
Linear Algebra [1]

2.3 Matrix Inverses

• Definition

Def. A : a square matrix

B is the inverse of A if AB = BA = I,

In this case, A : invertible or nonsingular.

Thm 1. If B and C : inverses of A, then B = C.

Proof.
CA = I = AB.

B = IB = CAB = CI = C.
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Eg 2.

A =
[
0 −1
1 2

]
, B =

[
2 1
−1 0

]
.

AB =
[
0 −1
1 2

] [
2 1
−1 0

]
=

[
1 0
0 1

]
= I

Similarly, BA = I.

Therefore, B = A−1 and A = B−1.

Eg 3. If A3 = I, then A−1 =??

A3 = A2A = AA2 = I. Thus, A−1 = A2 and (A2)−1 = A.
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Eg 4. A =
[
a b

c d

]
and ad− bc 6= 0.

A−1 =
1

ad− bc

[
d −b

−c a

]
.

• Inverses and linear systems

AX = B

If A−1 exists,

A−1AX = A−1B, IX = A−1B, X = A−1B.

A unique solution!
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Thm 5. AX = B (A : square)

If A is invertible, then it has the unique solution X = A−1B.

Eg 6. {
x + 2y = 8

3x + 4y = 6
,

[
1 2
3 4

] [
x

y

]
=

[
8
6

]

A−1 =
[
−2 1
3
2 −1

2

]
[
x

y

]
=

[
−2 1
3
2 −1

2

] [
8
6

]
=

[
−10
9

]
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Rmk 7.

1. In general, finding A−1 is much more complicated than

solving AX = B.

2. Not every square matrix has the inverse.

• Properties

Thm 8. A, B : square matrices

1. (A−1)−1 = A

2. If A and B are invertible, (AB)−1 = B−1A−1

3. (A1A2 · · ·Ak)−1 = A−1
k · · ·A−1

2 A−1
1

4. (Ak)−1 = (A−1)k

5. (aA)−1 = 1
aA−1

6. (AT )−1 = (A−1)T
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Proof.

ABB−1A−1 = A(BB−1)A−1 = AA−1 = I.

Similarly, B−1A−1AB = I. So (AB)−1 = B−1A−1.

(A1A2A3)−1 = [(A1A2)A3]−1 = A−1
3 (A1A2)−1 = A−1

3 A−1
2 A−1

1 .

AT (A−1)T = (A−1A)T = IT = I.

(A−1)TAT = (AA−1)T = IT = I.

2

A and B are invertible ⇒ AB is invertible. Actually, the

converse is also true.

A : invertible ⇔ AT : invertible
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2.4 Elementary matrices

• Definition

Elementary row operations:

Type I : Interchange two rows

Type II : Multiply a row by a nonzero number

Type III : Add a multiple of a row to a different row

Def. An elementary matrix is a matrix obtained from the

identity matrix by an elementary row operation.
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1 0 0
0 1 0
0 0 1

 I=⇒

0 1 0
1 0 0
0 0 1


1 0 0

0 1 0
0 0 1

 II=⇒

1 0 0
0 1 0
0 0 5


1 0 0

0 1 0
0 0 1

 III=⇒

1 0 3
0 1 0
0 0 1
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0 1 0
1 0 0
0 0 1


a b c d

e f g h

i j k l

 =

e f g h

a b c d

i j k l


1 0 0

0 1 0
0 0 5


a b c d

e f g h

i j k l

 =

a b c d

e f g h

5i 5j 5k 5l


1 0 3

0 1 0
0 0 1


a b c d

e f g h

i j k l

 =

a + 3i b + 3j c + 3k d + 3l

e f g h

i j k l
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Thm 9. A : m × n, E : m × m elementary matrix

obtained by performing some elementary row operation on

I. If the same operation is performed on A, the resulting

matrix is EA.

• Inverse operation

Operation Inverse operation

Interchange rows p and q Interchange rows p and q

Multiply row p by c 6= 0 Multiply row p by 1
c

Add k times row p to row q Add −k times row p to row q

I ; E1 by an operation ρ, I ; E2 by the inverse operation µ

E2E1 = I and E1E2 = I.
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Thm 10. Every elementary matrix E is invertible.

E1 =

0 1 0
1 0 0
0 0 1

 , E−1
1 =

0 1 0
1 0 0
0 0 1



E2 =

1 0 0
0 1 0
0 0 5

 , E−1
2 =

1 0 0
0 1 0
0 0 1

5



E3 =

1 0 3
0 1 0
0 0 1

 , E−1
3 =

1 0 −3
0 1 0
0 0 1
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Note that

if A ; R in reduced row echelon form, we have

Ek · · ·E2E1A = R.

If A is a square matrix, then either R = I or R has a row of

zeros.
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2.5 Theorem and algorithm

Thm 11. TFAE

1. A is invertible.

2. AX = O has only the trivial solution.

3. A can be carried to I by elementary row operations.

4. A has rank n.

5. AX = B has a unique solution for every B.

6. ∃ C s.t. AC = I.

7. A is a product of elementary matrices.
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Proof.

(1) ⇒ (2) : A−1AX = O and X = O.

(2) ⇒ (3) : A ; R in r.r.e.f. AX = O and RX = O

are equivalent. If R 6= I has a row of zeros, RX = O has

infinitely many solutions, so does AX = O, a contradiction!

Hence R = I.

(3) ⇒ (4) : By definition.

(4) ⇒ (5) : Note that the number of parameters is 0.

Kyu-Hwan Lee



Linear Algebra [15]

(5) ⇒ (6) :

AX1 =


1
0
...

0

 , AX2 =


0
1
0
...

0

 , · · · , AXn =


0
...

0
1

 .

A
[
X1 X2 · · · Xn

]
=


1 0 · · · 0
0 1 · · · 0
... ... · · · ...

0 0 · · · 1

 = I.

C =
[
X1 X2 · · · Xn

]
.
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(6) ⇒ (7) : A ; R in r.r.e.f. Then

Ek · · ·E1A = R.

If R = I, then A = E−1
1 · · ·E−1

k . Otherwise, R has a row of

zeros. In that case,

Ek · · ·E1 = Ek · · ·E1AC = RC

RCE−1
1 · · ·E−1

k = I

The left side has a row of zeros, a contradiction!

(7) ⇒ (1) : If A = E1 · · ·Ek then A−1 = E−1
k · · ·E−1

1 . 2
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• Inversion method

Assume that AA−1 = I. We write A−1 =
[
X1X2 · · ·Xn

]
where Xi : ith column of A−1.

AA−1 = I ⇐⇒ AX1 =


1
0
...

0

 , AX2 =


0
1
0
...

0

 , · · · , AXn =


0
...

0
1

 .
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augmented matrices :

A

1
0
0
...

0

 ,

A

0
1
0
...

0

 , · · · ,

A

0
0
...

0
1


⇒

[
I X1

]
,
[
I X2

]
, · · · ,

[
I Xn

]
using the same series of elementary row operations for each.

Simultaneously,[
A I

]
⇒

[
I X1X2 · · ·Xn

]
=

[
I A−1

]
Note that the last matrix is in r.r.e.f.
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– inversion algorithm [
A I

]
⇒

[
I A−1

]
using elementary row operations.

If A is not invertible, then A cannot be carried to I.
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Eg 12.

A =

1 1 1
0 2 3
5 5 1



[
A I

]
=

1 1 1 1 0 0
0 2 3 0 1 0
5 5 1 0 0 1

 ⇒
1 0 0 13

8 −1
2 −1

8

0 1 0 −15
8

1
2

3
8

0 0 1 5
4 0 −1

4



A−1 =

 13
8 −1

2 −1
8

−15
8

1
2

3
8

5
4 0 −1

4
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Eg 13.

B =

1 2 −3
1 −2 1
5 −2 −3



[
B I

]
=

1 2 −3 1 0 0
1 −2 1 0 1 0
5 −2 −3 0 0 1


⇒

1 2 −3 1 0 0
0 −4 4 −1 1 0
0 0 0 −2 −3 1


Hence, B is not invertible, i.e. B is singular.
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