1. Systems of Linear Equations

- Motivation : the most frequently recurring problem in math, physics, chemistry, biology, engineering, economics, ...

Eg.

$$
\left\{\begin{array}{l}
x+y+z=3 \\
2 x+y+3=1
\end{array}\right.
$$

1.1 Solutions and Elementary Operations

- Equivalence

Def. Two systems are equivalent if each has the same set of solutions.

Eg.

$$
\left\{\begin{array}{l}
x-3 y=-3 \\
2 x+y=8
\end{array}, \quad\left\{\begin{array}{l}
x-3 y=-3 \\
7 y=14
\end{array},\left\{\begin{array}{l}
x=3 \\
y=2
\end{array}\right.\right.\right.
$$

- Scheme : to develop a new linear system that is equivalent to the original system but is much simpler to solve.
- Elementary operations
I. Interchange two equations.
II. Multiply one equation by a nonzero number.
III. Add a multiple of one equation to a different equation.

Thm. Each elementary operation produces an equivalent system.

Proof. The idea is that each operation is reversible.

- Essence

A linear system \rightsquigarrow an augmented matrix

$$
\left\{\begin{array}{l}
x+y+z=3 \\
x+2 y-3 z=-1
\end{array} \quad \rightsquigarrow\left[\begin{array}{cccc}
1 & 1 & 1 & 3 \\
1 & 2 & -3 & -1
\end{array}\right]\right.
$$

- Elementary row operation
I. Interchange two rows.
II. Multiply one row by a nonzero number.
III. Add a multiple of one row to a different row.
- Scheme refined

A linear system $\longleftrightarrow \rightsquigarrow \quad$ an augmented matrix
the solution $\leftrightarrow \leftrightarrow$ the simplest matrix

Question: What's the simplest matrix corresponding to the given augmented matrix?

1.2 Gaussian Elimination

Def. A matrix is in reduced row-echelon form if it satisfies the following conditions:

1. All zero rows are at the bottom.
2. The first nonzero entry in a row is 1 , called the leading 1 .
3. Each leading 1 is to the right of the preceding leading 1.
4. Each leading 1 is the only nonzero entry in its column.

Eg.

$$
\left[\begin{array}{llll}
1 & 0 & * & 0 \\
0 & 1 & * & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Thm. Every matrix can be brought reduced row-echelon form by a series of elementary row operations.

In other words, every linear system can be solved by a series of elementary operations.

- Reduced row-echelon form \approx the solution 1.

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 5 \\
0 & 1 & 0 & 0 & 6 \\
0 & 0 & 1 & 0 & 7 \\
0 & 0 & 0 & 1 & 8
\end{array}\right] \sim\left\{\begin{array}{l}
x_{1}=5 \\
x_{2}=6 \\
x_{3}=7 \\
x_{4}=8
\end{array}\right.
$$

2.

$$
\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 1 & 0 & 3 & 0 \\
0 & 0 & 0 & 1 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \sim\left\{\begin{array} { l }
{ x _ { 1 } + 2 x _ { 5 } = 0 } \\
{ x _ { 3 } + 3 x _ { 5 } = 0 } \\
{ x _ { 4 } + 4 x _ { 5 } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x_{1}=-2 x_{5} \\
x_{3}=-3 x_{5} \\
x_{4}=-4 x_{5}
\end{array}\right.\right.
$$

x_{1}, x_{3}, x_{4} : leading variables corresponding to leading 1's x_{2}, x_{5} : parameters \Rightarrow let $x_{2}=r$ and $x_{5}=s$.

$$
x_{1}=-2 s, x_{2}=r, x_{3}=-3 s, x_{4}=-4 s, x_{5}=s
$$

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & -1 & 2 \\
0 & 0 & 1 & 1 & 3
\end{array}\right] \sim\left\{\begin{array} { l }
{ x _ { 1 } + x _ { 4 } = 1 } \\
{ x _ { 2 } - x _ { 4 } = 2 } \\
{ x _ { 3 } + x _ { 4 } = 3 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x_{1}=1-x_{4} \\
x_{2}=2+x_{4} \\
x_{3}=3-x_{4}
\end{array}\right.\right.
$$

x_{1}, x_{2}, x_{3} : leading variables
x_{4} : parameter \Rightarrow let $x_{4}=r$.

$$
x_{1}=1-r, x_{2}=2+r, x_{3}=3-r, x_{4}=r
$$

4.

No solution! The system is inconsistent.

- Algorithm

1. Find out the first column with a nonzero entry and the first nonzero entry, say a, in that column.
2. Interchange rows to move a to the first row. (Type I)
3. Multiply the first row by $\frac{1}{a}$. (Type II)
4. Make all the entries below the leading 1 equal to zero. (type III)
5. Repeat 1-4 on the matrix consisting of the remaining rows.
6. Make all the entries above a leading 1 equal to zero from the last leading 1 to the first. (Type III)

Eg.

$$
\begin{array}{rl}
{\left[\begin{array}{ccccc}
0 & 2 & 3 & -4 & 1 \\
0 & 0 & 2 & 3 & 4 \\
2 & 2 & -5 & 2 & 4 \\
2 & 0 & -6 & 9 & 7
\end{array}\right]} & \Rightarrow\left[\begin{array}{ccccc}
2 & 2 & -5 & 2 & 4 \\
0 & 0 & 2 & 3 & 4 \\
0 & 2 & 3 & -4 & 1 \\
2 & 0 & -6 & 9 & 7
\end{array}\right] \\
\Rightarrow\left[\begin{array}{ccccc}
1 & 1 & -\frac{5}{2} & 1 & 2 \\
0 & 0 & 2 & 3 & 4 \\
0 & 2 & 3 & -4 & 1 \\
2 & 0 & -6 & 9 & 7
\end{array}\right] \Rightarrow\left[\begin{array}{cccc}
1 & 1 & -\frac{5}{2} & 1
\end{array} 2\right. \\
0 & 0 \\
2 & 3
\end{array} 4
$$

Kyu-Hwan Lee

$$
\begin{aligned}
& \Rightarrow\left[\begin{array}{ccccc}
1 & 1 & -\frac{5}{2} & 1 & 2 \\
0 & 1 & \frac{3}{2} & -2 & \frac{1}{2} \\
0 & 0 & 2 & 3 & 4 \\
0 & 0 & 2 & 3 & 4
\end{array}\right] \Rightarrow\left[\begin{array}{ccccc}
1 & 1 & -\frac{5}{2} & 1 & 2 \\
0 & 1 & \frac{3}{2} & -2 & \frac{1}{2} \\
0 & 0 & 1 & \frac{3}{2} & 2 \\
0 & 0 & 2 & 3 & 4
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ccccc}
1 & 1 & -\frac{5}{2} & 1 & 2 \\
0 & 1 & \frac{3}{2} & -2 & \frac{1}{2} \\
0 & 0 & 1 & \frac{3}{2} & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{ccccc}
1 & 1 & -\frac{5}{2} & 1 & 2 \\
0 & 1 & 0 & -\frac{17}{4} & -\frac{5}{2} \\
0 & 0 & 1 & \frac{3}{2} & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ccccc}
1 & 1 & 0 & \frac{19}{4} & 7 \\
0 & 1 & 0 & -\frac{17}{4} & -\frac{5}{2} \\
0 & 0 & 1 & \frac{3}{2} & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{ccccc}
1 & 0 & 0 & 9 & \frac{19}{2} \\
0 & 1 & 0 & -\frac{17}{4} & -\frac{5}{2} \\
0 & 0 & 1 & \frac{3}{2} & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Def. The rank of A is the number of the leading 1 's in the reduced row-echelon form of A.

Thm. Given a system in n variables whose augmented matrix is of rank r, the number of parameters is $n-r$.

Rmk. Exactly three possibilities:

1. No solution.
2. Unique solution. $(n-r=0)$
3. Infinitely many solutions. $(n-r>0)$

1.3 Homogeneous Equations

Def. A system is homogeneous if all the constant terms are zero.

Eg.

$$
\left\{\begin{array}{l}
3 x_{1}-x_{2}-x_{3}=0 \\
2 x_{1}+x_{2}+x_{3}=0
\end{array}\right.
$$

Always there exists the trivial solution : $x_{1}=x_{2}=x_{3}=0$.
Question: is there any nontrivial solution?

One easy case is the following proposition.
Prop. Suppose that a homogeneous system in n variables has m equations. If $n>m$, then a nontrivial solution exists. In fact, there are infinitely many solutions.

Proof. Consider the reduced row-echelon form of the augmented matrix.

$$
\text { \# of leading 1's }=r \leq m<n \text {. }
$$

Thus \# of parameters $=n-r>0 . \quad \square$

