2.3 Matrix Inverses

• Definition

Def. A : a square matrix

B is the inverse of *A* if AB = BA = I,

In this case, A : invertible or nonsingular.

Thm 1. If B and C : inverses of A, then B = C.

Proof.

$$CA = I = AB.$$

 $B = IB = CAB = CI = C.$

 \square

Eg 2. $A = \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}.$ $AB = \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$ Similarly, BA = I. Therefore, $B = A^{-1}$ and $A = B^{-1}$.

Eg 3. If
$$A^3 = I$$
, then $A^{-1} = ??$
 $A^3 = A^2A = AA^2 = I$. Thus, $A^{-1} = A^2$ and $(A^2)^{-1} = A$.

Linear Algebra

Eg 4.
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 and $ad - bc \neq 0$.
$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

• Inverses and linear systems

$$AX = B$$

٠

If A^{-1} exists,

$$A^{-1}AX = A^{-1}B, \quad IX = A^{-1}B, \quad X = A^{-1}B.$$

A unique solution!

Thm 5. AX = B (A : square) If A is invertible, then it has the unique solution $X = A^{-1}B$.

Eg 6.

$$\begin{cases} x + 2y = 8\\ 3x + 4y = 6 \end{cases}, \begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} 8\\ 6 \end{bmatrix}$$
$$A^{-1} = \begin{bmatrix} -2 & 1\\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$$
$$\begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} -2 & 1\\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 8\\ 6 \end{bmatrix} = \begin{bmatrix} -10\\ 9 \end{bmatrix}$$

Rmk 7.

- 1. In general, finding A^{-1} is much more complicated than solving AX = B.
- 2. Not every square matrix has the inverse.
- Properties

Thm 8. A, B : square matrices

1.
$$(A^{-1})^{-1} = A$$

2. If A and B are invertible, $(AB)^{-1} = B^{-1}A^{-1}$
3. $(A_1A_2 \cdots A_k)^{-1} = A_k^{-1} \cdots A_2^{-1}A_1^{-1}$
4. $(A^k)^{-1} = (A^{-1})^k$
5. $(aA)^{-1} = \frac{1}{a}A^{-1}$
6. $(A^T)^{-1} = (A^{-1})^T$

Proof.

$$ABB^{-1}A^{-1} = A(BB^{-1})A^{-1} = AA^{-1} = I.$$

Similarly, $B^{-1}A^{-1}AB = I.$ So $(AB)^{-1} = B^{-1}A^{-1}.$
 $(A_1A_2A_3)^{-1} = [(A_1A_2)A_3]^{-1} = A_3^{-1}(A_1A_2)^{-1} = A_3^{-1}A_2^{-1}A_1^{-1}$
 $A^T(A^{-1})^T = (A^{-1}A)^T = I^T = I.$
 $(A^{-1})^TA^T = (AA^{-1})^T = I^T = I.$

A and B are invertible \Rightarrow AB is invertible. Actually, the converse is also true.

$$A$$
 : invertible $\Leftrightarrow A^T$: invertible

2.4 Elementary matrices

• Definition

Elementary row operations:

Type I : Interchange two rows Type II : Multiply a row by a nonzero number Type III : Add a multiple of a row to a different row

Def. An elementary matrix is a matrix obtained from the identity matrix by an elementary row operation.

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \end{bmatrix} = \begin{bmatrix} e & f & g & h \\ a & b & c & d \\ i & j & k & l \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \end{bmatrix} = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ 5i & 5j & 5k & 5l \end{bmatrix}$$
$$\begin{bmatrix} 0 & 3 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & b & c & d \\ e & f & g \end{bmatrix} \begin{bmatrix} a + 3i & b + 3j & c + 3k & d + 3k \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \end{bmatrix} = \begin{bmatrix} a+3i & b+3j & c+3k & d+3l \\ e & f & g & h \\ i & j & k & l \end{bmatrix}$$

Thm 9. $A : m \times n$, $E : m \times m$ elementary matrix obtained by performing some elementary row operation on *I*. If the same operation is performed on *A*, the resulting matrix is EA.

• Inverse operation

Operation	Inverse operation
Interchange rows p and q	Interchange rows p and q
Multiply row p by $c \neq 0$	Multiply row p by $rac{1}{c}$
Add k times row p to row q	Add $-k$ times row p to row q

 $I \rightsquigarrow E_1$ by an operation ρ , $I \rightsquigarrow E_2$ by the inverse operation μ

$$E_2 E_1 = I$$
 and $E_1 E_2 = I$.

Linear Algebra

Thm 10. Every elementary matrix E is invertible.

$$E_{1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_{1}^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$E_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}, \quad E_{2}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{5} \end{bmatrix}$$
$$E_{3} = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_{3}^{-1} = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Note that if $A \rightsquigarrow R$ in reduced row echelon form, we have

 $E_k \cdots E_2 E_1 A = R.$

If A is a square matrix, then either R = I or R has a row of zeros.

2.5 Theorem and algorithm

Thm 11. *TFAE*

- 1. A is invertible.
- 2. AX = O has only the trivial solution.
- 3. A can be carried to I by elementary row operations.
- 4. A has rank n.
- 5. AX = B has a unique solution for every B.
- 6. $\exists C \text{ s.t. } AC = I.$
- 7. A is a product of elementary matrices.

Proof.

$$(1) \Rightarrow (2) : A^{-1}AX = O \text{ and } X = O.$$

(2) \Rightarrow (3) : $A \rightsquigarrow R$ in r.r.e.f. AX = O and RX = Oare equivalent. If $R \neq I$ has a row of zeros, RX = O has infinitely many solutions, so does AX = O, a contradiction! Hence R = I.

$$(3) \Rightarrow (4)$$
 : By definition.

(4) \Rightarrow (5) : Note that the number of parameters is 0.

$$(5) \Rightarrow (6)$$
 :

$$AX_{1} = \begin{bmatrix} 1\\0\\ \vdots\\0 \end{bmatrix}, AX_{2} = \begin{bmatrix} 0\\1\\0\\ \vdots\\0 \end{bmatrix}, \cdots, AX_{n} = \begin{bmatrix} 0\\ \vdots\\0\\1 \end{bmatrix}.$$
$$A\begin{bmatrix} X_{1} & X_{2} & \cdots & X_{n} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0\\0 & 1 & \cdots & 0\\0 & 1 & \cdots & 0\\ \vdots & \vdots & \cdots & \vdots\\0 & 0 & \cdots & 1 \end{bmatrix} = I.$$
$$C = \begin{bmatrix} X_{1} & X_{2} & \cdots & X_{n} \end{bmatrix}.$$

(6) \Rightarrow (7) : $A \rightsquigarrow R$ in r.r.e.f. Then

$$E_k \cdots E_1 A = R.$$

If R = I, then $A = E_1^{-1} \cdots E_k^{-1}$. Otherwise, R has a row of zeros. In that case,

$$E_k\cdots E_1=E_k\cdots E_1AC=RC$$

$$RCE_1^{-1}\cdots E_k^{-1}=I$$
 The left side has a row of zeros, a contradiction!

(7)
$$\Rightarrow$$
 (1) : If $A = E_1 \cdots E_k$ then $A^{-1} = E_k^{-1} \cdots E_1^{-1}$. \Box

• Inversion method

Assume that $AA^{-1} = I$. We write $A^{-1} = [X_1X_2\cdots X_n]$ where X_i : *i*th column of A^{-1} .

$$AA^{-1} = I \iff AX_1 = \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix}, AX_2 = \begin{bmatrix} 0\\1\\0\\\vdots\\0 \end{bmatrix}, \cdots, AX_n = \begin{bmatrix} 0\\\vdots\\0\\1 \end{bmatrix}$$

augmented matrices : $\begin{bmatrix} 1\\0\\A&0\\A&0\\\vdots\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\A&0\\A&0\\\vdots\\0 \end{bmatrix}$,, $\begin{bmatrix} 0\\0\\A&0\\A&0\\\vdots\\0 \end{bmatrix}$,,,,

$$\Rightarrow \begin{bmatrix} I & X_1 \end{bmatrix}, \begin{bmatrix} I & X_2 \end{bmatrix}, \cdots, \begin{bmatrix} I & X_n \end{bmatrix}$$

using the same series of elementary row operations for each. Simultaneously,

$$\begin{bmatrix} A & I \end{bmatrix} \Rightarrow \begin{bmatrix} I & X_1 X_2 \cdots X_n \end{bmatrix} = \begin{bmatrix} I & A^{-1} \end{bmatrix}$$

Note that the last matrix is in r.r.e.f.

- inversion algorithm

$$\begin{bmatrix} A & I \end{bmatrix} \Rightarrow \begin{bmatrix} I & A^{-1} \end{bmatrix}$$

using elementary row operations.

If A is not invertible, then A cannot be carried to I.

Eg 12. $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{bmatrix}$

$$\begin{bmatrix} A & I \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 2 & 3 & 0 & 1 & 0 \\ 5 & 5 & 1 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 0 & \frac{13}{8} & -\frac{1}{2} & -\frac{1}{8} \\ 0 & 1 & 0 & -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\ 0 & 0 & 1 & \frac{5}{4} & 0 & -\frac{1}{4} \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} \frac{13}{8} & -\frac{1}{2} & -\frac{1}{8} \\ -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\ \frac{5}{4} & 0 & -\frac{1}{4} \end{bmatrix}$$

Eg 13.

$$B = \begin{bmatrix} 1 & 2 & -3 \\ 1 & -2 & 1 \\ 5 & -2 & -3 \end{bmatrix}$$

$$\begin{bmatrix} B & I \end{bmatrix} = \begin{bmatrix} 1 & 2 & -3 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 & 1 & 0 \\ 5 & -2 & -3 & 0 & 0 & 1 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 1 & 2 & -3 & 1 & 0 & 0 \\ 0 & -4 & 4 & -1 & 1 & 0 \\ 0 & 0 & 0 & -2 & -3 & 1 \end{bmatrix}$$

Hence, B is not invertible, i.e. B is singular.