a root is a subspace of \mathcal{P} . Indeed, let $p, q \in U$. Then (p+q)(3) = p(3) + q(3) = 0 and so $p + q \in U$. Similarly, (kp)(3) = kp(3) = 0 and so $kp \in U$.

Eg. Let \mathcal{P}_n be the set of all polynomials of degree at most n. Then \mathcal{P}_n is a subspace of \mathcal{P} for each $n \ge 0$.

Eg. The subset $\mathcal{D}(a, b)$ of all differentiable functions on (a, b) is a subspace of $\mathcal{F}(a, b)$.

Eg. We define

$$C^{0}(a,b) = \{f \in \mathcal{F}(a,b) \mid f \text{ is continuous } \},$$

$$C^{1}(a,b) = \{f \in \mathcal{F}(a,b) \mid f' \text{ exists and continuous } \},$$

$$C^{2}(a,b) = \{f \in \mathcal{F}(a,b) \mid f'' \text{ exists and continuous } \},$$

$$\vdots$$

$$C^{n}(a,b) = \{f \in \mathcal{F}(a,b) \mid f^{(n)} \text{ exists and continuous } \},$$

$$\vdots$$

$$C^{\infty}(a,b) = \{f \in \mathcal{F}(a,b) \mid f^{(n)} \text{ exists for all } n \}.$$

The sets $C^0(a, b)$, $C^1(a, b)$, \cdots , $C^{\infty}(a, b)$ are subspaces of $\mathcal{F}(a, b)$.

Kyu-Hwan Lee

- Bases and Dimension
 - 1. An expression $a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \cdots + a_n\mathbf{v}_n$ is called a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$. The span of $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$, denoted by $\operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$, is the set of all linear combinations of the vectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$.
 - 2. A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$ is called linearly independent if $a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \cdots + a_n\mathbf{v}_n = \mathbf{0}$ implies $a_1 = a_2 = \cdots = a_n = 0.$
 - 3. A set B of vectors in a vector space V is called a basis of V if B is linearly independent and B spans V.
 - 4. The number of vectors in a basis is called the dimension of V.

Eg. Let
$$p_1 = 1 + x + 4x^2$$
 and $p_2 = 1 + 5x + x^2$. Determine whether p_1 and p_2 lie in span $\{1 + 2x - x^2, 3 + 5x + 2x^2\}$. **Solution.**

$$p_{1} = s(1 + 2x - x^{2}) + t(3 + 5x + 2x^{2})$$

= $(s + 3t) + (2s + 5t)x + (-2 + 2t)x^{2}$
 $1 = s + 3t, \ 1 = 2s + 5t, \ 4 = -s + 2t.$
 $s = -2, t = 1.$

$$p_{2} = s(1 + 2x - x^{2}) + t(3 + 5x + 2x^{2})$$

= $(s + 3t) + (2s + 5t)x + (-2 + 2t)x^{2}$
 $1 = s + 3t, \ 5 = 2s + 5t, \ 1 = -s + 2t.$
No solution!

Kyu-Hwan Lee

Eg. A set of polynomials of distinct degrees is linearly independent.

Eg. The set $\{1, \sin x, \cos x\} \subseteq C^0[-\pi, \pi]$ is linearly independent. Actually,

 $\{1, \sin x, \cos x, \sin 2x, \cos 2x, \cdots\} \subseteq \mathcal{C}^0[-\pi, \pi]$

is linearly independent.

Eg. The set $\{1, x, x^2, \dots, x^n\}$ is a basis of \mathcal{P}_n . Thus $\dim \mathcal{P}_n = n + 1$.

The set $\{1, x, x^2, \dots\}$ is a basis of \mathcal{P} . Thus $\dim \mathcal{P}_n = \infty$.

Eg. Show that $\mathcal{P}_3 = \operatorname{span}\{x^2 + x^3, x, 1 + 2x^2, 3\}$. **Solution.** Since $\{1, x, x^2, x^3\}$ is a basis of \mathcal{P}_3 , we have only to show

$$1, x, x^2, x^3 \in \operatorname{span}\{x^2 + x^3, x, 1 + 2x^2, 3\}.$$

Thm. Let V be a vector space and let U and W be subspaces of V. Then if $U \subseteq W$ and $\dim U = \dim W$, then U = W.

Eg. If a is a number, let W denote the subspace of all polynomials in \mathcal{P}_n with a as a root, i.e.

$$W = \{ p \in \mathcal{P}_n | p(a) = 0 \}.$$

Show that $\{(x-a), (x-a)^2, \cdots, (x-a)^n\}$ is a basis of W.

Solution. Since the degrees are distinct, $(x - a), (x - a)^2, \dots, (x - a)^n$ are linearly independent. Write

$$U = \text{span}\{(x - a), (x - a)^2, \cdots, (x - a)^n\}.$$

Then we have $U \subseteq W \subseteq \mathcal{P}_n$, dim U = n, and dim $\mathcal{P}_n = n + 1$. Hence $n \leq \dim W \leq n + 1$, so dim W = n or dim W = n + 1. Then it follows from Thm that W = U or $W = \mathcal{P}_n$. Since $W \neq \mathcal{P}_n$, we have W = U.

Linear Algebra

Thm. Every *n*-dimensional vector space is isomorphic to the space \mathbf{F}^n .

Eg. $\mathcal{P}_n \simeq \mathbf{F}^{n+1}$

$$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \leftrightarrow \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

٠