
Linear Algebra [1]

7.8 An Application to Least Squares

Eg. Given points (1, 1), (3, 2), (4, 3) and functions 1, x.

Consider f(x) = a0 + a1x.

We want a line f(x) passing through all the points.

But the system


a0 + a1 = 1

a0 + 3a1 = 2

a0 + 4a1 = 3

has no solution.

Still, there exists a “best-fitting” line for the points.
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Eg. (x1, y1), (x2, y2), · · · , (xn, yn) 1, x, x2, · · · , xm

We want to determine a “best-fitting” polynomial of the form

f(x) = a0 + a1x + a2x
2 + · · ·+ amxm

for the points.

Eg. We may consider more general functions than

polynomials.

(−1, 0), (0, 1), (1, 4) x, 2x

We want to determine a “best-fitting” function of the form

f(x) = a0x + a12x

for the points.
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Suppose that

(x1, y1), (x2, y2), · · · , (xn, yn)

are given and suppose that m + 1 functions

f0(x), f1(x), · · · , fm(x)

are specified.

Consider f(x) = a0f0(x)+a1f1(x)+· · ·+amfm(x) (ai ∈ R).

Problem (in naive form) : Determine ai’s so that

f(x) may be the “best- fitting” function for the points

(x1, y1), (x2, y2), · · · , (xn, yn).

Kyu-Hwan Lee



Linear Algebra [4]

Let Y =


y1

y2
...

yn

 and M =


f0(x1) f1(x1) · · · fm(x1)
f0(x2) f1(x2) · · · fm(x2)

... ... ...

f0(xn) f1(xn) · · · fm(xn)

.


f(x1)
f(x2)

...

f(xn)

 =


a0f0(x1) + a1f1(x1) + · · ·+ amfm(x1)
a0f0(x2) + a1f1(x2) + · · ·+ amfm(x2)

...

a0f0(xn) + a1f1(xn) + · · ·+ amfm(xn)

 = M


a0

a1
...

am

 ,


y1 − f(x1)
y2 − f(x2)

...

yn − f(xn)

 = Y −M


a0

a1
...

am

 .
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Problem : Choose Z =
[
a0 a1 · · · am

]T
such that

‖Y −MZ‖2 = [y1−f(x1)]2+[Y2−f(x)2]2+· · ·+[yn−f(xn)]2

is as small as possible.

A function satisfying the above condition is called a least

squares approximating function of the form f(x) = a0f0(x) +
a1f1(x) + · · ·+ amfm(x).

Write U = {MX|X ∈ Rm}. Then MZ is the closest vector

in U to the point Y , so MZ = projU(Y ). Thus we have for

all X ∈ Rm

0 = (MX) · (Y −MZ) = (MX)T (Y −MZ)

= XTMT (Y −MZ) = X · [MT (Y −MZ)].
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Since MT (Y − MZ) is orthogonal to every vector in Rm,

MT (Y −MZ) = O and so

MTMZ = MTY.

Thm. If Z =
[
a0 a1 · · · am

]T
is a solution of

MTMZ = MTY ,

then

f(x) = a0f0(x) + a1f1(x) + · · ·+ amfm(x)

is a least squares approximating function of the given form.
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Eg. Given (1, 1), (3, 2), (4, 3), find the least squares

approximating function of the form a0 + a1x.

Solution. f0(x) = 1, f1(x) = x.

M =

f0(x1) f1(x1)
f0(x2) f1(x2)
f0(x3) f1(x3)

 =

1 1
1 3
1 4



MTM =
[
1 1 1
1 3 4

]1 1
1 3
1 4

 =
[
3 8
8 26

]
, MTY =

[
6
19

]

MTMZ = MTY,

[
3 8
8 26

]
Z =

[
6
19

]
, Z =

1
14

[
4
9

]
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Now we have

f(x) =
2
7

+
9
14

x.

Observe that f(x) passes through
(
1, 13

14

)
,
(
3, 31

14

)
,
(
4, 40

14

)
.
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Eg. Given (−1, 0), (0, 1), (1, 4), find the least squares

approximating function of the form a0x + a12x.

Solution. f0(x) = x, f1(x) = 2x.

M =

f0(x1) f0(x1)
f0(x2) f1(x2)
f0(x3) f1(x3)

 =

−1 1
2

0 1
1 2


MTM =

[
2 3

2
3
2

21
4

]
, MTY =

[
4
9

]
MTMZ = MTY, Z =

1
11

[
10
16

]
f(x) =

10
11

x +
16
11

2x.
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5.4 Linear Transformation

Def. A function T : Fn → Fm is called a linear transformation

if it satisfies, for all X and Y in Fn and for all a ∈ F,

T (X + Y ) = T (X) + T (Y ), T (aX) = aT (X).

Observe that T (O) = O, T (−X) = −T (X), and

T (a1X1 + a2X2 + · · ·+ akXk) = a1T (X1) + a2T (X2) + · · ·+ akT (Xk).

Eg. T

([
x

y

])
=

[
x

−y

]
and S


x

y

z


 =

[
y + 2z

x

]
are linear

transformations.
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Def. A : m× n matrix. Define TA : Fn → Fm by

TA(X) = AX

for X ∈ Fn. Then TA is a linear transformation.

Eg. A =
[
1 0
0 −1

]
, TA

([
x

y

])
=

[
1 0
0 −1

] [
x

y

]
=

[
x

−y

]
.

B =
[
0 1 2
1 0 0

]
, TB


x

y

z


 =

[
0 1 2
1 0 0

]x

y

z

 =
[
y + 2z

x

]
.
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Thm. Let T : Fn → Fm be a linear transformation. Then

T = TA for the unique matrix A given by

A =
[
T (E1) T (E2) · · · T (En)

]
,

where {E1, E2, · · · , En} is the standard basis of Fn.

Proof. X = x1E1 + x2E2 + · · ·+ xnEn

T (X) = x1T (E1) + x2T (E2) + · · ·+ xnT (En)

=
[
T (E1) T (E2) · · · T (En)

]


x1

x2
...

xn

 = AX.

2
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Eg. Let Rθ : R2 → R2 be the rotation through the angle θ.

Then Rθ is a linear transformation.

Since Rθ(E1) =
[
cos θ

sin θ

]
and Rθ(E2) =

[
− sin θ

cos θ

]
,

[
Rθ(E1) Rθ(E2)

]
=

[
cos θ − sin θ

sin θ cos θ

]
induces Rθ.

Eg. Given N =
[
1 0 1

]
, define a linear transformation

PN : R3 → R3 by

PN(X) = X − X ·N
‖N‖2

N.

Find the matrix of PN .
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Solution.

PN(E1) = E1 −
E1 ·N
‖N‖2

N =

1
0
0

− 1
2

1
0
1

 =

 1
2

0
−1

2



PN(E2) = E2 −
E2 ·N
‖N‖2

N =

0
1
0


PN(E3) = E3 −

E3 ·N
‖N‖2

N =

−1
2

0
1
2


[
PN(E1) PN(E2) PN(E3)

]
=

1
2

 1 0 −1
0 2 0
−1 0 1

 .

Kyu-Hwan Lee



Linear Algebra [15]

• Composition

If we have two linear transformations T : Fn → Fm and

S : Fm → Fk, then we can define the composite S ◦ T of S

and T by

(S ◦ T )(X) = S(T (X)) for all X ∈ Fn.

Thm. Let T : Fn → Fm and S : Fm → Fk be linear

transformations with matrices B and A, respectively. The

composite S ◦ T : Fn → Fk is the linear transformation with

matrix AB.

Proof. (S ◦ T )(X) = S(T (X)) = S(BX) = (AB)X for

X ∈ Fn. 2
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Eg. Find the matrix A of reflection in the X axis of R2

followed by reflection in the line y = x.

Solution The matrix of reflection in the X axis is

[
1 0
0 −1

]
,

and the matrix of reflection in the line y = x is

[
0 1
1 0

]
.

Hence

A =
[
0 1
1 0

] [
1 0
0 −1

]
=

[
0 −1
1 0

]
.
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• Inverse

Thm. Let T be a linear transformation with matrix A.

Then A is invertible if and only if T has an inverse linear

transformation. In this case, T−1 is the linear transformation

with the matrix A−1.

Proof. If A is invertible, we define T ′ by T ′(X) = A−1X.

Then (T ′ ◦ T )(X) = A−1AX = X and (T ◦ T ′)(X) =
AA−1X = X. Hence, T ′ = T−1.

Conversely, if T−1 is the inverse with matrix B, then T ◦
T−1 = id implies AB = I, and T−1 ◦ T = id implies

BA = I. Thus B = A−1. 2
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Eg. Let Rθ be the rotation through the angle θ. Clearly,

the inverse is R−1
θ = R−θ, the rotation through −θ. Since

the matrix of Rθ is A =
[
cos θ − sin θ

sin θ cos θ

]
, the matrix of R−1

θ

is

A−1 =
[

cos θ sin θ

− sin θ cos θ

]
=

[
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

]
.
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• One-to-one and Onto

Def. A linear transformation T is one-to-one (resp. onto )

if it is one-to-one (resp. onto) as a function.

Def. Let T : Fn → Fm be a linear transformation with

matrix A. Then we define

imT = {T (X)|X ∈ Fn} = {AX|X ∈ Fn} = imA,

kerT = {X ∈ Fn|T (X) = O} = {X ∈ Fn|AX = O} = nullA.
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Thm. Let T : Fn → Fm be a linear transformation. Then

T is one-to-one (resp. onto) if and only if kerT = O (resp.

imT = Fm ).

Rmk. If follows from

n = dim(nullA) + dim(imA)

that

n = dim(kerT ) + dim(imT ).
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