7.8 An Application to Least Squares

Eg. Given points $(1,1),(3,2),(4,3)$ and functions $1, x$. Consider $f(x)=a_{0}+a_{1} x$.

We want a line $f(x)$ passing through all the points.
But the system $\left\{\begin{array}{l}a_{0}+a_{1}=1 \\ a_{0}+3 a_{1}=2 \\ a_{0}+4 a_{1}=3\end{array}\right.$ has no solution.
Still, there exists a "best-fitting" line for the points.

Eg. $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{n}, y_{n}\right) \quad 1, x, x^{2}, \cdots, x^{m}$
We want to determine a "best-fitting" polynomial of the form

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{m} x^{m}
$$

for the points.
Eg. We may consider more general functions than polynomials.

$$
(-1,0),(0,1),(1,4) \quad x, 2^{x}
$$

We want to determine a "best-fitting" function of the form

$$
f(x)=a_{0} x+a_{1} 2^{x}
$$

for the points.

Suppose that

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{n}, y_{n}\right)
$$

are given and suppose that $m+1$ functions

$$
f_{0}(x), f_{1}(x), \cdots, f_{m}(x)
$$

are specified.
Consider $f(x)=a_{0} f_{0}(x)+a_{1} f_{1}(x)+\cdots+a_{m} f_{m}(x) \quad\left(a_{i} \in \mathbf{R}\right)$.

Problem (in naive form) : Determine a_{i} 's so that $f(x)$ may be the "best- fitting" function for the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{n}, y_{n}\right)$.

$$
\begin{aligned}
\text { Let } Y= & {\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right] \text { and } M=\left[\begin{array}{cccc}
f_{0}\left(x_{1}\right) & f_{1}\left(x_{1}\right) & \cdots & f_{m}\left(x_{1}\right) \\
f_{0}\left(x_{2}\right) & f_{1}\left(x_{2}\right) & \cdots & f_{m}\left(x_{2}\right) \\
\vdots & \vdots & & \vdots \\
f_{0}\left(x_{n}\right) & f_{1}\left(x_{n}\right) & \cdots & f_{m}\left(x_{n}\right)
\end{array}\right] . } \\
{\left[\begin{array}{c}
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
\vdots \\
f\left(x_{n}\right)
\end{array}\right]=} & {\left[\begin{array}{c}
a_{0} f_{0}\left(x_{1}\right)+a_{1} f_{1}\left(x_{1}\right)+\cdots+a_{m} f_{m}\left(x_{1}\right) \\
a_{0} f_{0}\left(x_{2}\right)+a_{1} f_{1}\left(x_{2}\right)+\cdots+a_{m} f_{m}\left(x_{2}\right) \\
\vdots \\
a_{0} f_{0}\left(x_{n}\right)+a_{1} f_{1}\left(x_{n}\right)+\cdots+a_{m} f_{m}\left(x_{n}\right)
\end{array}\right]=M\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{m}
\end{array}\right] } \\
& {\left[\begin{array}{c}
y_{1}-f\left(x_{1}\right) \\
y_{2}-f\left(x_{2}\right) \\
\vdots \\
y_{n}-f\left(x_{n}\right)
\end{array}\right]=Y-M\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{m}
\end{array}\right] . }
\end{aligned}
$$

Problem: Choose $Z=\left[\begin{array}{llll}a_{0} & a_{1} & \cdots & a_{m}\end{array}\right]^{T}$ such that

$$
\|Y-M Z\|^{2}=\left[y_{1}-f\left(x_{1}\right)\right]^{2}+\left[Y_{2}-f(x)_{2}\right]^{2}+\cdots+\left[y_{n}-f\left(x_{n}\right)\right]^{2}
$$

is as small as possible.
A function satisfying the above condition is called a least squares approximating function of the form $f(x)=a_{0} f_{0}(x)+$ $a_{1} f_{1}(x)+\cdots+a_{m} f_{m}(x)$.

Write $U=\left\{M X \mid X \in \mathbf{R}^{m}\right\}$. Then $M Z$ is the closest vector in U to the point Y, so $M Z=\operatorname{proj}_{U}(Y)$. Thus we have for all $X \in \mathbf{R}^{m}$

$$
\begin{aligned}
0 & =(M X) \cdot(Y-M Z)=(M X)^{T}(Y-M Z) \\
& =X^{T} M^{T}(Y-M Z)=X \cdot\left[M^{T}(Y-M Z)\right]
\end{aligned}
$$

Since $M^{T}(Y-M Z)$ is orthogonal to every vector in \mathbf{R}^{m}, $M^{T}(Y-M Z)=O$ and so

$$
M^{T} M Z=M^{T} Y
$$

Thm. If $Z=\left[\begin{array}{llll}a_{0} & a_{1} & \cdots & a_{m}\end{array}\right]^{T}$ is a solution of

$$
M^{T} M Z=M^{T} Y,
$$

then

$$
f(x)=a_{0} f_{0}(x)+a_{1} f_{1}(x)+\cdots+a_{m} f_{m}(x)
$$

is a least squares approximating function of the given form.

Eg. Given $(1,1),(3,2),(4,3)$, find the least squares approximating function of the form $a_{0}+a_{1} x$.

Solution. $f_{0}(x)=1, f_{1}(x)=x$.

$$
\begin{gathered}
M=\left[\begin{array}{ll}
f_{0}\left(x_{1}\right) & f_{1}\left(x_{1}\right) \\
f_{0}\left(x_{2}\right) & f_{1}\left(x_{2}\right) \\
f_{0}\left(x_{3}\right) & f_{1}\left(x_{3}\right)
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 3 \\
1 & 4
\end{array}\right] \\
M^{T} M=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 3 & 4
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 3 \\
1 & 4
\end{array}\right]=\left[\begin{array}{cc}
3 & 8 \\
8 & 26
\end{array}\right], \quad M^{T} Y=\left[\begin{array}{c}
6 \\
19
\end{array}\right] \\
M^{T} M Z=M^{T} Y, \quad\left[\begin{array}{cc}
3 & 8 \\
8 & 26
\end{array}\right] Z=\left[\begin{array}{c}
6 \\
19
\end{array}\right], \quad Z=\frac{1}{14}\left[\begin{array}{l}
4 \\
9
\end{array}\right]
\end{gathered}
$$

Now we have

$$
f(x)=\frac{2}{7}+\frac{9}{14} x
$$

Observe that $f(x)$ passes through $\left(1, \frac{13}{14}\right),\left(3, \frac{31}{14}\right),\left(4, \frac{40}{14}\right)$.

Eg. Given $(-1,0),(0,1),(1,4)$, find the least squares approximating function of the form $a_{0} x+a_{1} 2^{x}$.

Solution. $f_{0}(x)=x, f_{1}(x)=2^{x}$.

$$
\begin{gathered}
M=\left[\begin{array}{ll}
f_{0}\left(x_{1}\right) & f_{0}\left(x_{1}\right) \\
f_{0}\left(x_{2}\right) & f_{1}\left(x_{2}\right) \\
f_{0}\left(x_{3}\right) & f_{1}\left(x_{3}\right)
\end{array}\right]=\left[\begin{array}{cc}
-1 & \frac{1}{2} \\
0 & 1 \\
1 & 2
\end{array}\right] \\
M^{T} M=\left[\begin{array}{cc}
2 & \frac{3}{2} \\
\frac{3}{2} & \frac{21}{4}
\end{array}\right], \quad M^{T} Y=\left[\begin{array}{l}
4 \\
9
\end{array}\right] \\
M^{T} M Z=M^{T} Y, \quad Z=\frac{1}{11}\left[\begin{array}{c}
10 \\
16
\end{array}\right] \\
f(x)=\frac{10}{11} x+\frac{16}{11} 2^{x} .
\end{gathered}
$$

5.4 Linear Transformation

Def. A function $T: \mathbf{F}^{n} \rightarrow \mathbf{F}^{m}$ is called a linear transformation if it satisfies, for all X and Y in \mathbf{F}^{n} and for all $a \in \mathbf{F}$,

$$
T(X+Y)=T(X)+T(Y), \quad T(a X)=a T(X)
$$

Observe that $T(O)=O, T(-X)=-T(X)$, and
$T\left(a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{k} X_{k}\right)=a_{1} T\left(X_{1}\right)+a_{2} T\left(X_{2}\right)+\cdots+a_{k} T(2$
Eg. $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}x \\ -y\end{array}\right]$ and $S\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{c}y+2 z \\ x\end{array}\right]$ are linear transformations.

Def. $A: m \times n$ matrix. Define $T_{A}: \mathbf{F}^{n} \rightarrow \mathbf{F}^{m}$ by

$$
T_{A}(X)=A X
$$

for $X \in \mathbf{F}^{n}$. Then T_{A} is a linear transformation.
Eg. $\quad A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], \quad T_{A}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}x \\ -y\end{array}\right]$.

$$
B=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 0
\end{array}\right], T_{B}\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
y+2 z \\
x
\end{array}\right]
$$

Thm. Let $T: \mathbf{F}^{n} \rightarrow \mathbf{F}^{m}$ be a linear transformation. Then $T=T_{A}$ for the unique matrix A given by

$$
A=\left[\begin{array}{llll}
T\left(E_{1}\right) & T\left(E_{2}\right) & \cdots & T\left(E_{n}\right)
\end{array}\right]
$$

where $\left\{E_{1}, E_{2}, \cdots, E_{n}\right\}$ is the standard basis of \mathbf{F}^{n}.
Proof. $X=x_{1} E_{1}+x_{2} E_{2}+\cdots+x_{n} E_{n}$

$$
\begin{aligned}
T(X) & =x_{1} T\left(E_{1}\right)+x_{2} T\left(E_{2}\right)+\cdots+x_{n} T\left(E_{n}\right) \\
& =\left[\begin{array}{llll}
T\left(E_{1}\right) & T\left(E_{2}\right) & \cdots & T\left(E_{n}\right)
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=A X .
\end{aligned}
$$

Eg. Let $R_{\theta}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the rotation through the angle θ.
Then R_{θ} is a linear transformation.
Since $R_{\theta}\left(E_{1}\right)=\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right]$ and $R_{\theta}\left(E_{2}\right)=\left[\begin{array}{c}-\sin \theta \\ \cos \theta\end{array}\right]$,

$$
\left[R_{\theta}\left(E_{1}\right) \quad R_{\theta}\left(E_{2}\right)\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

induces R_{θ}.
Eg. Given $N=\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$, define a linear transformation $P_{N}: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ by

$$
P_{N}(X)=X-\frac{X \cdot N}{\|N\|^{2}} N
$$

Find the matrix of P_{N}.

Solution.

$$
\begin{gathered}
P_{N}\left(E_{1}\right)=E_{1}-\frac{E_{1} \cdot N}{\|N\|^{2}} N=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
-\frac{1}{2}
\end{array}\right] \\
P_{N}\left(E_{2}\right)=E_{2}-\frac{E_{2} \cdot N}{\|N\|^{2}} N=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \\
P_{N}\left(E_{3}\right)=E_{3}-\frac{E_{3} \cdot N}{\|N\|^{2}} N=\left[\begin{array}{c}
-\frac{1}{2} \\
0 \\
\frac{1}{2}
\end{array}\right] \\
{\left[\begin{array}{lll}
P_{N}\left(E_{1}\right) & P_{N}\left(E_{2}\right) & P_{N}\left(E_{3}\right)
\end{array}\right]=\frac{1}{2}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 2 & 0 \\
-1 & 0 & 1
\end{array}\right] .}
\end{gathered}
$$

- Composition

If we have two linear transformations $T: \mathbf{F}^{n} \rightarrow \mathbf{F}^{m}$ and $S: \mathbf{F}^{m} \rightarrow \mathbf{F}^{k}$, then we can define the composite $S \circ T$ of S and T by

$$
(S \circ T)(X)=S(T(X)) \text { for all } X \in \mathbf{F}^{n} .
$$

Thm. Let $T: \mathbf{F}^{n} \rightarrow \mathbf{F}^{m}$ and $S: \mathbf{F}^{m} \rightarrow \mathbf{F}^{k}$ be linear transformations with matrices B and A, respectively. The composite $S \circ T: \mathbf{F}^{n} \rightarrow \mathbf{F}^{k}$ is the linear transformation with matrix $A B$.

Proof. $(S \circ T)(X)=S(T(X))=S(B X)=(A B) X$ for $X \in \mathbf{F}^{n}$. \square

Eg. Find the matrix A of reflection in the X axis of \mathbf{R}^{2} followed by reflection in the line $y=x$.
Solution The matrix of reflection in the X axis is $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$, and the matrix of reflection in the line $y=x$ is $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Hence

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

- Inverse

Thm. Let T be a linear transformation with matrix A. Then A is invertible if and only if T has an inverse linear transformation. In this case, T^{-1} is the linear transformation with the matrix A^{-1}.

Proof. If A is invertible, we define T^{\prime} by $T^{\prime}(X)=A^{-1} X$. Then $\left(T^{\prime} \circ T\right)(X)=A^{-1} A X=X$ and $\left(T \circ T^{\prime}\right)(X)=$ $A A^{-1} X=X$. Hence, $T^{\prime}=T^{-1}$.
Conversely, if T^{-1} is the inverse with matrix B, then $T \circ$ $T^{-1}=i d$ implies $A B=I$, and $T^{-1} \circ T=i d$ implies $B A=I$. Thus $B=A^{-1}$.

Eg. Let R_{θ} be the rotation through the angle θ. Clearly, the inverse is $R_{\theta}^{-1}=R_{-\theta}$, the rotation through $-\theta$. Since the matrix of R_{θ} is $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$, the matrix of R_{θ}^{-1} is

$$
A^{-1}=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]=\left[\begin{array}{cc}
\cos (-\theta) & -\sin (-\theta) \\
\sin (-\theta) & \cos (-\theta)
\end{array}\right] .
$$

- One-to-one and Onto

Def. A linear transformation T is one-to-one (resp. onto) if it is one-to-one (resp. onto) as a function.

Def. Let $T: \mathbf{F}^{n} \rightarrow \mathbf{F}^{m}$ be a linear transformation with matrix A. Then we define

$$
\begin{gathered}
\operatorname{im} T=\left\{T(X) \mid X \in \mathbf{F}^{n}\right\}=\left\{A X \mid X \in \mathbf{F}^{n}\right\}=\operatorname{im} A \\
\operatorname{ker} T=\left\{X \in \mathbf{F}^{n} \mid T(X)=O\right\}=\left\{X \in \mathbf{F}^{n} \mid A X=O\right\}=\operatorname{null} A
\end{gathered}
$$

Thm. Let $T: \mathbf{F}^{n} \rightarrow \mathbf{F}^{m}$ be a linear transformation. Then T is one-to-one (resp. onto) if and only if $\operatorname{ker} T=O$ (resp. $\operatorname{im} T=\mathbf{F}^{m}$).

Rmk. If follows from

$$
n=\operatorname{dim}(\operatorname{null} A)+\operatorname{dim}(\operatorname{im} A)
$$

that

$$
n=\operatorname{dim}(\operatorname{ker} T)+\operatorname{dim}(\operatorname{im} T)
$$

