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1. Introduction

An element w of a finite Coxeter group is said to be fully commutative if any reduced 
word for w can be obtained from any other by interchanges of adjacent commuting 
generators. In [11], Stembridge classified the finite Coxeter groups that have finitely many 
fully commutative elements. His results completed the work of Fan [3] and Graham [5], 
who had obtained such a classification for the simply-laced types and had shown that the 
fully commutative elements parameterize natural bases for the corresponding quotients of 
Hecke algebras. In type An, the quotients are isomorphic to the Temperley–Lieb algebras 
(see [6]). Fan and Stembridge also enumerated the set of fully commutative elements. In 
particular, they showed the following.

Proposition 1.1 ([3,12]). Let Cn be the nth Catalan number, i.e. Cn = 1
n+1

(2n
n

)
. Then 

the numbers of fully commutative elements in the Coxeter groups of types An, Bn and 
Dn are given as follows:

⎧⎪⎪⎨
⎪⎪⎩
Cn+1 if the type is An,

(n + 2)Cn − 1 if the type is Bn,
n+3

2 Cn − 1 if the type is Dn.

This paper focuses on the complex reflection groups G(d, r, n), where d, r, n ∈ Z>0

such that r|d. These groups are generated by complex reflections and have the Coxeter 
groups of types An−1, Bn and Dn as special cases. As the complex reflection groups can 
be presented by analogues of simple reflections and braid relations, one can attempt to 
generalize the notion of full commutativity to these groups. However, a direct general-
ization using the usual set of braid relations does not work even for G(d, 1, n) if d ≥ 3. 
A breakdown comes from the fact that some reduced words may not be connected to 
others strictly using braid relations.

In this paper, we overcome the difficulty and define fully commutative elements for 
G(d, 1, n), by proving that a slightly extended set of braid relations connects all the 
reduced words for an element of G(d, 1, n) (see Example 3.2). The next task is to describe 
and enumerate all the fully commutative elements, and we take the approach of the paper 
[4] where the first and third named authors studied fully commutative elements of the 
Coxeter group of type Dn.

More precisely, we decompose the set of fully commutative elements into natural 
subsets, called collections, according to their canonical words, and group them together 
into packets P(n, k), 0 ≤ k ≤ n, so that all the collections in a packet have the same 
cardinality. We show that the number of fully commutative elements in any collection 
belonging to the packet P(n, k) is equal to the Catalan triangle number C(n, k). Then 
the total number of fully commutative elements in G(d, 1, n) can be written as
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n∑
k=0

C(n, k) |P(n, k)| = d(d− 1)Fn,n−2(d) + (2d− 1)Cn − (d− 1), (1.1)

where |P(n, k)| is the number of collections in the (n, k)-packet and Fn,k(x) is the Catalan 
triangle polynomial defined by

Fn,k(x) =
k∑

s=0
C(n, s)xk−s. (1.2)

When d = 2, the group G(2, 1, n) is isomorphic to the Coxeter group of type Bn, and our 
definition of fully commutative elements coincides with the usual definition for Coxeter 
groups, and we recover the known number (n + 2) Cn − 1 from (1.1).

Our method exploits combinatorics of canonical words and establishes bijections 
among collections. In particular, we realize the Catalan triangle (Table 4.2) using collec-
tions of fully commutative elements.

For the group G(d, r, n), r > 1, we fix an embedding into G(d, 1, n) and define w ∈
G(d, r, n) to be fully commutative if its image under the embedding is fully commutative 
in G(d, 1, n). The main benefit of this definition is that the decomposition into collections 
and packets still works without any complications, and we obtain complete description 
and enumeration of fully commutative elements for all G(d, r, n). On the other hand, a 
drawback of this definition is that some fully commutative elements in the Coxeter group 
of type Dn or G(2, 2, n) are not fully commutative in G(2, 1, n) after being embedded. 
That is, the usual definition of full commutativity for Dn is not compatible with the new 
definition.

Though it is not clear at the present, an intrinsic definition of full commutativity for 
G(d, r, n), r > 1, which does not use an embedding, may be found. For such a definition, 
precise information about a complete set (or Gröbner–Shirshov basis) of relations would 
be very helpful. We leave it as a future direction.

The organization of this paper is as follows. In Section 2 we determine canonical words 
for the elements of the complex reflection groups. In the next section, we define fully 
commutative elements. Section 4 is devoted to a study of decomposition of the set of 
fully commutative elements into collections and packets for G(d, 1, n). In Section 5, we 
consider the packets of G(d, r, n). The next section provides some examples, and the final 
section is an appendix with the list of reduced words for G(3, 3, 3).
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2. Canonical forms

2.1. Complex reflection groups

For positive integers d and n, let G(d, 1, n) be the finite complex reflection group 
generated by the elements s1, s2, · · · , sn with defining relations:

sdn = s2
i = 1 for 1 ≤ i ≤ n− 1, (2.1a)

sisj = sjsi for j + 1 < i ≤ n, (2.1b)

si+1sisi+1 = sisi+1si for 1 ≤ i ≤ n− 2, (2.1c)

snsn−1snsn−1 = sn−1snsn−1sn. (2.1d)

The group G(d, 1, n) is isomorphic to the wreath product of the cyclic group Z/dZ and 
the symmetric group Sn. The corresponding diagram is given by

1 2 n−2 n−1 n
d

For each d ≥ 2 and n ≥ 3, let G(d, d, n) be the complex reflection group generated by 
the elements s̃1, ̃s2, · · · , ̃sn with defining relations:

s̃2
i = 1 = (s̃ns̃n−1)d for 1 ≤ i ≤ n, (2.2a)

s̃is̃j = s̃j s̃i for j + 1 < i ≤ n− 1, (2.2b)

s̃ns̃j = s̃j s̃n for j ≤ n− 3, (2.2c)

s̃i+1s̃is̃i+1 = s̃is̃i+1s̃i for 1 ≤ i ≤ n− 2, (2.2d)

s̃ns̃n−2s̃n = s̃n−2s̃ns̃n−2, (2.2e)

(s̃ns̃n−1s̃n−2)2 = (s̃n−2s̃ns̃n−1)2. (2.2f)

The corresponding diagram is the following.

d

1 2 n − 3 n − 2

n

n − 1

Note that the complex reflection groups G(2, 1, n) and G(2, 2, n) are the finite Coxeter 
groups of types Bn and Dn, respectively.

For r | d and e = d/r, let G(d, r, n) be the complex reflection group generated by the 
elements s̃1, ̃s2 · · · , ̃sn, ̃s with defining relations:
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s̃e = s̃2
i = 1 for 1 ≤ i ≤ n, (2.3a)

s̃is̃j = s̃j s̃i for j + 1 < i ≤ n− 1, (2.3b)

s̃s̃j = s̃j s̃ for j ≤ n− 2, (2.3c)

s̃ns̃j = s̃j s̃n for j ≤ n− 3, (2.3d)

s̃i+1s̃is̃i+1 = s̃is̃i+1s̃i for 1 ≤ i ≤ n− 2, (2.3e)

s̃s̃ns̃n−1 = s̃ns̃n−1s̃ (2.3f)

s̃ns̃n−2s̃n = s̃n−2s̃ns̃n−2, (2.3g)

(s̃ns̃n−1s̃n−2)2 = (s̃n−2s̃ns̃n−1)2 (2.3h)

s̃s̃n(s̃n−1s̃n)r−1 = s̃n−1s̃. (2.3i)

2.2. Canonical reduced words for G(d, 1, n)

Every element si1 · · · sir ∈ G(d, 1, n) corresponds to the word [i1, . . . , ir] in the alpha-
bet I := {1, 2, . . . , n}. For 1 ≤ i, j ≤ n, we define the words si,j by:

si,j =

⎧⎪⎨
⎪⎩

[i, i− 1, . . . , j] if i > j,

[i] if i = j,

[ ] if i < j,

where [ ] denotes the empty word that corresponds to the identity element of G(d, 1, n). 
We will often write si,i = si. We also define

s
(k)
n,j = sknsn−1,j for k ≥ 1.

The following lemmas are useful to obtain a canonical form of the elements of 
G(d, 1, n).

Lemma 2.1. The following relations hold in G(d, 1, n):

si,jsi = si−1si,j for j < i ≤ n− 1, (2.4a)

s
(k1)
n,n−1 s

(k2)
n,n−1 = sn−1s

(k2)
n,n−1s

k1
n for k1, k2 ≥ 1. (2.4b)

Proof. We use downward induction and the commutative relation (2.1b) to establish 
(2.4a). When j = i − 1, (2.4a) is nothing but (2.1c). By induction we have

si,j−1si = si,jsj−1si = si,jsisj−1 = si−1si,jsj−1 = si−1si,j−1.

To prove the relations (2.4b), we first establish

sn,n−1 s
(k)
n,n−1 = sn−1s

(k)
n,n−1sn for k ≥ 1. (2.5)
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When k = 1, (2.5) is just the defining relation (2.1d). For k ≥ 2, we use induction on k
and we obtain

sn,n−1 s
(k)
n,n−1 = sn,n−1 s

(k−1)
n,n−1sn−1snsn−1 (using s2

n−1 = 1)

= sn−1s
(k−1)
n,n−1snsn−1snsn−1 (induction)

= sn−1s
(k−1)
n,n−1sn−1snsn−1sn (using (2.1d))

= sn−1s
(k)
n,n−1sn (using s2

n−1 = 1).

We now prove (2.4b) by using induction to k1. The case k1 = 1 is obtained above, 
and when k1 ≥ 2, we see

s
(k1)
n,n−1 s

(k2)
n,n−1 = sns

(k1−1)
n,n−1 s

(k2)
n,n−1 = sn,n−1s

(k2)
n,n−1 s

k1−1
n (induction)

= sn−1s
(k2)
n,n−1s

k1
n (relation (2.5)). �

Lemma 2.2. The following relations hold in G(d, 1, n):

s
(k1)
n,j s

(k2)
n,j = sn−1s

(k2)
n,j s

(k1)
n,j+1 for j ≤ n− 1 and k1, k2 ≥ 1. (2.6)

Moreover, these relations are derived from (2.1b), (2.1c) and (2.4b).

Proof. We use downward induction on j. For j = n − 1 the result follows immediately 
from (2.4b). For j < n −1 we notice that s(k)

n,j = s
(k)
n,j+1sj = s

(k)
n,j+2sj+1sj , for every k ≥ 1. 

Therefore,

s
(k1)
n,j s

(k2)
n,j = s

(k1)
n,j+1sjs

(k2)
n,j+2sj+1sj

= s
(k1)
n,j+1s

(k2)
n,j+2sjsj+1sj (relation (2.1b))

= s
(k1)
n,j+1s

(k2)
n,j+2sj+1sjsj+1 (relation (2.1c))

= s
(k1)
n,j+1s

(k2)
n,j+1sjsj+1 = sn−1s

(k2)
n,j+1s

(k1)
n,j+2sjsj+1 (induction)

= sn−1s
(k2)
n,j s

(k1)
n,j+1 (relation (2.1b)). �

Let R be the following set of relations:

sdn = s2
i = 1 for 1 ≤ i ≤ n− 1, (2.7a)

sisj = sjsi for j + 1 < i ≤ n, (2.7b)

si,jsi = si−1si,j for j < i ≤ n− 1, (2.7c)

s
(k1)
n,j s

(k2)
n,j = sn−1s

(k2)
n,j s

(k1)
n,j+1 for j ≤ n− 1 and k1, k2 ≥ 1. (2.7d)
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Proposition 2.3. Using only the relations in R, any element of the group G(d, 1, n) can 
be uniquely written in the following reduced form

s1,i1s2,i2 · · · sn−1,in−1s
(k1)
n,j1

s
(k2)
n,j2

· · · s(k�)
n,j�

(2.8)

where 1 ≤ ip ≤ p + 1 for 1 ≤ p ≤ n − 1, and 1 ≤ j1 < j2 < · · · < j� ≤ n for � ≥ 0, and 
1 ≤ kp ≤ d − 1 for 1 ≤ p ≤ �.

Proof. Consider w ∈ G(d, 1, n) and an expression of w written in generators. Let � be the 
number of occurrences of skn in the expression of w for various k’s, where k is maximal 
for each occurrence, i.e., if w = · · · sisknsj · · · , then i �= n and j �= n. If � = 0 then w is 
an element of the subgroup of type An−1 and it is well known that one can use only the 
relations (without sn) in R to obtain the reduced form (2.8) (see, for example, [1]).

Assume that � > 0. Then we can write

w = w1s
k
ns1,p1s2,p2 · · · sn−1,pn−1 ,

where skn is the last occurrence of a power of sn in the expression of w. By the commu-
tativity relation (2.7b), we have

w = w1s1,p1s2,p2 · · · sn−2,pn−2s
k
nsn−1,pn−1 = w2 s

(k)
n,pn−1

,

where we set w2 = w1s1,p1s2,p2 · · · sn−2,pn−2 . By induction, the element w2 can be written 
in the form (2.8), and we have

w = s1,i1s2,i2 · · · sn−1,in−1s
(k1)
n,j1

s
(k2)
n,j2

· · · s(k�−1)
n,j�−1

s(k)
n,pn−1

.

If j�−1 < pn−1 or j�−1 = n then we are done. If j�−1 ≥ pn−1 and j�−1 < n then we use 
the relations (2.7b) and (2.7d) to obtain

s
(k�−1)
n,j�−1

s(k)
n,pn−1

= s
(k�−1)
n,j�−1

s
(k)
n,j�−1

sj�−1−1,pn−1

= sn−1s
(k)
n,j�−1

s
(k�−1)
n,j�−1+1sj�−1−1,pn−1 = sn−1s

(k)
n,pn−1

s
(k�−1)
n,j�−1+1. (2.9)

Using (2.9), we rewrite w and apply the induction hypothesis again. We repeat this 
process until we get the canonical form (2.8) in a finite number of steps.

Now we claim that the number of the canonical words is exactly n! · dn. Indeed, 
since each ip runs over the set {1, · · · , p + 1}, there are 2 · 3 · · ·n = n! choices for 
the part s1,i1s2,i2 · · · sn−1,in−1 . Now for the part s(k1)

n,j1
s
(k2)
n,j2

· · · s(k�)
n,j�

with the conditions 
1 ≤ j1 < j2 < · · · < j� ≤ n (� ≥ 0) and 1 ≤ kp ≤ d − 1, we just need to consider the 
number of forms s(k1)

n,1 s
(k2)
n,2 · · · s(k�)

n,n with each kp running over the set {0, 1, · · · , d − 1}, 
setting s(0)

n,jp
= 1 for convenience. In this way, this part has dn elements. Thus altogether, 

we have n! · dn canonical words as claimed.
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We recall that n! ·dn is the order of G(d, 1, n). Thus we have shown that every element 
of G(d, 1, n) is uniquely written in the canonical form (2.8). �
Remark 2.4. Proposition 2.3 shows that R is a Gröbner–Shirshov basis for the group 
G(d, 1, n). For details about Gröbner–Shirshov bases see [1]. For the group G(2, 1, n), 
which is the Coxeter group of type Bn, the canonical form (2.8) is obtained by Bokut 
and Shiao [1, Lemma 5.2]. A different canonical form for the group G(d, 1, n) can be 
found in [2,7,10].

Definition 2.5. The set of canonical words in (2.8) for G(d, 1, n) will be denoted by 
W(d, 1, n). The left factor s1,i1s2,i2 · · · sn−1,in−1 of a canonical word will be called the 

prefix, and similarly the right factor s(k1)
n,j1

s
(k2)
n,j2

· · · s(k�)
n,j�

will be called the suffix of the 
reduced word. Given a reduced word w in the canonical form, we will denote by w0 and 
w′ the prefix and the suffix of w, respectively. We write w = w0w

′.

2.3. Canonical reduced words for G(d, d, n)

For 1 ≤ i ≤ n − 1, we define the words s̃i,j in the same way as with si,j using the 
generators s̃i. When i = n, we define

s̃n,j =

⎧⎪⎨
⎪⎩

[n, n− 2, . . . , j] if j ≤ n− 2,
[n] if j ∈ {n, n− 1},
[ ] if j > n.

(2.10)

The group G(d, d, n) can be embedded into G(d, 1, n) as a subgroup of index d. Indeed, 
we define ι : G(d, d, n) → G(d, 1, n) by

ι(s̃n) = sd−1
n sn−1sn and ι(s̃i) = si for 1 ≤ i ≤ n− 1.

Then one can check that ι is a well-defined group homomorphism. Furthermore, we have 
the following lemma.

Lemma 2.6. The homomorphism ι is an embedding and its image consists of the elements 
whose canonical words are in the set

{s1,i1s2,i2 · · · sn−1,in−1s
(k1)
n,j1

s
(k2)
n,j2

· · · s(k�)
n,j�

∈ W(d, 1, n) : k1 + k2 + · · · + k� ≡ 0 (mod d)}.

This set of reduced words will be denoted by W(d, d, n).

Proof. Since ι(s̃n) = s
(d−1)
n,n−1sn, it is clear from (2.7d) that the elements in the image of 

ι have reduced forms in W(d, d, n). We have that W(d, d, n) has n! · dn−1 elements and, 
since the order of G(d, d, n) is n! · dn−1, ι is an embedding. �
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The preimage of an element with a reduced word in W(d, d, n) can be found in the 
following way. We note that

ι(s̃ns̃n−1)k = sn−1s
(k)
n,n−1s

d−k
n

and

s
(k1)
n,j1

s
(k2)
n,j2

= sn−1sn−1s
(k1)
n,n−1s

d−k1
n sk1

n sn−2,j1s
(k2)
n,j2

= ι(s̃n−1) ι(s̃ns̃n−1)k1 ι(s̃n−2,j1) s
(k1+k2)
n,j2

= ι(s̃n−1s̃n)k1 ι(s̃n−1,j1) s
(k1+k2)
n,j2

. (2.11)

Using (2.11) repeatedly, we can write

s1,i1s2,i2 · · · sn−1,in−1s
(k1)
n,j1

s
(k2)
n,j2

· · · s(k�)
n,j�

= ι(w̃)s(k1+k2+···+k�)
n,j�

= ι(w̃s̃n−1,j�)

for some w̃ ∈ G(d, d, n) with the condition k1 + k2 + · · · + k� ≡ 0 (mod d).
From now on, the group G(d, d, n) will be identified with the image of ι and the set 

W(d, d, n) will be the set of canonical words for G(d, d, n). As in the case of G(d, 1, n), 
we write w = w0w

′ ∈ W(d, d, n) as a product of the prefix w0 and the suffix w′.

Remark 2.7. One can try to obtain canonical words for G(d, d, n) without using an 
embedding into G(d, 1, n). Indeed, we obtain a set of reduced words for G(3, 3, 3) in 
Appendix. However, we find that the set of reduced words is not compatible with the 
packet decomposition defined in Section 5.

2.4. Canonical reduced words for G(d, r, n)

The group G(d, r, n) can be embedded into G(d, 1, n) as a subgroup of index r. Indeed, 
we define τ : G(d, r, n) → G(d, 1, n) by

τ(s̃) = srn, τ(s̃n) = sd−1
n sn−1sn and τ(s̃i) = si for 1 ≤ i ≤ n− 1.

Then one can check that τ is a well-defined group homomorphism.

Lemma 2.8. The homomorphism τ is an embedding and its image consists of the elements 
whose canonical words are in the set

W(d, r, n) := {s1,i1s2,i2 · · · sn−1,in−1s
(k1)
n,j1

s
(k2)
n,j2

· · · s(k�)
n,j�

∈ W(d, 1, n) : k1 + k2 + · · · + k� ≡ 0 (mod r)}.

Proof. Since τ(s̃n) = s
(d−1)
n,n−1sn and τ(s̃) = srn, it is clear that the image of τ is contained 

in W(d, r, n). One sees that the number of elements of W(d, r, n) is n! · dn/r which is 
equal to the order of G(d, r, n). Thus τ is an embedding. �
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As with the map ι for G(d, d, n), we have

s
(k1)
n,j1

s
(k2)
n,j2

= τ(s̃n−1s̃n)k1 τ(s̃n−1,j1) s
(k1+k2)
n,j2

. (2.12)

Using (2.12) repeatedly, we can write

s1,i1s2,i2 · · · sn−1,in−1s
(k1)
n,j1

s
(k2)
n,j2

· · · s(k�)
n,j�

= τ(w̃)s(k1+k2+···+k�)
n,j�

= τ(w̃ s̃k s̃n−1,j�)

for some w̃ ∈ G(d, r, n) and k ∈ Z≥0 with the condition k1 + k2 + · · · + k� ≡ 0 (mod r).
From now on, the group G(d, r, n) will be identified with the image of τ . An element of 

the set W(d, r, n) will be called a canonical word. As in the case of G(d, 1, n), a canonical 
word w will be written as w = w0w

′, where w0 is the prefix and w′ the suffix of w.

3. Fully commutative elements

3.1. Case G(d, 1, n)

In this subsection, let W := G(d, 1, n) be the complex reflection group defined in 
Section 2.1, with S := {s1, . . . , sn−1, sn} the set of generators and (2.1a), (2.1b), (2.1c)
and (2.1d) the defining relations. We consider the free monoid S� consisting of all finite 
length words w = si1si2 · · · si� with sij ∈ S. The multiplication in S� is defined by the 
concatenation

(si1 · · · si�) · (sm1 · · · smt
) = si1 · · · si�sm1 · · · smt

.

We define a binary relation ≈ on S� generated by the relations

sisj = sjsi for j + 1 < i ≤ n, (3.1a)

si+1sisi+1 = sisi+1si for 1 ≤ i ≤ n− 2, (3.1b)

sk1
n sn−1s

k2
n sn−1 = sn−1s

k2
n sn−1s

k1
n for 1 ≤ k1, k2 < d. (3.1c)

We will call (3.1a), (3.1b) and (3.1c) the (generalized) braid relations. Define R(w) ⊂ S�

to be the set of reduced expressions for w ∈ W . Here, as usual, a reduced expression is 
a word of minimal length for w.

The following proposition is a generalization of Matsumoto’s Theorem and is crucial 
to define fully commutative elements.

Proposition 3.1. For any w ∈ W , the set R(w) has exactly one equivalence class under 
≈.

Proof. Suppose that w ∈ R(w). We will show that w is related to the canonical word 
in W(d, 1, n) under ≈. We follow the proof of Proposition 2.3. Let � be the number of 
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occurrences of skn in w for various k’s, where k is maximal for each occurrence. If � = 0
then w is a reduced word of an element of the subgroup of type An−1 and one can use 
only relations (3.1a) and (3.1b) to obtain the canonical word by Matsumoto’s Theorem.

Assume � > 0. Then the proof of Proposition 2.3 shows that the relations (2.7b)
and (2.7d) are used to obtain the canonical word. As the relation (2.7b) is nothing but 
(3.1a), we have only to check if the relation (2.7d) is derived from (3.1a), (3.1b) and 
(3.1c), which follows from Lemma 2.2. �
Example 3.2. Consider W = G(3, 1, 2) =< s1, s2 | s3

2 = s2
1 = 1, s2s1s2s1 = s1s2s1s2 >. 

Then the two reduced expressions s2s1s
2
2s1 and s1s

2
2s1s2 represent the same element in 

W . One cannot be transformed into the other, using only the defining braid relations 
(2.1b), (2.1c) and (2.1d). However, under ≈, the two expressions are related through 
(3.1c).

We define a weaker binary relation ∼ on S� generated by the relations (3.1a) only. 
The equivalence classes under this relation are called commutativity classes. This gives 
the decomposition of R(w) into commutativity classes:

R(w) = C1∪̇ C2 · · · ∪̇ C�.

Definition 3.3. We say that w ∈ W is fully commutative if R(w) consists of a single 
commutativity class; i.e., any reduced word for w can be obtained from any other solely 
by using the commutation relations (3.1a) that correspond to commuting generators.

Throughout this paper, a subword always means a subword with all its letters in 
consecutive positions. We obtain the following lemma which is an analogue of Proposition 
2.1 in [11].

Lemma 3.4. An element w ∈ W is fully commutative if and only if no member of R(w)
contains si+1sisi+1, 1 ≤ i ≤ n − 2, or sk1

n sn−1s
k2
n sn−1, 1 ≤ k1, k2 < d, as a subword.

Proof. We will prove the contrapositive. If a word w ∈ R(w) has such a subword, the 
word w cannot be transformed into the canonical form only using commutative relations. 
Thus w cannot be fully commutative. Conversely, if w is not fully commutative, there 
must be a word w ∈ R(w) to which one of the relations (3.1b) and (3.1c) is applied. Then 
we see that there exists a word w1 obtained from w, which has si+1sisi+1, 1 ≤ i ≤ n −2, 
or sk1

n sn−1s
k2
n sn−1, 1 ≤ k1, k2 < d, as a subword. �

The following proposition provides a practical criterion for full commutativity.

Proposition 3.5. An element w ∈ W is fully commutative if and only if there exists 
w ∈ R(w) whose commutativity class has no member that has as a subword any of the 
following
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si+1sisi+1, sisi+1si (1 ≤ i ≤ n− 2), (3.2a)

sk1
n sn−1s

k2
n sn−1, sn−1s

k1
n sn−1s

k2
n (1 ≤ k1, k2 < d). (3.2b)

Proof. Assume that w is fully commutative. Consider w ∈ R(w). Then by Lemma 3.4, 
the word w does not contain si+1sisi+1, 1 ≤ i ≤ n −2, or sk1

n sn−1s
k2
n sn−1, 1 ≤ k1, k2 < d, 

as a subword. Moreover, w cannot contain sisi+1si, 1 ≤ i ≤ n − 2, or sn−1s
k1
n sn−1s

k2
n , 

1 ≤ k1, k2 < d, either. If it does, we obtain w1 ∈ R(w) from w by applying (3.1b) or 
(3.1c), which contains si+1sisi+1, 1 ≤ i ≤ n −2, or sk1

n sn−1s
k2
n sn−1, 1 ≤ k1, k2 < d. That 

is a contradiction. Thus any w ∈ R(w) does not contain any of the words in (3.2a) and 
(3.2b).

Conversely, assume that there exists w ∈ R(w) whose commutativity class C has no 
member that contains any of the words in (3.2a) and (3.2b). Then neither (3.1b) nor 
(3.1c) can be applied to any of the member of C, and we must have C = R(w). Thus, by 
definition, w is fully commutative. �

As in Section 2, an expression si1 · · · sir ∈ W will be identified with the word 
[i1, . . . , ir]. For w ∈ W , let w = [i1, . . . , ir] ∈ R(w). Define {i, i + 1}-sequence of w
to be the sequence of i’s and i + 1’s obtained by ignoring all entries of w different from 
i and i + 1. For example, the {1, 2}-sequence of w = [1, 2, 1, 3, 4, 3, 2] is [1, 2, 1, 2].

We have the following useful lemma due to Kleshchev and Ram.

Lemma 3.6 ([8]). The reduced words w and v are in the same commutativity class if and 
only if their {i, i + 1}-sequences coincide for each i = 1, 2, . . . , n − 1.

Combining Proposition 3.5 and Lemma 3.6, we can easily check whether an element 
w is fully commutative or not.

In Proposition 2.3, we prove that any element of W can be written as

s1,i1s2,i2 · · · sn−1,in−1s
(k1)
n,j1

s
(k2)
n,j2

· · · s(k�)
n,j�

(3.3)

where 1 ≤ ip ≤ p + 1 for 1 ≤ p ≤ n − 1, and 1 ≤ j1 < j2 < · · · < j� ≤ n for � ≥ 0, and 
1 ≤ kp ≤ d − 1 for 1 ≤ p ≤ �. Here we write

s
(k)
n,j = sknsn−1,j = sknsn−1 . . . sj for k ≥ 1 and j ≤ n.

Recall that the part s(k1)
n,j1

s
(k2)
n,j2

· · · s(k�)
n,j�

in the canonical form (3.3) is called its suffix. Now 
we prove the following proposition.

Proposition 3.7. Every suffix is a fully commutative element.

Proof. By Proposition 3.5, we have to show that no member in the commutative class 
of a suffix contains as a subword any of the words in (3.2a) and (3.2b). By Lemma 3.6, 
we need to investigate relative positions of a letter p and their neighbors p −1 and p +1.
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Assume that 1 ≤ p ≤ n − 2. Every consecutive occurrence of p in a suffix is of the 
form

[p, p− 1, . . . jp, nkp , . . . , p + 1, p, . . . , jp+1] with jp < jp+1 < p + 1. (3.4)

Thus, neither the word spsp+1sp nor the word sp+1spsp+1 can appear in any suffix 
or in any member of its commutative class. Similarly, one sees that neither the word 
sn−1s

k1
n sn−1s

k2
n nor the word sk1

n sn−1s
k2
n sn−1 can appear in any suffix or in its commu-

tative class. Hence our assertion follows. �
3.2. Cases G(d, d, n) and G(d, r, n)

Recall that we fixed embeddings of G(d, d, n) and G(d, r, n) into G(d, 1, n) and that 
these groups are identified with the images of the embeddings.

Definition 3.8. Let W = G(d, d, n) or G(d, r, n) be considered as a subgroup of G(d, 1, n)
through the embedding ι or τ defined in Section 2, respectively. An element w of W is 
called fully commutative if w is fully commutative as an element of G(d, 1, n).

As mentioned in the introduction, this definition of fully commutative elements coin-
cides with the usual definition for the Coxeter groups of type Bn when d = 2, r = 1. On 
the other hand, it is not compatible with the usual definition for the Coxeter groups of 
type Dn when d = 2, r = 2. This will be made more clear in the following sections.

4. Packets in G(d, 1, n)

4.1. Collections

The words in W(d, 1, n) which correspond to fully commutative elements will be called 
fully commutative and will be grouped based on their suffixes.

Definition 4.1. A collection cnw′ ⊂ W(d, 1, n) labeled by a suffix w′ is defined to be the 
set of fully commutative words in W(d, 1, n) whose suffix is w′.

As in the case of type D studied in [4], some of the collections have the same number 
of elements as we will prove in the rest of this subsection. Since the proofs are essentially 
the same as in the case of type D, we will only sketch them here, referring the reader to 
[4] for more details.

Lemma 4.2. For a fixed k, 0 ≤ k ≤ n − 2, any collection labeled by a suffix of the form

s
(t1)
n,k+1s

(t2)
n,j s

(t3)
n,j s

(t4)
n,j · · · s(t�)

n,j (� ≥ 2) (4.1)

2 3 4 �
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has the same set of prefixes. In particular, these collections have the same number of 
elements.

Proof. Let w′ be a suffix of the form (4.1). Then w′ has the suffix w1 := s
(t1)
n,k+1sn as a 

subword, and any prefix appearing in the collection cnw′ also appears in cnw1
.

Conversely, assume that w0 is a prefix of a fully commutative word appearing in the 
collection cnw1

. Since the prefix and suffix of a fully commutative word are themselves 
fully commutative, we only assume that there is some letter r ≤ n − 1 which appears in 
both w0 and w′. From the condition

1 ≤ j1 < j2 < · · · < j� ≤ n

on the suffix w′, we see that the letter r also appears in w1. Then the full commutativity 
of w0w1 implies that w0w

′ is also fully commutative and that w0 is a prefix of w′. �
Proposition 4.3. For 1 ≤ k ≤ n − 2, the collection labeled by the suffix s(t′)

n,k, 1 ≤ t′ < d, 
has the same number of elements as any of the collections labeled by the suffix of the 
form

s
(t1)
n,k+1s

(t2)
n,j2

s
(t3)
n,j3

s
(t4)
n,j4

· · · s(t�)
n,j�

(� ≥ 2).

Proof. Let w1 = s
(t1)
n,k+1sn and w2 = s

(t′)
n,k . By Lemma 4.2, it is enough to establish a 

bijection between the collections cnw1
and cnw2

. We define a map σ : cnw2
→ cnw1

as follows. 
Suppose that w0 is the prefix of the word w = w0w2 = w0[nt′ , n − 1, . . . , k] ∈ cnw2

, and 
let r be the last letter of w0. Then by the condition of full commutativity, we must have 
r < k or r = n − 1.

If r < k we simply define σ(w) = w0w1. If r = n − 1, we take m ≥ k to be the 
smallest letter such that the string [m, m +1, . . . , n − 1] is a right factor of w0. Then we 
have w = s1,i1 · · · sm−1,im−1smsm+1 · · · sn−1w2, and we define

σ(w) = s1,i1 · · · sm−1,im−1sm,kw1.

Then we have σ(cnw2
) ⊂ cnw1

.
Now we define a map η : cnw1

→ cnw2
. Suppose that w = w0w1 = w0[nt1 , n −1, . . . , k+

1, n] ∈ cnw1
, and let r be the last letter of w0. Then by the condition of full commutativity, 

we must have 1 ≤ r ≤ k.
If r < k, then we define η(w0w1) = w0w2. If r = k, then the final non-empty segment 

of the prefix is sm,k for some m with k ≤ m ≤ n − 1. We define

η(w) = η(s1,i1 · · · sm−1,im−1sm,kw1) = s1,i1 · · · sm−1,im−1smsm+1 · · · sn−1w2.

One sees that η(cnw1
) ⊂ cnw2

, and that η is both a left and a right inverse of σ. �
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Lemma 4.4. The collections labeled by the suffixes stn and s(t)
n,n−1 (1 ≤ t < d) have the 

same set of prefixes.

Proof. Assume that w0 is a prefix of stn or s(t)
n,n−1, i.e., w0s

t
n or w0s

(t)
n,n−1 is fully com-

mutative. Then replacing the suffix stn with any of the suffixes st′n and s(t′)
n,n−1 (1 ≤ t′ < d)

does not affect full commutativity. �
4.2. Packets

The results in the previous subsection lead us to the following definition.

Definition 4.5. For 0 ≤ k ≤ n, we define the (n, k)-packet of collections:

• The (n, 0)-packet is the set of collections labeled by suffixes of the form

s
(t1)
n,1 s

(t2)
n,j2

s
(t3)
n,j3

s
(t4)
n,j4

· · · s(t�)
n,j�

(� ≥ 2).

• The (n, k)-packet, 1 ≤ k ≤ n −2, is the set of collections labeled by s(t)
n,k or by suffixes 

of the form s(t1)
n,k+1s

(t2)
n,j2

s
(t3)
n,j3

s
(t4)
n,j4

· · · s(t�)
n,j�

(� ≥ 2).
• The (n, n − 1)-packet contains the collections labeled by s(t)

n = [nt] or s(t)
n,n−1 =

[nt, n − 1].
• The (n, n)-packet contains only the collection labeled by the empty suffix [ ].

We will denote the (n, k)-packet by P(n, k). As an example, Table 4.1 shows all packets 
for the case of G(2, 1, 3) (or B3).

We record the main property of a packet as a corollary.

Corollary 4.6. The collections in a fixed packet P(n, k) have the same number of elements.

Proof. The assertion follows from Lemma 4.2, Proposition 4.3 and Lemma 4.4. �
We count the number of collections in a packet and obtain:

Proposition 4.7. The size of the packet P(n, k) of G(d, 1, n) is

|P(n, k)| =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(dn−1 − 1)(d− 1) if k = 0,
dn−k−1(d− 1) if 1 ≤ k ≤ n− 2,

2(d− 1) if k = n− 1,
1 if k = n.

Hence we have 
∑n

k=0 |P(n, k)| = dn.
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Table 4.1
The packets of G(2, 1, 3).

Proof. Assume that k = 0. We consider the expression

s
(k1)
n,1 s

(k2)
n,2 s

(k3)
n,3 · · · s(kn−1)

n,n−1 s
kn
n .

The conditions for (n, 0)-packet allows k1 to vary from 1 to d − 1 and ki (2 ≤ i ≤ n)
from 0 to d, except from the case k2 = k3 = · · · = kn = 0. Thus the total number of 
collections in P(n, 0) is (d − 1)(dn−1 − 1).

Similar arguments can be applied to the other packets P(n, k) for 1 ≤ k ≤ n − 1, 
and it is clear that there is only one collection in P(n, n). The total sum can be checked 
straightforwardly. �
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Table 4.2
Catalan Triangle.
1
1 1
1 2 2
1 3 5 5
1 4 9 14 14
1 5 14 28 42 42
1 6 20 48 90 132 132
1 7 27 75 165 297 429 429
...

...
...

...
...

...
...

...
. . .

4.3. Catalan’s Triangle

In this subsection, we will compute the size of a collection in a given packet, and 
thereby classify and enumerate all the fully commutative elements.

As in the case of type D studied in [4], the sizes of collections are given by Catalan 
triangle numbers C(n, k) which are defined by

C(n, k) = (n + k)!(n− k + 1)
k!(n + 1)! (4.2)

for n ≥ 0 and 0 ≤ k ≤ n. The numbers form the Catalan Triangle in Table 4.2 to satisfy 
the rule:

C(n, k) = C(n, k − 1) + C(n− 1, k), (4.3)

where all entries outside of the range 0 ≤ k ≤ n are considered to be 0. One also sees 
that

Cn = C(n, n− 1) = C(n, n), (4.4)

where Cn is the nth Catalan number.

Lemma 4.8. For n ≥ 3, the size of each collection in the packets P(n, n) and P(n, n − 1)
is equal to the Catalan number Cn.

Proof. The proof of Lemma 4.4 shows that prefixes in a collection belonging to one of 
the packets P(n, n) and P(n, n − 1) are exactly fully commutative words of type An−1, 
the total number of which is well known to be the Catalan number Cn. �

The following theorem is an extension of Theorem 2.12 in [4] from the case of Dn to 
G(d, 1, n). The proof is similar to that of type Dn, and we refer the reader to [4] for more 
details.
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Theorem 4.9. Assume that n ≥ 3 and 0 ≤ k ≤ n. Then any collection in the packet 
P(n, k) contains exactly C(n, k) elements.

Proof. We have already proved the cases when k = n and k = n − 1 in Lemma 4.8. Now 
consider the packet P(n, 0), which consists of the collections labeled by the suffixes

s
(t1)
n,1 s

(t2)
n,j2

s
(t3)
n,j3

s
(t4)
n,j4

· · · s(t�)
n,j�

(� ≥ 2).

By Lemma 4.2, it is enough to consider the collection c labeled by s(t1)
n,1 sn. If a word 

w ∈ c contains a non-empty prefix w0 ending with the letter r for 1 ≤ r ≤ n − 1, then 
the word w contains as a right factor [r, n, n − 1, . . . , r + 1, r, . . . , 1, n] which contradicts 
full commutativity. Thus the collection c, and hence every collection in P(n, 0), contains 
only the suffix itself. Thus we have C(n, 0) = 1.

For the other cases, we will combinatorially (or bijectively) obtain the identity (4.3). 
One can see that any collection in the packet P(3, k) contains exactly C(3, k) elements 
for 0 ≤ k ≤ 3. The case G(2, 1, 3) is given in Table 4.1 and the case G(3, 1, 3) in the 
second example of Section 6. Thus the assertion of the theorem is true for n = 3, and we 
will proceed by induction with the base cases k = 0 or n = 3. Further, by Corollary 4.6, 
it is enough to consider a single collection in each of the packets.

Assume that n ≥ 4 and 1 ≤ k ≤ n − 2. We define

w1 = sn,ksn = [n, n− 1, . . . , k, n], w2 = sn,k = [n, n− 1, . . . , k],

w3 = [n− 1, n− 2, . . . , k].

Then cnw1
∈ P(n, k − 1), cnw2

∈ P(n, k) and cn−1
w3

∈ P(n − 1, k). We will give an explicit 
bijection from cnw1

∪ cn−1
w3

to cnw2
.

Define a map ϕ1 : cnw1
→ cnw2

by

ϕ1(w0w1) = ϕ(w0[n, n− 1, . . . , k, n]) = w0w2 = w0[n, n− 1, . . . , k],

and another map ϕ2 : cn−1
w3

→ cnw2
by

ϕ2(w0w3) = w0sn−1w2 = w0sn−1[n, n− 1, n− 2, . . . , k].

Then it can be checked that the maps ϕ1 and ϕ2 are well defined ant that the images 
are disjoint. Finally, combining ϕ1 and ϕ2, we define a map ϕ : cnw1

∪ cn−1
w3

→ cnw2
, i.e. 

the restriction of ϕ to cnw1
is ϕ1 and the restriction of ϕ to cn−1

w3
is ϕ2.

Conversely, define the map ρ : cnw2
→ cnw1

∪ cn−1
w3

to be given by the rule:

ρ(w0w2) = ρ(w0[n, n− 1, . . . , k]) =
{

w0[n− 2, . . . , k] ∈ cn−1
w3

, if w0 ends with n− 1,
w0w1 ∈ cnw1

, otherwise.

One can check that the map ρ is well defined.
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Now one can see that ρ is the two-sided inverse of ϕ. In particular, if we restrict ρ to 
the words whose prefixes end with n − 1, then we obtain the inverse for ϕ2, while if we 
restrict to the prefixes not ending in n − 1, we have the inverse for ϕ1.

This establishes, for each k,

|cnw2
| = |cnw1

| + |cn−1
w3

|,

which is the same identity as (4.3) inductively. This proves that |cnw2
| = C(n, k) as 

desired. �
Let us recall the Catalan triangle polynomial introduced in [9, Definition 2.11]:

Definition 4.10. For 0 ≤ k ≤ n, we define the Catalan triangle polynomial Fn,k(x) by

Fn,k(x) =
k∑

s=0
C(n, s)xk−s. (4.5)

We need some special values of the polynomial Fn,k(x).

Lemma 4.11. [9, Corollary 2.9] For 0 ≤ k < n, we have

Fn,k(2) =
(
n + 1 + k

k

)
. (4.6)

In light of the above lemma, the numbers Fn,k(d), d > 2, can be considered as a 
certain generalization of binomial coefficients. Interestingly, we need Fn,n−2(d) to write 
a formula for the number of fully commutative elements in G(d, 1, n) in the following 
corollary. This is also the case for G(d, r, n). See Corollaries 5.3 and 5.6.

Corollary 4.12. For n ≥ 3, the number of fully commutative elements of G(d, 1, n) is 
equal to

n∑
k=0

C(n, k) |P(n, k)| = d(d− 1)Fn,n−2(d) + (2d− 1)Cn − (d− 1). (4.7)

In particular, when d = 2, we recover the result of [11] on Bn-type using (4.6):

n∑
k=0

C(n, k) |P(n, k)| = 2
(

2n− 1
n− 2

)
+ 3Cn − 1 = (n + 2)Cn − 1.

Proof. The assertion follows from Proposition 4.7 and the definitions. �
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5. Packets in G(d, r, n)

In this section, we assume that 1 ≤ r ≤ d and r|d. Thus the family of groups G(d, r, n)
includes the case G(d, d, n). The results will be presented for G(d, d, n) first for simplicity, 
and then will be generalized to the case G(d, r, n).

Recall that we consider G(d, r, n) as subgroups of G(d, 1, n) through the embedding 
τ , and that Lemma 2.8 describes the elements of G(d, r, n). We define the packets of 
G(d, r, n) to be those of G(d, 1, n) which are contained in G(d, r, n).

Proposition 5.1. The size of the packet P(n, k) of G(d, d, n) is

|P(n, k)| =
{

dn−k−2(d− 1) if 0 ≤ k ≤ n− 2,
1 if k = n.

Hence we have 
∑n

k=0 |P(n, k)| = dn−1.

Proof. We use Lemma 2.6 to determine which packets of G(d, 1, n) in Definition 4.5 are 
contained in G(d, d, n). Clearly, the (n, n −1)-packet cannot occur in G(d, d, n), and there 
is still only one collection in the (n, n)-packet. For 0 ≤ k ≤ n −2, the suffixes s(t)

n,k cannot 
appear in G(d, d, n) and the number of suffixes of the form s(t1)

n,k+1s
(t2)
n,j2

s
(t3)
n,j3

s
(t4)
n,j4

· · · s(t�)
n,j�

(� ≥ 2) that appear in G(d, d, n) is dn−k−2(d − 1). �
More generally, we have the following.

Proposition 5.2. The size of the packet P(n, k) of G(d, r, n) is

|P(n, k)| =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dn−1

r
(d− 1) −

(
d

r
− 1

)
if k = 0,

dn−k−1

r
(d− 1) if 1 ≤ k ≤ n− 2,

2
(
d

r
− 1

)
if k = n− 1,

1 if k = n.

Hence we have 
∑n

k=0 |P(n, k)| = dn/r.

Proof. We use Lemma 2.8 to determine which packets of G(d, 1, n) in Definition 4.5
are contained in G(d, r, n). Clearly, there is still only one collection in the (n, n)-packet. 
For the (n, n − 1)-packet, each of s(t)

n and s(t)
n,n−1 has d

r − 1 possibilities to satisfy the 
conditions t ≡ 0 (mod r) and 1 ≤ t < d.

As for the (n, 0)-packet, we consider the expression

s
(k1)
n,1 s

(k2)
n,2 s

(k3)
n,3 · · · s(kn−1)

n,n−1 s
kn
n .
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Then k1 varies from 1 to d − 1 and ki (2 ≤ i ≤ n − 1) from 0 to d and then kn has d/r
choices, except the cases that k1 ≡ 0 (mod r) and k2 = k3 = · · · = kn = 0. Thus the 

total number of collections in P(n, 0) is d
n−1

r
(d − 1) −

(
d

r
− 1

)
.

The sizes of (n, k)-packets for 1 ≤ k ≤ n − 2 can be checked similarly. �
Corollary 5.3. The number of fully commutative elements in the group G(d, d, n) is equal 
to

n∑
k=0

C(n, k) |P(n, k)| = (d− 1)Fn,n−2(d) + Cn. (5.1)

In particular, when d = 2, we obtain from (4.6)

n∑
k=0

C(n, k) |P(n, k)| =
(

2n− 1
n− 2

)
+ Cn = n− 1

2 Cn + Cn = n + 1
2 Cn. (5.2)

Remark 5.4. The number n+1
2 Cn in (5.2) is different from the number n+3

2 Cn−1 of fully 
commutative elements of type Dn considered in [12,4] without embedding ι. Thus our 
definition of fully commutative elements of G(2, 2, n) is not equivalent to that of Dn in 
[12,4]. See the first example in Section 6 for more details.

Remark 5.5. Let c(x) = 1 −
√

1 − 4x
2x be the generating function of the Catalan numbers 

Cn. The generating function of the numbers of fully commutative elements in G(d, d, n)
is given by

1 − (d− 1)x c(x)
1 − d x c(x) .

Corollary 5.6. The number of fully commutative elements in the group G(d, r, n) is equal 
to

n∑
k=0

C(n, k) |P(n, k)| = d(d− 1)
r

Fn,n−2(d) +
(

2d
r

− 1
)
Cn −

(
d

r
− 1

)
. (5.3)

6. Examples

(1) The group G(2, 2, n) is isomorphic to the Coxeter group of type Dn which has 
its own definition of fully commutative elements without invoking the embedding ι into 
G(2, 1, n). For example, the element s̃3s̃4s̃2s̃1 ∈ G(2, 2, 4) is fully commutative before 
being embedded into G(2, 1, 4), but we have

ι(s̃3s̃4s̃2s̃1) = s3s4s3s4s2s1,
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which is not fully commutative in G(2, 1, 4). The number of fully commutative elements 
of D4 (without embedding) is 48, whereas the number of fully commutative elements of 
G(2, 2, 4) (after being embedded) is 35.

(2) The group G(3, 1, 3) has 59 fully commutative elements. We list them below in 
packets and collections.

Packets Collections C(3, k)

P(3, 0)

c[3,2,1,3], c[3,2,1,32], c[3,2,1,3,2], c[3,2,1,3,2,3],
c[3,2,1,3,2,32], c[3,2,1,32,2], c[3,2,1,32,2,3], c[3,2,1,32,2,32],
c[32,2,1,3], c[32,2,1,32], c[32,2,1,3,2], c[32,2,1,3,2,3],
c[32,2,1,3,2,32], c[32,2,1,32,2], c[3,2,1,32,2,3], c[3,2,1,32,2,32]

1

P(3, 1)

c[3,2,3] = {s3s2s3, s1s3s2s3, s2s1s3s2s3}
c[3,2,32] = {s3s2s

2
3, s1s3s2s

2
3, s2s1s3s2s

2
3}

c[32,2,3] = {s2
3s2s3, s1s

2
3s2s3, s2s1s

2
3s2s3}

c[32,2,32] = {s2
3s2s

2
3, s1s

2
3s2s

2
3, s2s1s

2
3s2s

2
3}

c[3,2,1] = {s3s2s1, s2s3s2s1, s1s2s3s2s1}
c[32,2,1] = {s2

3s2s1, s2s
2
3s2s1, s1s2s

2
3s2s1}

3

P(3, 2)

c[3] = {s3, s1s3, s2s3, s1s2s3, s2s1s3}
c[32] = {s2

3, s1s
2
3, s2s

2
3, s1s2s

2
3, s2s1s

2
3}

c[3,2] = {s3s2, s1s3s2, s2s3s2, s1s2s3s2, s2s1s3s2}
c[32,2] = {s2

3s2, s1s
2
3s2, s2s

2
3s2, s1s2s

2
3s2, s2s1s

2
3s2}

5

P(3, 3) c[] = {[ ], s1, s2, s1s2, s2s1} 5

(3) The set of reduced words for the group G(3, 3, 3) is given in Appendix. To the 
canonical words, one applies the embedding ι : G(3, 3, 3) ↪→ G(3, 1, 3) and sees that 
the group has 17 fully commutative elements. We list them all below, where we write 
[i1i2 . . . ik] for s̃i1 s̃i2 · · · s̃ik ∈ G(3, 3, 3) and 〈i1i2 . . . ik〉 for si1si2 · · · sik ∈ G(3, 1, 3).

[] �−→ 〈〉, [1] �−→ 〈1〉, [2] �−→ 〈2〉,

[3] �−→ 〈3223〉, [12] �−→ 〈12〉, [13] �−→ 〈13223〉,

[21] �−→ 〈21〉, [31] �−→ 〈32231〉 = 〈32213〉, [213] �−→ 〈213223〉,

[232] �−→ 〈232232〉 = 〈3232〉, [312] �−→ 〈322132〉, [1232] �−→ 〈1232232〉 = 〈13232〉,

[2321] �−→ 〈32132〉, [12132] �−→ 〈213232〉, [13123] �−→ 〈322132232〉,

[23121] �−→ 〈321322〉, [23213] �−→ 〈321323〉.

The (3, 0)-packet has 6 collections, each of which has only one element:

P(3, 0) =
{
{〈32213〉}, {〈322132〉}, {〈32132〉}, {〈322132232〉}, {〈321322〉}, {〈321323〉}

}
.

There are 2 collections in the (3, 1)-packet, each of which has 3 elements:

P(3, 1) =
{
{〈3223〉, 〈13223〉, 〈213223〉}, {〈3232〉, 〈13232〉, 〈213232〉}

}
.

Recall that there is no (3, 2)-packet. There is only one collection in the (3, 3)-packet and 
it has 5 elements:
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P(3, 3) = {{〈〉, 〈1〉, 〈2〉, 〈12〉, 〈21〉}} .

All together we have

1 × 6 + 3 × 2 + 5 × 1 = 17.

Remark 6.1. Before taking the embedding G(3, 3, 3) ↪→ G(3, 1, 3), we may want to say 
that the element s̃2s̃3 = [23] is fully commutative. After the embedding, we have

[23] �−→ 〈23223〉,

and the element is not fully commutative.

7. Appendix: reduced words for G(3, 3, 3) without an embedding

In this appendix, we write [i1i2 . . . ik] for s̃i1 s̃i2 · · · s̃ik .

Lemma 7.1. The following relations hold in G(3, 3, 3):

[31232] = [13123], [32131] = [23213], [213121] = [131213], [213123] = [131231],
[213213] = [132132], [231213] = [123121], [231231] = [123123], [232132] = [132131],
[312131] = [121312], [312132] = [121321], [312312] = [123123], [321321] = [132132].

Proof. All the relations are derived from the defining relations. For example, we have 
the defining relation [313] = [131]. Multiplying both sides by s̃2s̃3 from the right, we 
obtain

[31323] = [31232] = [13123],

where we use another defining relation [323] = [232]. Thus we obtain [31232] =
[13123]. �
Proposition 7.2. A set of reduced words for G(3, 3, 3) is given by

[ ],
[1], [2], [3],
[12], [13], [21], [23], [31], [32]
[121], [123], [131], [132], [213], [231], [232], [312], [321],
[1213], [1231], [1232], [1312], [1321], [2131],
[2132], [2312], [2321], [3121], [3123], [3213],
[12131], [12132], [12312], [12321], [13121], [13123], [13213], [21312],
[21321], [23121], [23123], [23213], [31213], [31231], [32132],
[121312], [121321], [123121], [123123], [123213], [131213], [131231], [132132].
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Proof. We set an ordering 1 < 2 < 3 on the alphabet I = {1, 2, 3} and use the degree-
lexicographic ordering on the set of words on I. Then one can see that the words in the 
list above do not contain as a subword any of the leading words of the defining relations 
for G(3, 3, 3) and of the relations of Lemma 7.1. Further it can be checked that the list 
has all the words with this property. The number of words in the list is 54, which is 
exactly the order of G(3, 3, 3). Thus it follows from the Gröbner–Shirshov basis theory 
that the list is a set of reduced words for G(3, 3, 3). �
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