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Fully commutative elements of type D and
homogeneous representations of KLR-algebras
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In this paper, we decompose the set of fully commutative elements
into natural subsets when the Coxeter group is of type Dn, and
study combinatorics of these subsets, revealing hidden structures.
(We do not consider type An first, since a similar decomposition
for type An is trivial.) As an application, we classify and enu-
merate the homogeneous representations of the Khovanov–Lauda–
Rouquier algebras of type Dn.
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Introduction

An element w of a Coxeter group is said to be fully commutative if any re-
duced word for w can be obtained from any other by interchanges of adjacent
commuting generators. These elements were first introduced by Fan [Fan95,
Fan96] and Graham [Gra95] in their study of the generalized Temperley–Lieb
algebras, where they showed that the generalized Temperley–Lieb algebras
have a linear basis indexed by the fully commutative elements. Soon after,
these elements were extensively studied by Stembridge in a series of papers
[Ste96, Ste97, Ste98]. He gave a classification of the Coxeter groups having a
finite number of fully commutative elements, which was previously done by
Graham and Fan in the simply-laced case, and enumerated fully commuta-
tive elements for each of the finite types. The set of fully commutative ele-
ments also has connections to Kazhdan–Lusztig cells [Fan97, FG99, GL01].

In this paper, we study fully commutative elements of the Coxeter groups
of typeDn. We decompose the set of fully commutative elements into natural
subsets, and study combinatorial properties of these subsets. More precisely,
the subsets obtained from the decomposition of the set of fully commutative
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elements are called packets. The main result (Theorem 2.12) shows that each
set in the (n, k)-packet has size equal to C(n, k), the (n, k)-entry of Catalan’s
triangle, and implies the following identity (Corollary 2.14):

(0.1)

n∑
k=0

C(n, k) |P(n, k)| = n+ 3

2
Cn − 1,

where Cn is the nth Catalan number and |P(n, k)| is the number of elements
in the (n, k)-packet.

It is quite intriguing that the set of fully commutative elements of type
Dn has such a structure. A similar decomposition of the set of fully com-
mutative elements of type An would be trivial as there would be only one
packet. Since the right-hand side of (0.1) is equal to the dimension of the
Temperley–Lieb algebra of type Dn, the identity (0.1) suggests that there
might be a representation theoretic construction, in which C(n, k) would
correspond to the dimension of a representation and |P(n, k)| to its multi-
plicity.

As a related work, Lejczyk and Stroppel studied these fully commutative
elements of type Dn and the Temperley–Lieb algebra action in their paper
[LS13], where they also gave a diagrammatical description of the parabolic
Kazhdan–Lusztig polynomials.

Actually, this research was motivated by the connection of the fully com-
mutative elements to the homogeneous representations of the Khovanov–
Lauda–Rouquier (KLR) algebras (also known as quiver Hecke algebras).
Introduced by Khovanov and Lauda [KL09] and independently by Rouquier
[Rou08], the KLR algebras have been the focus of many recent studies. In
particular, these algebras categorify the lower (or upper) half of a quan-
tum group. In the paper [KR11], Kleshchev and Ram significantly reduce
the problem of describing the irreducible representations of the KLR alge-
bras to the study of cuspidal representations for finite types. In the process
of constructing the cuspidal representations, Kleshchev and Ram defined a
class of representations known as homogeneous representations [KR10], those
that are concentrated in a single degree. Homogeneous representations in-
clude most of the cuspidal representations for finite types with a suitable
choice of ordering on words. In particular, for type Dn, a natural choice of
ordering makes all the cuspidal representations homogeneous. Therefore it
is important to completely understand homogeneous representations. The
main point in our approach is that homogeneous representations can be
constructed from the sets of reduced words of fully commutative elements
in the corresponding Coxeter group as shown in [KR10].
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As an application intended at the beginning of this research, our results
classify and enumerate the homogeneous representations of KLR algebras
according to the decomposition of the set of fully commutative elements.
See Corollary 2.13.

The outline of this paper is as follows. In Section 1, we fix notations,
briefly review the representations of KLR algebras, and explain the relation-
ship between homogeneous representations and fully commutative elements
of a Coxeter group. In the next section, we study the set of fully commuta-
tive elements of type Dn, construct explicit bijections among packets, prove
the main theorem (Theorem 2.12) and obtain the identity (0.1).
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1. Homogeneous representations and fully commutative
elements

1.1. Definitions

To define a KLR algebra, we begin with a quiver Γ. In this paper, we will
focus mainly on quivers of Dynkin type Dn, but for the definition, any finite
quiver with no double bonds will suffice. Let I be the set indexing the vertices
of Γ, and for indices i �= j, we will say that i and j are neighbors if i → j
or i ← j. Define Q+ =

⊕
i∈I Z≥0 αi as the non-negative lattice with basis

{αi|i ∈ I}. The set of all words in the alphabet I is denoted by 〈I〉, and for
a fixed α =

∑
i∈I ciαi ∈ Q+, let 〈I〉α be the set of words w on the alphabet

I such that each i ∈ I occurs exactly ci times in w. We define the height of
α to be

∑
i∈I ci. We will write w = [w1, w2, . . . , wd], wj ∈ I.

Now, fix an arbitrary ground field F and choose an element α ∈ Q+.
Then the Khovanov–Lauda–Rouquier algebra Rα is the associative F-algebra
generated by:

• idempotents {e(w) | w ∈ 〈I〉α},
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• symmetric generators {ψ1, . . . , ψd−1} where d is the height of the root
α,

• polynomial generators {y1, . . . , yd},

subject to relations

e(w)e(v) = δwve(w),
∑

w∈〈I〉α

e(w) = 1;(1.1)

yke(w) = e(w)yk;(1.2)

ψke(w) = e(skw)ψk;(1.3)

yky� = y�yk;(1.4)

ykψ� = ψ�yk (for k �= �, �+ 1);(1.5)

(yk+1ψk − ψkyk)e(w) =

{
e(w) if wk = wk+1,
0 otherwise;

(1.6)

(ψkyk+1 − ykψk)e(w) =

{
e(w) if wk = wk+1,
0 otherwise;

(1.7)

ψ2
ke(w) =

⎧⎪⎪⎨
⎪⎪⎩

0 if wk = wk+1,
(yk − yk+1)e(w) if wk → wk+1,
(yk+1 − yk)e(w) if wk ← wk+1,
e(w) otherwise;

(1.8)

ψkψ� = ψ�ψk (for |k − �| > 1);(1.9)

(ψk+1ψkψk+1 − ψkψk+1ψk)e(w)(1.10)

=

⎧⎨
⎩

e(w) if wk+2 = wk → wk+1,
−e(w) if wk+2 = wk ← wk+1,
0 otherwise.

Here δwv in (1.1) is the Kronecker delta and, in (1.3), sk is the kth simple
transposition in the symmetric group Sd, acting on the word w by swapping
the letters in the kth and (k + 1)st positions. If Γ is a Dynkin-type quiver,
we will say that Rα is a KLR algebra of that type.

We impose a Z-grading on Rα by

deg(e(w)) = 0, deg(yi) = 2,(1.11)

deg(ψie(w)) =

⎧⎨
⎩

−2 if wi = wi+1,
1 if wi, wi+1 are neighbors in Γ,
0 if wi, wi+1 are not neighbors in Γ.

(1.12)

Set R =
⊕

α∈Q+
Rα, and let Rep(R) be the category of finite dimensional
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graded R-modules, and denote its Grothendieck group by [Rep(R)]. Then

Rep(R) categorifies one half of the quantum group. More precisely, let f and
′f be the Lusztig’s algebras defined in [Lus11, Section 1.2] attached to the

Cartan datum encoded in the quiver Γ over the field Q(v). We put q = v−1

and A = Z[q, q−1], and let ′fA and fA be the A-forms of ′f and f , respectively.

Consider the graded duals ′f∗ and f∗, and their A-forms

′f∗A := {x ∈ ′f∗ : x(′fA) ⊂ A} and f∗A := {x ∈ f∗ : x(fA) ⊂ A}.

Then we have:

Theorem 1.1. [KL09] There is an A-linear (bialgebra) isomorphism γ∗ :

[Rep(R)]
∼−→ f∗A.

Since it is not directly related to our purpose, we omit defining the

bialgebra structures. Details can be found in [KL09, KR11].

A word i ∈ 〈I〉α is naturally considered as an element of ′f∗A to be dual

to the corresponding monomial in ′fA. Let M be a finite dimensional graded

Rα-module. Define the q-character of M by

chq M :=
∑

i∈〈I〉α

(dimq Mi) i ∈ ′f∗A,

where Mi = e(i)M and dimq V :=
∑

n∈Z(dimVn) q
n ∈ A for V = ⊕n∈ZVn.

A non-empty word i is called Lyndon if it is lexicographically smaller than

all its proper right factors, or equivalently smaller that all its rotations.

For x ∈ ′f∗ we denote by max(x) the largest word appearing in x. A word

i ∈ 〈I〉 is called good if there is x ∈ f∗ such that i = max(x). Given a module

L ∈ Rep(Rα), we say that i ∈ 〈I〉 is the highest weight of L if i = max(chq L).

An irreducible module L ∈ Rβ is called cuspidal if its highest weight is a

good Lyndon word. It is known that the set of good Lyndon words is in

bijection with the set of positive roots Δ+ of the root system attached to Γ,

when Γ is of finite type.

Using the techniques developed by Leclerc in [Lec04], Kleshchev and

Ram, and then Melvin, Mondragon, and Hill showed:

Theorem 1.2 ([KR11]; [HMM12], 4.1.1). Assume that Γ is of finite Dynkin

type. Then the good Lyndon words parameterize the cuspidal representations

of the KLR algebra Rβ, β ∈ Δ+. In turn, any irreducible graded Rα-module

for α ∈ Q+ is given by an irreducible head of a standard representation

induced from cuspidal representations up to isomorphism and degree shift.
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The above theorem clearly explains the importance of cuspidal represen-
tations. In the next subsection, we will introduce another class of represen-
tations which contains most of the cuspidal representations with a suitable
choice of ordering on words.

1.2. Homogeneous representations

We define a homogeneous representation of a KLR algebra to be an ir-
reducible, graded representation fixed in a single degree (with respect to
the Z-grading described in (1.11) and (1.12)). Homogeneous representations
form an important class of irreducible modules since most of the cuspidal
representations are homogeneous with a suitable choice of ordering on 〈I〉
([KR11, HMM12]). After introducing some terminology, we will describe
these representations in a combinatorial way. We continue to assume that Γ
is a simply-laced quiver.

Fix an α ∈ Q+ and let d be the height of α. For any word w ∈ 〈I〉α, we
say that the simple transposition sr ∈ Sd is an admissible transposition for
w if the letters wr and wr+1 are neither equal nor neighbors in the quiver Γ.
Following Kleshchev and Ram [KR10], we define the weight graph Gα with
vertices given by 〈I〉α. Two words w, v ∈ 〈I〉α are connected by an edge if
there is an admissible transposition sr such that srw = v.

We say that a connected component C of the weight graph Gα is homo-
geneous if the following property holds for every w ∈ C:

If wr = ws for some 1 ≤ r < s ≤ d, then there exist t, u
(1.13)

with r < t < u < s such that wr is neighbors with both wt and wu.

A word satisfying condition (1.13) will be called a homogeneous word.

Example 1.3. Consider the A3 quiver

Γ =
1 2 3

We then have I = {1, 2, 3}, and choose the element α = α1+2α2+α3 ∈ Q+.
Then the weight graph Gα is given by:

1322

3122

2213

2231

2132

2312

1223

1232

2123

2321

3212

3221
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One can see that the only homogeneous component is

2132

2312

In this case, the two instances of the letter 2 have the neighbors 1 and 3

occurring between them. Note that, for some α ∈ Q+ we may have that every

component of the weight graph is homogeneous (e.g. α = α1 + α2 + α3),

while for others we may see that no components are homogeneous (e.g.

α = 2α1 + α2).

A main theorem of [KR10] shows that the homogeneous components

of Gα exactly parameterize the homogeneous representations of the KLR

algebra Rα:

Theorem 1.4 ([KR10], Theorem 3.4). Let C be a homogeneous component

of the weight graph Gα. Define an F-vector space S(C) with basis {vw | w ∈
C} labeled by the vertices in C. Then we have an Rα-action on S(C) given

by

e(w′)vw = δw,w′vw (w′ ∈ 〈I〉α,w ∈ C),

yrvw = 0 (1 ≤ r ≤ d,w ∈ C),

ψrvw =

{
vsrw if srw ∈ C
0 otherwise

(1 ≤ r ≤ d− 1,w ∈ C),

which gives S(C) the structure of a homogeneous, irreducible Rα-module.

Further S(C) � S(C ′) if C �= C ′, and this construction gives all of the

irreducible homogeneous modules, up to isomorphism.

As a result, the task of identifying homogeneous modules of a KLR al-

gebra is reduced to identifying homogeneous components in a weight graph.

This is simplified further by the following lemma:

Lemma 1.5 ([KR10], Lemma 3.3). A connected component C of the weight

graph Gα is homogeneous if and only if an element w ∈ C satisfies the

condition (1.13).

Recall that we call a word satisfying condition (1.13) a homogeneous

word. The homogeneous words have other combinatorial characterizations,

which we explore in the next subsection.
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1.3. Fully commutative elements of Coxeter groups

Since the homogeneity of w ∈ 〈I〉 does not depend on the orientation of
a quiver, it is enough to consider Dynkin diagrams and the corresponding
Coxeter groups. Given a simply-laced Dynkin diagram, the corresponding
Coxeter group will be denoted by W and the generators by si, i ∈ I. A
reduced expression si1 · · · sir will be identified with the word [i1, . . . , ir] in
〈I〉. For example, in type A4, the reduced expressions

s3s1s2s3s4 = s1s3s2s3s4 = s1s2s3s2s4 = s1s2s3s4s2

are identified with the words

[3, 1, 2, 3, 4], [1, 3, 2, 3, 4], [1, 2, 3, 2, 4], [1, 2, 3, 4, 2], respectively.

The identity element will be identified with the empty word [ ].

Assume that W is a simply-laced Coxeter group. An element w ∈ W is
said to be fully commutative if any reduced word for w can be obtained from
any other by interchanges of adjacent commuting generators, or equivalently
if no reduced word for w has [i, i′, i] as a subword where i and i′ are neighbors
in the Dynkin diagram. We make several observations, which are important
for our study of homogeneous representations, and list them in the following
lemma. These observations were first made by Kleshchev and Ram.

Lemma 1.6. [KR10]

(1) A homogeneous component of the weight graph Gα contains as its ver-
tices exactly the set of reduced expressions for a fully commutative
element in W .

(2) The set of homogeneous components is in bijection with the set of fully
commutative elements in W .

(3) Any KLR algebra of type An (n ≥ 1), Dn (n ≥ 4), or En (n = 6, 7, 8)
has finitely many irreducible homogeneous representations.

Proof. Part (1) follows from the definitions; in particular, the condition
(1.13) implies that no word in a homogeneous component has [i, i′, i] as
a subword where i and i′ are neighbors. Parts (2) and (3) are consequences
of (1).

Stembridge [Ste96] classified all of the Coxeter groups that have finitely
many fully commutative elements. The list includes the infinite families of
types En, Fn and Hn. His results completed the work of Fan [Fan96], who
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had done this for the simply-laced types. In the same paper [Fan96], Fan
showed that the fully commutative elements parameterized natural bases
for corresponding quotients of Hecke algebras. In type An, these give rise
to the Temperley–Lieb algebras (see [Jon87]). Fan and Stembridge also enu-
merated the set of fully commutative elements. In particular, they showed
the following.

Proposition 1.7 ([Fan96, Ste98]). Let Cn be the nth Catalan number, i.e.
Cn = 1

n+1

(
2n
n

)
. Then the number of fully commutative elements in the Cox-

eter group of type An is Cn+1, and that of type Dn is n+3
2 Cn − 1.

We immediately obtain a consequence on homogeneous representations
from Lemma 1.6.

Corollary 1.8. A KLR algebra R =
⊕

α∈Q+
Rα of type An has Cn+1 irre-

ducible homogeneous representations, while a KLR algebra of type Dn has
n+3
2 Cn − 1 irreducible homogeneous representations.

In [KR10], Kleshchev and Ram parameterized homogeneous representa-
tions using skew shapes. In this paper, we will decompose the set of fully
commutative elements to give a finer enumeration of homogeneous repre-
sentations in type Dn. More precisely, our main theorem (Theorem 2.12)
proves that these homogeneous representations can be organized naturally
into packets (defined in Section 2.2), and counted by Catalan’s triangle. Note
that these results contribute not only to the combinatorics of the represen-
tation theory of KLR algebras, but also to the study of fully commutative
elements of Coxeter groups.

2. Packets in type Dn

In this section, we will focus on fully commutative elements and represen-
tations of KLR-algebras of type Dn. That is, we shall assume that Γ is a
quiver whose underlying graph is of the form:

1 n− 3 n− 2

n

n− 1

We begin with canonical reduced words of type Dn.
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2.1. Canonical reduced words

For 1 ≤ i ≤ n− 1, we define the words sijby:

sij =

⎧⎨
⎩

[i, i− 1, . . . , j] if i > j,
[i] if i = j,
[ ] if i < j.

When i = n, we define

snj =

⎧⎨
⎩

[n, n− 2, . . . , j] if j ≤ n− 2,
[n] if j = n, n− 1,
[ ] if j > n.

We will often write sii = si. The following lemma provides a canonical form

we need.

Lemma 2.1 ([BS01], Lemma 5.2). Any element of the Coxeter group of

type Dn can be uniquely written in the reduced form

s1i1s2i2 · · · sn−1in−1
snj1sn−1j2snj3sn−1j4 · · · sn−1+[�]2 j�

where 1 ≤ ik ≤ k + 1 for 1 ≤ k ≤ n− 1, and 1 ≤ j1 < j2 < · · · < j� ≤ n− 1

for � ≥ 0, and [�]2 = 1 when � is odd, [�]2 = 0 when � is even.

The left factor s1i1s2i2 · · · sn−1in−1
will be called the prefix, and similarly

the right factor snj1sn−1j2snj3sn−1j4 · · · sn−1+[�]2 j� will be called the suffix of

the reduced word. For example, in the case ofD5, the word s21s3s4s52s43s5 =

[2, 1, 3, 4, 5, 3, 2, 4, 3, 5] has prefix s21s3s4 = [2, 1, 3, 4] and suffix s52s43s5 =

[5, 3, 2, 4, 3, 5]. Given a reduced word w in canonical form, we will denote by

w0 the prefix of w and by w′ the suffix, and write w = w0w
′. Generally,

a word of the form snj1sn−1j2snj3sn−1j4 · · · sn−1+[�]2 j� with 1 ≤ j1 < j2 <

· · · < j� ≤ n− 1 for � ≥ 0 will be called a suffix.

Remark 2.2. Notice that choosing a suffix is equivalent to choosing a (pos-

sibly empty) subset of {1, 2, . . . , n − 1}. There are 2n−1 ways to do this.

Since there are n! prefixes, we have n! · 2n−1 elements in the canonical re-

duced form. We recall that there are the same number of elements in the

type Dn Coxeter group.

Lemma 2.3. Every suffix is a homogeneous word, and so represents a fully

commutative element.
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Proof. A suffix w′ cannot have [1, . . . , 1] as a subword. If a suffix w′ has a

subword [k, . . . , k] for 2 ≤ k ≤ n−2, then w′ must have [k, k−1, . . . , k+1, k],
or possibly [n − 2, n − 3, . . . , n, n − 2] if k = n − 2, as a subword from the

conditions on a suffix. In either case, w′ is a homogeneous word from the

definition (1.13). If w′ has [n − 1, . . . , n − 1] as a subword, then w′ must
have [n − 1, n − 2, . . . , n, n − 2, . . . , n − 1]. Similarly, if w′ has [n, . . . , n],

then w′ must have [n, n − 2, . . . , n − 1, n − 2, . . . , n]. In both cases, w′ is a
homogeneous word.

LetWn be the set of canonical reduced words of typeDn given in Lemma

2.1. Each homogeneous word in Wn uniquely represents a fully commutative
element of the Coxeter group of type Dn and also a homogeneous component

of a weight graph by Lemma 1.6. The homogeneous words in Wn will be

grouped based on their suffixes:

Definition 2.4. A collection cnw′ ⊂ Wn labeled by a suffix w′ is defined to

be the set of homogeneous words in Wn whose suffix is w′. A collection will
be identified with the set of corresponding fully commutative elements in

the Coxeter group of type Dn.

Some of the collections have the same number of elements as we will see

in the following lemma and proposition.

Lemma 2.5. For a fixed k, 0 ≤ k ≤ n− 3, any collection labeled by a suffix

of the form

(2.1) snk+1sn−1j2snj3sn−1j4 · · · sn−1+[�]2 j� (� ≥ 2)

has the same set of prefixes. In particular, these collections have the same
number of elements.

Proof. Let w′ be a suffix of the form (2.1). Then w′ has the suffix w1 :=
snk+1sn−1 as a subword. Since removing letters from the end of a word

will not affect its homogeneity, it is clear that any prefix appearing in the

collection cnw′ also appears in cnw1
. We need to show, then, the opposite

inclusion.

Suppose now that w0 is a prefix of a homogeneous word appearing in
the collection labeled by w1. Since the prefix and suffix of a homogeneous

word are individually homogeneous words, we only assume that there is some

letter r which appears in both w0 and w′. From the condition

1 ≤ j1 < j2 < · · · < j� ≤ n− 1
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on the suffixw′, we see that the letter r also appears inw1. The homogeneity
of w0w1 requires that two neighbors of r appear between the instance of r
in w0 and the instance of r in w1, and these two neighbors of r also satisfy
the homogeneity condition for w0w

′ since w1 is a left factor of w′. This
proves that w0 is a prefix of w′ for any suffix w′ of the form (2.1).

Proposition 2.6. For 1 ≤ k ≤ n − 3, the collection labeled by the suffix
snk has the same number of elements as any of the collections labeled by the
suffix of the form

snk+1sn−1j2snj3sn−1j4 · · · sn−1+[�]2 j� (� ≥ 2).

Proof. Let w1 = snk+1sn−1 and w2 = snk. By Lemma 2.5, it is enough
to establish a bijection between the collections cnw1

and cnw2
. We define a

map σ : cnw2
→ cnw1

as follows. Suppose that w0 is the prefix of the word
w = w0w2 = w0[n, n − 2, . . . , k] ∈ cnw2

, and let r be the last letter of w0.
Then by the condition of homogeneity, we must have r < k or r = n− 1.

If r < k, we define σ(w) = w0w1, i.e. the map σ will simply replace the
suffix w2 = [n, n − 2, . . . , k + 1, k] with the suffix w1 = [n, n − 2, . . . , k +
1, n − 1]. To see that this image is actually in cnw1

, we need to check that
changing the last letter of the suffix from k to n − 1 does not violate
homogeneity. In turn, we need only to consider the case when σ(w) has
[n − 1, n − 2, . . . , in−1, n, n − 2, . . . , k + 1, n − 1] as a right factor. Clearly
the neighbor n− 2 appears twice between the two occurrences of n− 1 and
σ(w) ∈ cnw1

in this case.
If r = n − 1, we take m ≥ k to be the smallest letter such that the

string [m,m + 1, . . . , n − 1] is a right factor of w0. Then we have w =
s1i1 · · · sm−1im−1

smsm+1 · · · sn−1w2, and we define

σ(w) = s1i1 · · · sm−1im−1
smkw1.

In other words, the map σ replaces the factor smsm+1 · · · sn−1 = [m,m +
1, . . . , n− 1] with the factor smk = [m,m− 1, . . . , k] in addition to changing
the suffix from w2 to w1.

We show now that the image σ(w) = s1i1 · · · sm−1im−1
smkw1 is still a

homogeneous word. It is not hard to check that the right factor smkw1 is
homogeneous, but suppose that some letter t appears in both the segment
smk and in some segment sjij , j ≤ m − 1. Then we have k ≤ t ≤ j ≤
m − 1 ≤ n − 2. Since t < m, the letter t does not appear in the ascending
string [m, . . . , n− 1] in the word w, but since k ≤ t ≤ n− 2, it does appear
in the suffix, [n, . . . , t + 1, t, . . . , k], along with one neighbor t + 1. Since w
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is homogeneous, there must have been another neighbor in the prefix w0

which is not touched by the action of σ. Thus σ(w) is also a homogeneous
word, and we have shown that σ(cnw2

) ⊂ cnw1
.

To summarize, we have

σ(w) =

{
s1i1 · · · sm−1im−1

smkw1 if w0 ends with [m,m+ 1, . . . , n− 1],
w0w1 otherwise,

where m ≥ k. Note that w0 can not end in n − 1 in the second case. For
example, when n = 5 and k = 2, we have

w ∈ c5[5,3,2] σ(w) ∈ c5[5,3,4]

[3, 2, 1, 5, 3, 2] [3, 2, 1, 5, 3, 4]

[4, 3, 2, 1, 5, 3, 2] [4, 3, 2, 1, 5, 3, 4]

[1, 2, 3, 4, 5, 3, 2] [1, 2, 5, 3, 4]

[2, 1, 4, 5, 3, 2] [2, 1, 4, 3, 2, 5, 3, 4]

Next, we define a map that goes in the other direction, τ : cnw1
→ cnw2

.
Suppose that w = w0w1 = w0[n, n− 2, . . . , k+1, n− 1] ∈ cnw1

, and let r be
the last letter of w0. Then by the condition of homogeneity, we must have
1 ≤ r ≤ k.

If r < k, then we define τ(w0w1) = w0w2, i.e. τ simply replaces the
suffix [n, . . . , k + 1, n − 1] with the suffix [n, . . . , k + 1, k]. To see that this
results in a homogeneous word, we need to check only that the letter k at
the end of the suffix does not violate the homogeneity condition. Assume
that another k appears in w0, and consider the last non-empty segment smr

of w0. Then we have r < k ≤ m. Since there are two neighbors (k + 1 and
k − 1) between the two occurrences of k, homogeneity is preserved.

If r = k, then the final non-empty segment of the prefix is smk for some
m with k ≤ m ≤ n− 1. We define

τ(w) = τ(s1i1 · · · sm−1im−1
smkw1) = s1i1 · · · sm−1im−1

smsm+1 · · · sn−1w2.

That is, τ replaces smk with the ascending string [m,m+ 1, . . . , n− 1] and
the suffix w1 with w2. It remains to see that τ(w) is in fact a homoge-
neous word. Notice that the left factor s1i1 · · · sm−1im−1

and the ascending
string [m, . . . , n− 1] have no letters in common, so there is nothing here to
check. Also the right factor [m, . . . , n − 1, n, n − 2, . . . , k] is easily checked
to be homogeneous. Suppose that some letter r occurs in the left factor
s1i1 · · · sm−1im−1

, and also in the suffix [n, n − 2, . . . , k]. Since r does not
appear in the ascending string [m, . . . , n − 1] but does appear in the suf-
fix [n, n − 2, . . . , k], it follows that k ≤ r < m, so the letter r appears in
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the segment smk in w0. Since the word w0 is homogeneous, it must be the
case that two neighbors of r appear between these two instances of r in

w0. One of them may be in the segment smk which is replaced by the map
τ , but at least one of them must be in the left factor which remains fixed
under τ . Clearly another neighbor occurs in the suffix, so the condition for

homogeneity is satisfied.

To summarize, we have, for w = w0w1 ∈ cnw1

τ(w) =

{
s1i1 · · · sm−1im−1

smsm+1 · · · sn−1w2 if w0 ends with smk,
w0w2 otherwise,

where k ≤ m ≤ n − 1. Note that w0 can not end in k in the second case.
For example, when n = 5 and k = 2, we have

w ∈ c5[5,3,4] τ(w) ∈ c5[5,3,2]

[2, 1, 5, 3, 4] [2, 1, 5, 3, 2]

[2, 5, 3, 4] [2, 3, 4, 5, 3, 2]

[1, 4, 3, 2, 5, 3, 4] [1, 4, 5, 3, 2]

Now one can check that τ is both a left and a right inverse of σ, so the

bijection is established.

2.2. Packets

The results in the previous subsection show that some collections have the
same cardinality. It is natural, then, to group them together, which lead us

to the following definition.

Definition 2.7. For 0 ≤ k ≤ n, we define the (n, k)-packet of collections:

• The (n, 0)-packet is the set of collections labeled by suffixes of the form

sn1sn−1j2snj3sn−1j4 · · · sn−1+[�]2 j� (� ≥ 2).

• The (n, k)-packet, 1 ≤ k ≤ n−3, is the set of collections labeled by snk
or suffixes of the form snk+1sn−1j2snj3sn−1j4 · · · sn−1+[�]2 j� (� ≥ 2).

• The (n, n− 2)-packet contains only the collection labeled by snn−2 =
[n, n− 2].

• The (n, n− 1)-packet contains only the collection labeled by sn = [n].

• The (n, n)-packet contains only the collection labeled by the empty
suffix [ ].
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We will denote the (n, k)-packet by P(n, k). As an example, Table 2.1 shows
all of the packets in the case of D4.

We record an important property of a packet:

Corollary 2.8. The collections in a packet have the same number of ele-
ments.

Proof. The assertion follows from Lemma 2.5 and Proposition 2.6.

We count the number of collections in a packet and obtain:

Proposition 2.9. The size of the packet P(n, k) is

|P(n, k)| =

⎧⎨
⎩

2n−2 − 1 if k = 0,
2n−k−2 if 1 ≤ k ≤ n− 2,

1 if k = n− 1, n.

It may be convenient to visualize these values in an array as in Table 2.2,
where the row is given by n (starting at 0), and the column is given by k
(also beginning at 0).

Proof. If k = 0, a collection in the (n, 0)-packet is determined by a sequence
1 < j2 < · · · < j� ≤ n − 1, � ≥ 2. The number of such sequences is
the same as the number of non-empty subsets of {2, 3, . . . , n − 1}, which is
2n−2 − 1. For 1 ≤ k ≤ n − 3, a collection in the (n, k)-packet is labeled by
snk or is determined by a sequence k + 1 < j2 < · · · < j� ≤ n − 1, � ≥ 2.
The number of such sequences is the same as the number of non-empty
subsets of {k + 2, k + 3, . . . , n − 1}, which is 2n−k−2 − 1. Hence the total
number of collections in the (n, k)-packet is 2n−k−2. The remaining cases
k = n− 2, n− 1, n are obvious.

Remark 2.10. Recall that there are 2n−1 suffixes in total, and as a check,
we see that

n∑
k=0

|P(n, k)| = 2n−1.

2.3. Catalan’s triangle

In this subsection, we will compute the size of a collection in a given packet,
allowing us to classify and enumerate all homogeneous representations. We
begin by presenting a seemingly unrelated sequence.

The array shown in Table 2.3 is known as Catalan’s Triangle [OEI]. The
entry in the nth row and kth column is denoted by C(n, k), for 0 ≤ k ≤ n.
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Table 2.1: The packets of D4
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1
1 1
1 1 1
1 1 1 1
3 2 1 1 1
7 4 2 1 1 1
15 8 4 2 1 1 1
31 16 8 4 2 1 1 1
...

...
...

...
...

...
...

...
. . .

Table 2.2: Triangle of Packet Sizes

It can be built recursively: set the first entry C(0, 0) = 1, and then each
subsequent entry is the sum of the entry above it and the entry to the left.
All entries outside of the range 0 ≤ k ≤ n are considered to be 0.

1
1 1
1 2 2
1 3 5 5
1 4 9 14 14
1 5 14 28 42 42
1 6 20 48 90 132 132
1 7 27 75 165 297 429 429
...

...
...

...
...

...
...

...
. . .

Table 2.3: Catalan’s Triangle

More precisely, for n ≥ 0 and 0 ≤ k ≤ n, we define

(2.2) C(n, k) =

⎧⎪⎪⎨
⎪⎪⎩

1 if n = 0;
C(n, k − 1) + C(n− 1, k) if 0 < k < n;

C(n− 1, 0) if k = 0;
C(n, n− 1) if k = n.

The closed form for entries in this triangle is well known [OEI]. For n ≥ 0
and 0 ≤ k ≤ n, we have

(2.3) C(n, k) =
(n+ k)!(n− k + 1)

k!(n+ 1)!
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One can also see that

(2.4) Cn = C(n, n− 1) = C(n, n),

where Cn is the nth Catalan number.

Lemma 2.11. For n ≥ 4, each collection in the packets P(n, n − 1) and

P(n, n) contains Cn homogeneous words in Wn.

Proof. Recall that each of these packets contains only one collection: P(n, n−
1) = {cn[n]} and P(n, n) = {cn[ ]}. Since neither of the suffixes labeling these

packets contains any of the letters 1, 2, . . . , n−1, there are no restrictions on
the homogeneous prefixes that can be included. Therefore, any homogeneous

word of type An−1 can be a prefix. Since a fully commutative element is rep-

resented by a unique homogeneous word in canonical reduced form, there
are exactly Cn of homogeneous words of type An−1 by Proposition 1.7.

The previous lemma shows that the diagonal and subdiagonal of Cata-
lan’s triangle do in fact count the sizes of collections in the corresponding

packets. We now give the main theorem of this section, which says that

entries in the rest of Catalan’s triangle also count the sizes of collections,
naturally extending Lemma 2.11. This theorem allows us to classify the

homogeneous representations.

Theorem 2.12. Assume that n ≥ 4 and 0 ≤ k ≤ n. Then any collection in

the packet P(n, k) contains exactly C(n, k) elements.

Proof. Note that Lemma 2.11 proves the case when k = n − 1 or n. We

next consider the packet P(n, 0), which consists of the collections labeled

by the prefixes sn1sn−1j2snj3sn−1j4 · · · sn−1+[�]2 j� (� ≥ 2). By Lemma 2.5, it
is enough to consider the collection c labeled by sn1sn−1. We claim that

no prefix is possible except the empty word [ ]. Indeed, if a word w in c
contains a non-empty prefix w0 ending with the letter r for 1 ≤ r ≤ n− 1,

then the word w contains, as a right factor, [r, n, n− 2, . . . , 1, n− 1] and we

immediately reach a contradiction to homogeneity. Thus the collection c,
and hence every collection in P(n, 0), contains only one element, the suffix

itself. Since C(n, 0) = 1, we are done with this case.

We see in Table 2.1 that any collection in the packet P(4, k) contains

exactly C(4, k) elements. Thus the assertion of the theorem is true for n = 4.

Recall the recursive definition of C(n, k): for 1 ≤ k ≤ n− 1,

(2.5) C(n, k) = C(n, k − 1) + C(n− 1, k).
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We will prove that the collection sizes of the packets satisfy the relation given
in equation (2.5). Since we already checked the base cases (k = 0, n = 4),
the theorem will be established by induction. Further, by Corollary 2.8, it
will be enough to check that the relation holds for a single collection in each
of the packets.

Now assume that n > 4 and 1 ≤ k ≤ n− 2. We define

w1 = snksn−1 = [n, n− 2, . . . , k, n− 1], w2 = snk = [n, n− 2, . . . , k],

w3 =

{
[n− 1, n− 3, . . . , k] if k < n− 2,

[n− 1] if k = n− 2.

Then cnw1
∈ P(n, k − 1), cnw2

∈ P(n, k) and cn−1
w3

∈ P(n− 1, k). We will
give an explicit bijection from cnw1

∪ cn−1
w3

to cnw2
. Since cnw1

∩ cn−1
w3

= ∅ as
sets of formal words, we will have

(2.6) |cnw1
|+ |cn−1

w3
| = |cnw2

|,

and the proof will be completed by induction since the collection sizes satisfy
the same recursive relation as (2.5).

Define the map ϕ1 : c
n
w1

→ cnw2
by

ϕ1(w0w1) = ϕ(w0[n, n− 2, . . . , k, n− 1]) = w0w2 = w0[n, n− 2, . . . , k].

Clearly, removing the last letter of the suffix will not affect the homogeneity
of a word, and hence ϕ1 maps cnw1

into cnw2
. Similarly, we define the map

ϕ2 : c
n−1
w3

→ cnw2
to be

ϕ2(w0w3) = w0sn−1w2 = w0sn−1[n, n− 2, n− 3, . . . , k].

To see that the image is homogeneous, we first consider the case when w0

contains the letter n− 2. In such a case, there are two neighbors, n− 1 and
n, between two occurrences of n− 2. Now consider the other case when w0

contains i < n−2. In this case, there is a neighbor to the right of i in w0 by
homogeneity of w0w3 and also an i+ 1 in the suffix to the left of i. Hence,
ϕ2 maps cn−1

w3
into cnw2

. Note that the images of ϕ1 and ϕ2 are disjoint: the
words in the image of ϕ2 all have prefixes that end with the letter n − 1,
while none of the words in the image of ϕ1 do since w0 cannot end with
n− 1 due to the homogeneity condition on w0w1.

Finally, we define the map ϕ : cnw1
∪ cn−1

w3
→ cnw2

to be the combination
of ϕ1 and ϕ2, i.e. the restriction of ϕ to cnw1

is defined to be ϕ1 and the
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restriction of ϕ to cn−1
w3

is defined to be ϕ2. Figure 2.1 shows an example of
the maps ϕ1 and ϕ2 in the case of n = 5 and k = 2.

Now we define the map ρ : cnw2
→ cnw1

∪ cn−1
w3

to be given by the rule:

ρ(w0w2) = ρ(w0[n, n− 2, . . . , k])

=

{
w0[n− 3, . . . , k] ∈ cn−1

w3
if w0 ends with n− 1,

w0w1 ∈ cnw1
otherwise.

In the case where w0 ends with n− 1, we first check homogeneity with the
letter n− 3 in w0. In passing to Dn−1, the letters n− 1 and n − 3 become
neighbors and homogeneity follows because there is another neighbor of n−3
further to the right in w0. Now we check homogeneity when w0 contains
i < n−3. Note that there is a neighbor to the right of i inw0 by homogeneity
of w0w2 and also an i+1 in the suffix to the left of i. In the case where w0

does not end with n− 1, it is still possible that w0 contains n− 1, but since
it would be part of a descending sequence at the end of the prefix, there will
always be two instances of the neighbor n− 2 between the two occurrences
of n− 1. Thus the map ρ is well defined.

Now one can check that ρ is the two-sided inverse of ϕ. In particular,
if we restrict ρ to the words whose prefixes end with n− 1, then we obtain
the inverse for ϕ2, while if we restrict to the prefixes not ending in n− 1, we
have the inverse for ϕ1. This establishes (2.6) and completes the proof.

We obtain immediate consequences for homogeneous representations of
KLR algebras.

Corollary 2.13. Assume that R =
⊕

α∈Q+
Rα is the type-Dn KLR algebra.

(1) The set of irreducible homogeneous representations of R is decomposed
into packets and collections according to the decomposition of the set
of fully commutative elements (or of the set of homogeneous words in
Wn).

(2) Each entry in Catalan’s triangle counts the number of homogeneous
representations of R in the same collection.

Corollary 2.14. For n ≥ 4, we obtain the identity:

(2.7)

n∑
k=0

C(n, k) |P(n, k)| = n+ 3

2
Cn − 1.

Proof. The identity follows from Proposition 1.7 and Theorem 2.12.
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Figure 2.1: The maps ϕ1 and ϕ2 into the packet P(5, 2).
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Remark 2.15. As pointed out in the introduction, the identity (2.7) sug-
gests that there might be a representation theoretic construction, in which
C(n, k) would correspond to the dimension of a representation and |P(n, k)|
to its multiplicity. Also recall that the right-hand side of (2.7) is equal to
the dimension of the Temperley–Lieb algebra of type Dn.
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