2.3 Matrix Inverses

- Definition

Def. A: a square matrix

$$
B \text { is the inverse of } A \text { if } A B=B A=I \text {, }
$$

In this case, A : invertible or nonsingular.
Thm 1. If B and C : inverses of A, then $B=C$.
Proof.

$$
\begin{gathered}
C A=I=A B . \\
B=I B=C A B=C I=C .
\end{gathered}
$$

Eg 2.

$$
\begin{gathered}
A=\left[\begin{array}{cc}
0 & -1 \\
1 & 2
\end{array}\right], \quad B=\left[\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right] . \\
A B=\left[\begin{array}{cc}
0 & -1 \\
1 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
\end{gathered}
$$

Similarly, $B A=I$.
Therefore, $B=A^{-1}$ and $A=B^{-1}$.

Eg 3. If $A^{3}=I$, then $A^{-1}=$??

$$
A^{3}=A^{2} A=A A^{2}=I . \quad \text { Thus, } A^{-1}=A^{2} \text { and }\left(A^{2}\right)^{-1}=A .
$$

Eg 4. $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $a d-b c \neq 0$.

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

- Inverses and linear systems

$$
A X=B
$$

If A^{-1} exists,

$$
A^{-1} A X=A^{-1} B, \quad I X=A^{-1} B, \quad X=A^{-1} B
$$

A unique solution!

Thm 5. $A X=B$ ($A:$ square)
If A is invertible, then it has the unique solution $X=A^{-1} B$.

Eg 6.

$$
\begin{gathered}
\left\{\begin{array}{l}
x+2 y=8 \\
3 x+4 y=6
\end{array} \quad, \quad\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
8 \\
6
\end{array}\right]\right. \\
A^{-1}=\left[\begin{array}{cc}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right] \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
8 \\
6
\end{array}\right]=\left[\begin{array}{c}
-10 \\
9
\end{array}\right]}
\end{gathered}
$$

Rmk 7.

1. In general, finding A^{-1} is much more complicated than solving $A X=B$.
2. Not every square matrix has the inverse.

- Properties

Thm 8. A, B : square matrices

1. $\left(A^{-1}\right)^{-1}=A$
2. If A and B are invertible, $(A B)^{-1}=B^{-1} A^{-1}$
3. $\left(A_{1} A_{2} \cdots A_{k}\right)^{-1}=A_{k}^{-1} \cdots A_{2}^{-1} A_{1}^{-1}$
4. $\left(A^{k}\right)^{-1}=\left(A^{-1}\right)^{k}$
5. $(a A)^{-1}=\frac{1}{a} A^{-1}$
6. $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$

Proof.

$$
A B B^{-1} A^{-1}=A\left(B B^{-1}\right) A^{-1}=A A^{-1}=I
$$

Similarly, $B^{-1} A^{-1} A B=I$. So $(A B)^{-1}=B^{-1} A^{-1}$.

$$
\begin{gathered}
\left(A_{1} A_{2} A_{3}\right)^{-1}=\left[\left(A_{1} A_{2}\right) A_{3}\right]^{-1}=A_{3}^{-1}\left(A_{1} A_{2}\right)^{-1}=A_{3}^{-1} A_{2}^{-1} A_{1}^{-1} \\
A^{T}\left(A^{-1}\right)^{T}=\left(A^{-1} A\right)^{T}=I^{T}=I \\
\left(A^{-1}\right)^{T} A^{T}=\left(A A^{-1}\right)^{T}=I^{T}=I
\end{gathered}
$$

A and B are invertible $\Rightarrow A B$ is invertible. Actually, the converse is also true.
A : invertible $\Leftrightarrow A^{T}$: invertible
2.4 Elementary matrices

- Definition

Elementary row operations:
Type I: Interchange two rows
Type II: Multiply a row by a nonzero number Type III: Add a multiple of a row to a different row

Def. An elementary matrix is a matrix obtained from the identity matrix by an elementary row operation.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \stackrel{\text {, }}{\Longrightarrow}\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \xlongequal{\Perp}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 5
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \xlongequal{\text { II }}\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

$$
\begin{gathered}
{\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
i & j & k & l
\end{array}\right]=\left[\begin{array}{llll}
e & f & g & h \\
a & b & c & d \\
i & j & k & l
\end{array}\right]} \\
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 5
\end{array}\right]\left[\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
i & j & k & l
\end{array}\right]=\left[\begin{array}{cccc}
a & b & c & d \\
e & f & g & h \\
5 i & 5 j & 5 k & 5 l
\end{array}\right]} \\
\left.\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
i & j & k & l
\end{array}\right]=\left[\begin{array}{cccc}
a+3 i & b+3 j & c+3 k & d+3 l \\
e & f & g & h \\
i & j & k & l
\end{array}\right]
\end{gathered}
$$

Thm 9. $A: m \times n, \quad E: m \times m$ elementary matrix obtained by performing some elementary row operation on I. If the same operation is performed on A, the resulting matrix is $E A$.

- Inverse operation

Operation	Inverse operation
Interchange rows p and q	Interchange rows p and q
Multiply row p by $c \neq 0$	Multiply row p by $\frac{1}{c}$
Add k times row p to row q	Add $-k$ times row p to row q

$I \leadsto E_{1}$ by an operation $\rho, \quad I \leadsto E_{2}$ by the inverse operation μ

$$
E_{2} E_{1}=I \text { and } E_{1} E_{2}=I
$$

Thm 10. Every elementary matrix E is invertible.

$$
\begin{array}{ll}
E_{1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], & E_{1}^{-1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \\
E_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 5
\end{array}\right], & E_{2}^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{5}
\end{array}\right] \\
E_{3}=\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], & E_{3}^{-1}=\left[\begin{array}{ccc}
1 & 0 & -3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{array}
$$

Note that
if $A \leadsto R$ in reduced row echelon form, we have

$$
E_{k} \cdots E_{2} E_{1} A=R
$$

If A is a square matrix, then either $R=I$ or R has a row of zeros.
2.5 Theorem and algorithm

Thm 11. TFAE

1. A is invertible.
2. $A X=O$ has only the trivial solution.
3. A can be carried to I by elementary row operations.
4. A has rank n.
5. $A X=B$ has a unique solution for every B.
6. $\exists C$ s.t. $A C=I$.
7. A is a product of elementary matrices.

Proof.

(1) \Rightarrow (2) : $A^{-1} A X=O$ and $X=O$.
(2) \Rightarrow (3): $A \leadsto R$ in r.r.e.f. $A X=O$ and $R X=O$ are equivalent. If $R \neq I$ has a row of zeros, $R X=O$ has infinitely many solutions, so does $A X=O$, a contradiction! Hence $R=I$.
$(3) \Rightarrow(4):$ By definition.
$(4) \Rightarrow(5)$: Note that the number of parameters is 0 .
$(5) \Rightarrow(6):$

$$
\begin{gathered}
A X_{1}=\left[\begin{array}{l}
1 \\
0 \\
\vdots \\
0
\end{array}\right], A X_{2}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right], \cdots, A X_{n}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right] . \\
A\left[\begin{array}{llll}
X_{1} & X_{2} & \cdots & X_{n}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]=I . \\
C=\left[\begin{array}{llll}
X_{1} & X_{2} & \cdots & X_{n}
\end{array}\right] .
\end{gathered}
$$

(6) $\Rightarrow(7): A \leadsto R$ in r.r.e.f. Then

$$
E_{k} \cdots E_{1} A=R
$$

If $R=I$, then $A=E_{1}^{-1} \cdots E_{k}^{-1}$. Otherwise, R has a row of zeros. In that case,

$$
\begin{gathered}
E_{k} \cdots E_{1}=E_{k} \cdots E_{1} A C=R C \\
R C E_{1}^{-1} \cdots E_{k}^{-1}=I
\end{gathered}
$$

The left side has a row of zeros, a contradiction!
$(7) \Rightarrow(1):$ If $A=E_{1} \cdots E_{k}$ then $A^{-1}=E_{k}^{-1} \cdots E_{1}^{-1}$.

- Inversion method

Assume that $A A^{-1}=I$. We write $A^{-1}=\left[X_{1} X_{2} \cdots X_{n}\right]$ where $X_{i}: i$ th column of A^{-1}.

$$
A A^{-1}=I \Longleftrightarrow A X_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], A X_{2}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right], \cdots, A X_{n}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

augmented matrices : $\left[\begin{array}{cc} & 1 \\ & 0 \\ A & 0 \\ \vdots \\ & 0\end{array}\right],\left[\begin{array}{c}0 \\ \\ 1 \\ A \\ 0 \\ \vdots \\ \\ 0\end{array}\right], \cdots,\left[\begin{array}{c}0 \\ \\ \\ 0 \\ \vdots \\ \\ \\ \\ 1\end{array}\right]$

$$
\Rightarrow\left[\begin{array}{ll}
I & X_{1}
\end{array}\right],\left[\begin{array}{ll}
I & X_{2}
\end{array}\right], \cdots,\left[\begin{array}{ll}
I & X_{n}
\end{array}\right]
$$

using the same series of elementary row operations for each.
Simultaneously,

$$
\left[\begin{array}{ll}
A & I
\end{array}\right] \Rightarrow\left[\begin{array}{ll}
I & X_{1} X_{2} \cdots X_{n}
\end{array}\right]=\left[\begin{array}{ll}
I & A^{-1}
\end{array}\right]
$$

Note that the last matrix is in r.r.e.f.

- inversion algorithm

$$
\left[\begin{array}{ll}
A & I
\end{array}\right] \Rightarrow\left[\begin{array}{ll}
I & A^{-1}
\end{array}\right]
$$

using elementary row operations.

If A is not invertible, then A cannot be carried to I.

Eg 12.

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 3 \\
5 & 5 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
A & I
\end{array}\right]=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 2 & 3 & 0 & 1 & 0 \\
5 & 5 & 1 & 0 & 0 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{cccccc}
1 & 0 & 0 & \frac{13}{8} & -\frac{1}{2} & -\frac{1}{8} \\
0 & 1 & 0 & -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\
0 & 0 & 1 & \frac{5}{4} & 0 & -\frac{1}{4}
\end{array}\right]
$$

$$
A^{-1}=\left[\begin{array}{ccc}
\frac{13}{8} & -\frac{1}{2} & -\frac{1}{8} \\
-\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\
\frac{5}{4} & 0 & -\frac{1}{4}
\end{array}\right]
$$

Eg 13.

$$
\begin{gathered}
B=\left[\begin{array}{ccc}
1 & 2 & -3 \\
1 & -2 & 1 \\
5 & -2 & -3
\end{array}\right] \\
{\left[\begin{array}{ll}
B & I
\end{array}\right]=\left[\begin{array}{cccccc}
1 & 2 & -3 & 1 & 0 & 0 \\
1 & -2 & 1 & 0 & 1 & 0 \\
5 & -2 & -3 & 0 & 0 & 1
\end{array}\right]} \\
\Rightarrow\left[\begin{array}{cccccc}
1 & 2 & -3 & 1 & 0 & 0 \\
0 & -4 & 4 & -1 & 1 & 0 \\
0 & 0 & 0 & -2 & -3 & 1
\end{array}\right]
\end{gathered}
$$

Hence, B is not invertible, i.e. B is singular.

