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Abstract. We construct Poincaré-Birkhoff-Witt (PBW) bases for the two-parameter quantum

groups corresponding to gln+1 and sln+1. For this purpose, we derive some useful commutation

relations, which hold in the positive part of the algebra, and show that the relations actually

determine a Gröbner-Shirshov basis.

0. Introduction

In this paper, we construct Poincaré-Birkhoff-Witt (PBW) type bases for the two-parameter

quantum groups Ũ = Ur,s(gln+1) and U = Ur,s(sln+1) introduced by Takeuchi (see [30, 31]). As

shown in [3, 4], these quantum groups are Drinfeld doubles and have an R-matrix. They are

related to the down-up algebras in [1, 2] and to the multi-parameter quantum groups of Chin and

Musson [10] and Dobrev and Parashar [12]. In the analogous quantum function algebra setting,

allowing two parameters unifies the Drinfeld-Jimbo quantum groups (r = q, s = q−1) in [13] with

the Dipper-Donkin quantum groups (r = 1, s = q−1) in [11].

For the one-parameter quantum group Uq(g) of a finite-dimensional simple Lie algebra g, there

is a sizeable literature ([9, 15, 19–29, 33, 34]) dealing with PBW bases. The approach taken in

many of these papers is to combine braid group actions and direct calculations, starting from the

defining relations, to build a PBW basis. An alternate approach has been developed by Ringel

([26–29]) and Green [15] using the Hall algebra associated to the Cartan matrix of g. In this

setting, the basis elements of the positive part of Uq(g) have an interpretation as indecomposable

modules for a certain finite-dimensional hereditary algebra.
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In the special case that r = q and s = q−1, our PBW basis for Ũ (or U) exactly coincides with

that in Ringel’s paper [29]. When both r and s are roots of unity, the commutation relations

developed here play an essential role in [5], where finite-dimensional restricted two-parameter

quantum groups ur,s(gln+1) and ur,s(sln+1) are constructed. As shown in [5], these restricted

two-parameter quantum groups are quasitriangular Hopf algebras and often are ribbon Hopf

algebras.

1. Gröbner-Shirshov bases

In this section, we briefly recall the Gröbner-Shirshov basis theory for associative algebras. We

refer the reader to ([6, 7, 17, 18]) for further details.

Let X be a set and let X∗ be the free monoid of associative monomials on X. We denote by

1 the empty monomial and by l(u) the length of a monomial u . Thus, l(1) = 0.

Definition 1.1. A total ordering ≺ on X∗ is called a monomial order if x ≺ y implies axb ≺ ayb

for all a, b ∈ X∗.

Fix a monomial order ≺ on X∗, and let AX be the free associative algebra over a field K

generated by X. Given a nonzero element p ∈ AX , we denote by p the maximal monomial

appearing in p under the ordering ≺. Thus p = αp +
∑

βiwi where α, βi ∈ K, wi ∈ X∗, α 6= 0,

and wi ≺ p. If α = 1, p is said to be monic.

Let S be a subset of monic elements of AX , and let I be the ideal of AX generated by S. Then

we say that the algebra A = AX/I is defined by S and denote the image of p ∈ AX in A under

the canonical quotient map also by p.

Definition 1.2. Assume S is a subset of monic elements of AX . A monomial u ∈ X∗ is S-

standard if u 6= asb for any s ∈ S and a, b ∈ X∗. Otherwise, the monomial u is said to be

S-reducible.

Proposition 1.3. [7, 18] Every p ∈ AX can be expressed as

(1.4) p =
∑

i

αiaisibi +
∑

j

βjuj ,

where αi, βj ∈ K, ai, bi, uj ∈ X∗, si ∈ S, aisibi ¹ p, uj ¹ p, and each uj is S-standard.
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The term
∑

j βjuj in expression (1.4) is called a normal form (or a remainder) of p with

respect to the set S (and also with respect to the monomial order ≺). As an immediate corollary

of Proposition 1.3, we obtain

Corollary 1.5. The set of S-standard monomials spans the algebra A = AX/I defined by the

set S.

Definition 1.6. A subset S of monic elements of AX is a Gröbner-Shirshov basis if the set of

S-standard monomials forms a linear basis of the algebra A = AX/I defined by the set S. In

this case, we say that S is a Gröbner-Shirshov basis for the algebra A = AX/I.

Let p and q be monic elements of AX with leading terms p and q respectively. We define the

composition of p and q as follows.

Definition 1.7. (a) If there exist a and b in X∗ such that pa = bq = w with l(p) > l(b),

then the composition of intersection is defined to be (p, q)w = pa− bq.

(b) If there exist a and b in X∗ such that b 6= 1, p = aqb = w, then the composition of

inclusion is defined to be (p, q)w = p− aqb.

(c) A composition (p, q)w is a composition of intersection or a composition of inclusion.

Corresponding to a subset S of monic elements and a word w ∈ X∗, there is a congruence

relation on AX defined as follows: For p, q ∈ AX , p ≡ q mod (S; w) if and only if p − q =
∑

i αiaisibi, where αi ∈ K, ai, bi ∈ X∗, si ∈ S, and aisibi ≺ w.

Definition 1.8. A subset S of monic elements in AX is closed under composition if (p, q)w ≡ 0

mod (S; w) for all p, q ∈ S, w ∈ X∗, whenever the composition (p, q)w is defined.

Lemma 1.9. [6, 7, 17] Assume S is a subset of monic elements in the free associative algebra

AX generated by X, and let A = AX/I be the associative algebra defined by S. If S is closed

under composition, and the image of p ∈ AX is trivial in A, then the word p is S-reducible.

As a consequence, we obtain
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Theorem 1.10. [6, 7, 18] Let S be a subset of monic elements in AX . Then the following

conditions are equivalent:

(a) S is a Gröbner-Shirshov basis.

(b) S is closed under composition.

(c) For each p ∈ AX , the normal form of p is unique.

2. Two-parameter quantum groups

Assume that Φ is a finite root system of type An with a base Π of simple roots. We regard

Φ as a subset of a Euclidean space Rn+1 with an inner product 〈 , 〉. Let ε1, . . . , εn+1 denote

an orthonormal basis of Rn+1, and suppose that Π = {αj = εj − εj+1 | j = 1, . . . , n} and that

Φ = {εi − εj | 1 ≤ i 6= j ≤ n + 1}.
Fix nonzero elements r, s in a field K such that r 6= s. Let Ũ = Ur,s(gln+1) be the unital

associative algebra over K generated by the elements ej , fj (1 ≤ j ≤ n), and a±1
i , b±1

i (1 ≤ i ≤
n + 1), which satisfy the following relations.

(R1) The a±1
i , b±1

j all commute with one another, and aia
−1
i = bjb

−1
j = 1,

(R2) ai ej = r〈εi,αj〉ej ai and ai fj = r−〈εi,αj〉fj ai,

(R3) bi ej = s〈εi,αj〉ej bi and bi fj = s−〈εi,αj〉fj bi,

(R4) [ei, fj ] =
δi,j

r − s

(
aibi+1 − ai+1bi

)
,

(R5) [ei, ej ] = [fi, fj ] = 0 if |i− j| > 1,

(R6) e2
i+1ei − (r−1 + s−1)ei+1eiei+1 + r−1s−1 eie

2
i+1 = 0,

ei+1e
2
i − (r−1 + s−1)eiei+1ei + r−1s−1 e2

i ei+1 = 0,

(R7) f2
i+1fi − (r + s)fi+1fifi+1 + rsfif

2
i+1 = 0,

fi+1f
2
i − (r + s)fifi+1fi + rsf2

i fi+1 = 0.

Let U = Ur,s(sln+1) be the subalgebra of Ũ = Ur,s(gln+1) generated by the elements ej , fj , ωj ,

and ω′j (1 ≤ j ≤ n), where

ωj = ajbj+1 and ω′j = aj+1bj .

These elements satisfy (R5)-(R7) along with the following relations:

(R1’) The ω±1
i , ω±1

j all commute with one another, and ωiω
−1
i = ω′j(ω

′
j)
−1 = 1,

(R2’) ωiej = r〈εi,αj〉s〈εi+1,αj〉ejωi and ωifj = r−〈εi,αj〉s−〈εi+1,αj〉fjωi,
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(R3’) ω′iej = r〈εi+1,αj〉s〈εi,αj〉ejω
′
i and ω′ifj = r−〈εi+1,αj〉s−〈εi,αj〉fjω

′
i,

(R4’) [ei, fj ] =
δi,j

r − s
(ωi − ω′i).

Now it follows from the defining relations that Ũ = U−Ũ0U+, where U+ (resp. U−) is the

subalgebra generated by the elements ei (resp. fi). In the standard way, (see [16] for example),

one can prove that Ũ has a triangular decomposition, that is, there is an isomorphism of vector

spaces U− ⊗ Ũ0 ⊗ U+ ' Ũ .

3. Commutation relations in U+

The commutation relations for U+, which we derive in this section, will determine a Gröbner-

Shirshov basis S for U+. Our relations are similar to those in Yamane’s paper [34], which

treats the special case r = q2, s = q−2. However, it should be noted that the definition of the

commutator in [34] differs from the one given below.

Fix r, s ∈ K× and assume that r+s 6= 0 (or equivalently, r−1 +s−1 6= 0). We define inductively

(3.1) Ej,j = ej and Ei,j = eiEi−1,j − r−1Ei−1,jei (i > j).

The defining relations for U+ in (R6) can be reformulated as saying

ei+1 Ei+1,i = s−1Ei+1,i ei+1,(3.2)

Ei+1,i ei = s−1ei Ei+1,i.(3.3)

Next we state the main result of this section.

Theorem 3.4. Assume (i, j) > (k, l) in the lexicographic order. Then the following relations

hold in the algebra U+ :

(1) Ei,jEk,l − r−1Ek,lEi,j − Ei,l = 0 if j = k + 1,

(2) Ei,jEk,l − Ek,lEi,j = 0 if i > k ≥ l > j or j > k + 1,

(3) Ei,jEk,l − s−1Ek,lEi,j = 0 if i = k ≥ j > l or i > k ≥ j = l,

(4) Ei,jEk,l − r−1s−1Ek,lEi,j + (r−1 − s−1)Ek,jEi,l = 0 if i > k ≥ j > l.

The proof of Theorem 3.4 will be achieved through a sequence of lemmas.
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Lemma 3.5. The relations

(i) Ei,jEk,l − Ek,lEi,j = 0 (i ≥ j > k + 1 ≥ l + 1),

(ii) Ei,jEk,l − r−1Ek,lEi,j − Ei,l = 0 (i ≥ j = k + 1 ≥ l + 1),

(iii) Ei,jej − s−1 ejEi,j = 0 (i > j)

hold in U+.

Proof. The relations in (i) are obvious.

For (ii), we fix j and l with j > l and use induction on i. If i = j, this is just the definition of

Ei,l from (3.1). Assume that i > j. Then we have

Ei,jEj−1,l = eiEi−1,jEj−1,l − r−1Ei−1,jeiEj−1,l

= r−1eiEj−1,lEi−1,j + eiEi−1,l − r−2Ej−1,lEi−1,jei − r−1Ei−1,lei

= r−1Ej−1,lEi,j + Ei,l

by part (i) and the induction hypothesis.

To establish (iii), we fix j and use induction on i. When i = j + 1, the relation is simply (3.3)

with j instead of i. Assume that i > j + 1. Then we have

Ei,jej = eiEi−1,jej − r−1Ei−1,jejei

= s−1 ejeiEi−1,j − r−1s−1 ejEi−1,jei

= s−1 ejEi,j

by (i) and induction. ¤

Lemma 3.6. In U+,

(i) Ei,jEj,l − r−1s−1Ej,lEi,j + (r−1 − s−1)ejEi,l = 0 (i > j > l),

(ii) Ei,jEk,l − Ek,lEi,j = 0 (i > k ≥ l > j).

Proof. The following expression can be easily verified by induction on l:

(3.7) Ei,jEj,l − r−1s−1Ej,lEi,j + r−1Ei,lej − s−1 ejEi,l = 0 (i > j > l).

We claim that

(3.8) Ej+1,j−1ej − ejEj+1,j−1 = 0.
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Indeed, we have ejEj,j−1 = s−1Ej,j−1ej as in (3.2), and using this we get

Ej+1,jEj,j−1 − r−1s−1Ej,j−1Ej+1,j

= ej+1ejEj,j−1 − r−1ejej+1Ej,j−1 − r−1s−1Ej,j−1ej+1ej + r−2s−1Ej,j−1ejej+1

= s−1 ej+1Ej,j−1ej − r−1ejej+1Ej,j−1 − r−1s−1Ej,j−1ej+1ej + r−2ejEj,j−1ej+1

= s−1Ej+1,j−1ej − r−1 ejEj+1,j−1.

On the other hand, we also have from (3.7)

Ej+1,jEj,j−1 − r−1s−1Ej,j−1Ej+1,j = s−1 ej [Ej+1,j−1]− r−1Ej+1,j−1ej ,

so that

(r−1 + s−1)Ej+1,j−1ej − (r−1 + s−1)ejEj+1,j−1 = 0.

Since we have assumed that r−1 + s−1 6= 0, this implies (3.8).

Now to demonstate that

(3.9) Ei,jek − ekEi,j = 0 (i > k > j),

we fix k, and assume first that j = k− 1. The argument proceeds by induction on i. If i = k + 1,

then the expression in (3.9) becomes (3.8) (with k instead of j there). When i > k + 1, then

Ei,k−1ek = eiEi−1,k−1ek − r−1Ei−1,k−1ekei

= ekeiEi−1,k−1 − r−1ekEi−1,k−1ei = ekEi,k−1.

For the case j < k − 1, we have by induction on j,

Ei,jek = Ei,j+1ejek − r−1 ejEi,j+1ek

= ekEi,j+1ej − r−1 ekejEi,j+1 = ekEi,j ,

so that (3.9) is verified.

As a consequence, the relations in part (i) follow from (3.7) and (3.9); while the ones in (ii)

can be derived easily from (3.9) by fixing i, j, k and using induction on l. ¤

Lemma 3.10. The relations

(i) Ei,jEk,j − s−1Ek,jEi,j = 0 (i > k > j)

(ii) Ei,jEk,l − r−1s−1Ek,lEi,j + (r−1 − s−1)Ek,jEi,l = 0 (i > k > j > l)
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hold in U+.

Proof. Part (i) follows from Lemma 3.5 (iii) and Lemma 3.6 (ii). For (ii), we apply induction on

l. When l = j − 1, part (i), Lemma 3.5 (ii), and Lemma 3.6 (ii) imply that

Ei,jEk,j−1 = Ei,jEk,jej−1 − r−1Ei,jej−1Ek,j

= s−1Ek,jEi,jej−1 − r−1Ei,jej−1Ek,j

= r−1s−1Ek,jej−1Ei,j + s−1Ek,jEi,j−1 − r−2 ej−1Ei,jEk,j − r−1Ei,j−1Ek,j

= r−1s−1Ek,jej−1Ei,j + s−1Ek,jEi,j−1 − r−2s−1 ej−1Ek,jEi,j − r−1Ek,jEi,j−1

= r−1s−1Ek,j−1Ei,j + (s−1 − r−1)Ek,jEi,j−1.

Now assume that l < j − 1. Then Ei,jel = elEi,j and Ek,jel = elEk,j by Lemma 3.5 (i), and so by

Lemma 3.5 (ii), we obtain

Ei,jEk,l = Ei,jEk,l+1el − r−1Ei,jelEk,l+1

= r−1s−1Ek,l+1elEi,j + (s−1 − r−1)Ek,jEi,l+1el

− r−2s−1 elEk,l+1Ei,j − r−1(s−1 − r−1)elEk,jEi,l+1

= r−1s−1Ek,lEi,j + (s−1 − r−1)Ek,jEi,l

by the induction assumption. ¤

Lemma 3.11. In U+,

(3.12) Ei,jEi,l − s−1Ei,lEi,j = 0 (i ≥ j > l).

Proof. First consider the case i = j. If l = i − 1, the above relation is just the defining relation

in (3.2). Assume that l < i− 1. By induction on l, we have

eiEi,l = eiEi,l+1el − r−1 eielEi,l+1

= s−1Ei,l+1elei − r−1s−1 elEi,l+1ei = s−1Ei,lei.
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When i > j, then by induction on j and Lemma 3.6 (ii), we get

Ei,jEi,l = Ei,j+1ejEi,l − r−1ejEi,j+1Ei,l

= Ei,j+1Ei,lej − r−1s−1 ejEi,lEi,j+1,

= s−1Ei,lEi,j+1ej − r−1s−1Ei,lejEi,j+1

= s−1Ei,lEi,j .

¤

The proof of Theorem 3.4 is now complete, because we have

(1) ⇐⇒ Lemma 3.5 (ii);

(2) ⇐⇒ Lemma 3.5 (i) and Lemma 3.6 (ii);

(3) ⇐⇒ Lemma 3.5 (iii), Lemma 3.10 (i), and Lemma 3.11;

(4) ⇐⇒ Lemma 3.6 (i) and Lemma 3.10 (ii).

4. Gröbner-Shirshov bases and PBW-type bases

In this section we determine a Gröbner-Shirshov basis and a PBW basis for the algebra U+.

This will be achieved by showing that the set of relations obtained in the previous section is

closed under composition. To simplify compositions of relations, we consider an algebra with

sufficiently many generators and (essentially) the same defining relations as the ones in Theorem

3.4, which will turn out to be isomorphic to U+.

Let E = {e1, e2, . . . , en} be the set of generators of the algebra U+. We introduce a linear

ordering ≺ on E by saying ei ≺ ej if and only if i < j. We extend this ordering to the set E∗

of monomials in E so that it becomes the degree-lexicographic order ; that is, for u = u1u2 · · ·up

and v = v1v2 · · · vq, then u ≺ v if and only if p < q or p = q and ui ≺ vi for the first i such that

ui 6= vi. Let S ⊂ AE be the set consisting of the following elements:

Ei,jEk,l − Ek,lEi,j if i > k ≥ l > j or j > k + 1,

Ei,jEk,l − s−1Ek,lEi,j if i = k ≥ j > l or i > k ≥ j = l,

Ei,jEk,l − r−1s−1Ek,lEi,j + (r−1 − s−1)Ek,jEi,l if i > k ≥ j > l.

The elements of S just correspond to relations (2), (3), and (4) of Theorem 3.4. Note that we may

take S to be the set of defining relations for the algebra U+, since S contains all the (original)
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defining relations (R5) and (R6) of U+ and the other relations in S are all consequences of (R5)

and (R6).

Now we introduce the algebra Û+. Let Ê = {Ei,j | 1 ≤ j ≤ i ≤ n} with the linear ordering ¿
defined by

Ei,j ¿ Ek,l ⇐⇒ (i, j) < (k, l) lexicographically .

The ordering¿may be extended to the set Ê∗ of monomials in Ê to give the degree-lexicographic

order. Let A bE denote the free associative algebra generated by Ê over K. Fix r, s ∈ K× with

r + s 6= 0 as before. Let Ŝ ⊂ A bE consist of the following elements for all (i, j) > (k, l) in the

lexicographic order:

Ei,jEk,l − r−1Ek,lEi,j −Ei,l if j = k + 1,(4.1)

Ei,jEk,l − Ek,lEi,j if i > k ≥ l > j or j > k + 1,(4.2)

Ei,jEk,l − s−1Ek,lEi,j if i = k ≥ j > l or i > k ≥ j = l,(4.3)

Ei,jEk,l − r−1s−1Ek,lEi,j + (r−1 − s−1)Ek,jEi,l if i > k ≥ j > l.(4.4)

The indices here are precisely the same ones as in Theorem 3.4. Then we define the algebra

Û+ to be the associative algebra generated by Ê with defining relations Ŝ.

Proposition 4.5. The algebra Û+ is isomorphic to the algebra U+.

Proof. It is easy to verify that the map φ : U+ → Û+, ei 7→ Ei,i, gives a well-defined algebra

homomorphism. For example, we have by (4.1) and (4.3),

E2
i+1,i+1Ei,i − (r−1 + s−1)Ei+1,i+1Ei,iEi+1,i+1 + r−1s−1Ei,iE

2
i+1,i+1

= Ei+1,i+1Ei+1,i − s−1Ei+1,i+1Ei,iEi+1,i+1 + r−1s−1Ei,iE
2
i+1,i+1

= s−1Ei+1,iEi+1,i+1 − r−1s−1Ei,iE
2
i+1,i+1 − s−1Ei+1,iEi+1,i+1 + r−1s−1Ei,iE

2
i+1,i+1 = 0.

Conversely, it is a consequence of Theorem 3.4 that the map ψ : Û+ → U+, Ei,j 7→ Ei,j , is a

well-defined algebra homomorphism.

Now the definition of the commutator (3.1) implies that (ψ ◦ φ)(ei) = Ei,i = ei for 1 ≤ i ≤ n.

We claim that φ(Ei,l) = Ei,l for i ≥ l. To see this, we fix l and use induction on i. If i = l, then
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φ(El,l) = φ(el) = El,l. If i > l, then it follows from (3.1), (4.1) and the induction hypothesis that

φ(Ei,l) = φ(eiEi−1,l − r−1Ei−1,lei) = Ei,iEi−1,l − r−1Ei−1,lEi,i = Ei,l.

Therefore, (φ ◦ ψ)(Ei,l) = Ei,l for 1 ≤ l ≤ i ≤ n, so that φ and φ are inverses of each other. ¤

Now we consider compositions of elements in Ŝ. To begin, we define

C1 = {(i, j, k, l) ∈ N4 | n ≥ i ≥ j = k + 1 ≥ l + 1 ≥ 2},

C2 = {(i, j, k, l) ∈ N4 | n ≥ i = k ≥ j > l ≥ 1},

C3 = {(i, j, k, l) ∈ N4 | n ≥ i > k ≥ j = l ≥ 1},

C4 = {(i, j, k, l) ∈ N4 | n ≥ i > k ≥ j > l ≥ 1},

C5 = {(i, j, k, l) ∈ N4 | n ≥ i > k ≥ l > j ≥ 1},

C6 = {(i, j, k, l) ∈ N4 | n ≥ i ≥ j > k + 1 ≥ l + 1 ≥ 2}.

Note that all the elements of Ŝ can be written in the form

Ei,jEk,l − εkl
ijEk,lEi,j + Xkl

ij ,

where

εkl
ij = r−1, Xkl

ij = −Ei,l if (i, j, k, l) ∈ C1,

εkl
ij = s−1, Xkl

ij = 0 if (i, j, k, l) ∈ C2 ∪ C3,

εkl
ij = r−1s−1, Xkl

ij = (r−1 − s−1)Ek,jEi,l if (i, j, k, l) ∈ C4,

εkl
ij = 1, Xkl

ij = 0 if (i, j, k, l) ∈ C5 ∪ C6.

For f, g ∈ Ŝ, the composition (f, g)w can occur only if

f = Ei,jEk,l − εkl
ijEk,lEi,j + Xkl

ij , g = Ek,lEp,q − εpq
kl Ep,qEk,l + Xpq

kl
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and w = Ei,jEk,lEp,q where (i, j) > (k, l) > (p, q) lexicographically. We see that

(f, g)w = −εkl
ijEk,lEi,jEp,q + Xkl

ij Ep,q + εpq
kl Ei,jEp,qEk,l − Ei,jX

pq
kl

≡ −εkl
ijε

pq
ij Ek,lEp,qEi,j + εkl

ijEk,lX
pq
ij + Xkl

ij Ep,q

+εpq
kl ε

pq
ij Ep,qEi,jEk,l − εpq

kl X
pq
ij Ek,l − Ei,jX

pq
kl

≡ εkl
ijε

pq
ij Xpq

kl Ei,j + εkl
ijEk,lX

pq
ij + Xkl

ij Ep,q

−εpq
kl ε

pq
ij Ep,qX

kl
ij − εpq

kl X
pq
ij Ek,l − Ei,jX

pq
kl mod(Ŝ; w).

With a careful analysis of the conditions on {(i, j), (k, l), (p, q)}, we find that there are 62 cases

to be considered. (See the table at the end of this section and also [9, 34].) In all the cases, it is

straightforward to check that (f, g)w ≡ 0 mod(Ŝ;w) is satisfied. For example, if (i, j, k, l) ∈ C4,

(k, l, p, q) ∈ C3, and (i, j, p, q) ∈ C1, then

i > k ≥ j = p + 1 ≥ l + 1 = q + 1,

and

(f, g)w ≡ −r−1s−1 Ek,lEi,l + (r−1 − s−1)Ek,jEi,lEp,l

− r−1s−1(r−1 − s−1) Ep,lEk,jEi,l + s−1 Ei,lEk,l

≡ −r−1s−1 Ek,lEi,l + s−1(r−1 − s−1) Ek,jEp,lEi,l

− r−1s−1(r−1 − s−1)Ep,lEk,jEi,l + s−2 Ek,lEi,l

≡ −r−1s−1Ek,lEi,l + s−1(r−1 − s−1) Ek,lEi,l + s−2 Ek,lEi,l = 0 mod(Ŝ; w).

The remaining cases are of the same level of difficulty to verify. Hence, we have the first part

of the next lemma, and the second part follows from the lexicographic ordering of the indices in

Theorem 3.4.

Lemma 4.6. Assume that r, s ∈ K× and r + s 6= 0.

(1) The set Ŝ is a Gröbner-Shirshov basis for the algebra Û+.

(2) The set of Ŝ-standard monomials is given by

B̂ = {Ei1,j1Ei2,j2 · · ·Ep1,q1 | (i1, j1) ≤ (i2, j2) ≤ · · · ≤ (ip, jp) lexicographically},

and B̂ is a linear basis of the algebra Û+.
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This brings us to the main result of the paper.

Theorem 4.7. Assume that r, s ∈ K× and r + s 6= 0. Then

(1) B0 = {Ei1,j1Ei2,j2 · · · Eip,jp | (i1, j1) ≤ (i2, j2) ≤ · · · ≤ (ip, jp) lexicographically} is a linear

basis of the algebra U+.

(2) B1 = {ei1,j1ei2,j2 · · · eip,jp | (i1, j1) ≤ (i2, j2) ≤ · · · ≤ (ip, jp) lexicographically} is a linear

basis of the algebra U+, where ei,j = eiei−1 · · · ej for i ≥ j.

(3) The set S is a Gröbner-Shirshov basis for the algebra U+.

Proof. The assertion in (1) follows from Proposition 4.5 and Lemma 4.6 (2). For (2), note that

B1 is exactly the set of S-standard monomials. By Corollary 1.5, the set B1 spans the algebra

U+. If we consider the root space decomposition U+ =
⊕

α∈Q+ Uα, with Q+ =
∑n

i=1 Z≥0αi, the

homogeneous space Uα is finite-dimensional, and the number of elements in B0 ∩ Uα is clearly

equal to B1 ∩ Uα for each α ∈ Q+. Since B0 is a linear basis of U+, the set B1 is also a linear

basis of U+. The last statement follows from the definition of a Gröbner-Shirshov basis. ¤

Remark 4.8. If we define inductively Fi,j to be

Fj,j = fj and Fi,j = fiFi−1,j − rFi−1,j fi (i > j),

and denote by fi,j the monomial fi,j = fifi−1 · · · fj (i ≥ j), then we have linear bases for the

algebra U− as in Theorem 4.7. Note that Ũ0 and U0 have obvious linear bases. All together and

from the triangular decomposition Ũ = U−Ũ0U+ (resp. U = U−U0U+) we have “PBW-bases”

for the algebra Ũ (resp. U).

5. Iterated skew polynomial ring structure

As applications of the previous results of the paper, we will show that the algebra U+ is an

iterated skew polynomial ring over K, and that any prime ideal P of U+ is completely prime (that

is, U+/P is a domain) when r and s are “generic” (see Proposition 5.5 for the precise statement).

Our approach is similar to that of [29], which treats the one-parameter quantum group case.

In this section we assume that r+s 6= 0 as before and that (k, l) < (i, j) always means “relative

to the lexicographic ordering”. Let U+
i,j be the subalgebra of U+ generated by Ek,l, (k, l) < (i, j).
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For each (i, j), 1 ≤ j ≤ i ≤ n, we define an automorphism ιi,j of U+
i,j by

ιi,j(Ek,l) =





r−1Ek,l if j = k + 1,

Ek,l if i > k ≥ l > j or j > k + 1,

s−1Ek,l if i = k ≥ j > l or i > k ≥ j = l,

r−1s−1Ek,l if i > k ≥ j > l

for (k, l) < (i, j). In order to see that ιi,j is well-defined, we may check the relations in Theorem

3.4 owing to Proposition 4.5. Note that there is nothing to prove concerning the relations in (2)

and (3) of Theorem 3.4. A case-by-case investigation shows that the above definition of ιi,j is

also compatible with relations (1) and (4) of Theorem 3.4. For example, consider relation (4),

Ei,jEk,l − r−1s−1Ek,lEi,j + (r−1 − s−1)Ek,jEi,l = 0

with i > k ≥ j > l. Applying ιp,q such that p > i ≥ q > j and q = k + 1, gives

ιp,q(Ei,jEk,l) = ιp,q(Ei,j)ιp,q(Ek,l) = (r−1s−1Ei,j)(r−1Ek,l) = r−2s−1Ei,jEk,l.

Similarly, we have ιp,q(Ek,lEi,j) = r−2s−1Ek,lEi,j and ιp,q(Ek,jEi,l) = r−2s−1Ek,jEi,l. Thus the

relation is preserved.

Now we define ιi,j-derivation ϑi,j on U+
i,j by

ϑi,j(Ek,l) = Ei,jEk,l − ιi,j(Ek,l)Ei,j =





Ei,l if j = k + 1,

(r−1 − s−1)Ek,jEi,l if i > k ≥ j > l,

0 otherwise.

It is easy to see that ϑi,j is indeed an ιi,j-derivation; that is, ϑi,j(uv) = ϑi,j(u)ιi,j(v) + uϑi,j(v)

for all u, v ∈ U+
i,j (cf. Lemma 3, p. 62 of [29]). With ιi,j and ϑi,j at hand, the next proposition

will follow immediately.

Proposition 5.1. The algebra U+ is an iterated skew polynomial ring whose structure is given

by

(5.2) U+ = K[E1,1][E2,1, ι2,1, ϑ2,1] · · · [En,n, ιn,n, ϑn,n].

Proof. Note that all the relations in Theorem 3.4 can be condensed into a single expression:

(5.3) Ei,jEk,l = ιi,j(Ek,l)Ei,j + ϑi,j(Ek,l), (i, j) > (k, l).
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Furthermore, Proposition 4.5 asserts that relations in (5.3) are all the relations needed to define

the algebra U+, which means U+ is an iterated skew polynomial ring with the structure given

by (5.2). ¤

The other result of this section requires an additional lemma.

Lemma 5.4. The automorphism ιi,j and the ιi,j-derivation ϑi,j of U+
i,j satisfy

ιi,jϑi,j = (r−1s)ϑi,jιi,j .

Proof. For (k, l) < (i, j), the definitions imply that

(ιi,jϑi,j)(Ek,l) =





s−1Ei,l if j = k + 1,

(r−1 − s−1)s−2Ek,jEi,l if i > k ≥ j > l,

0 otherwise.

On the other hand, for (k, l) < (i, j),

(ϑi,jιi,j)(Ek,l) =





r−1Ei,l if j = k + 1,

(r−1 − s−1)r−1s−1Ek,jEi,l if i > k ≥ j > l,

0 otherwise.

Comparing these two calculations, we arrive at the result. ¤

Now we obtain:

Proposition 5.5. Assume that the subgroup of K× generated by r and s is torsion-free. Then

all prime ideals of U+ are completely prime.

Proof. This follows directly from Proposition 5.1, Lemma 5.4 and Theorem 2.3 of [14]. ¤

6. Appendix

In this appendix, we display the table of conditions on {(i, j), (k, l), (p, q)} required for the

calculation of (f, g)w in Lemma 4.6. A row in this table with an entry a in column (ijkl), b in

column (klpq), and t1, t2, · · · , tm in column (ijpq) signifies that if (i, j, k, l) ∈ Ca and (k, l, p, q) ∈
Cb, then the sets that can contain (i, j, p, q) are Ct1 , Ct2 , · · · , Ctm .
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(ijkl) (klpq) (ijpq) (ijkl) (klpq) (ijpq) (ijkl) (klpq) (ijpq)

1 6 1 1 1 3, 4, 5

2 1 2 4 2 3, 4, 5

3 6 3 3 3 5
1

4 6
3

4 4
5

4 3, 4, 5

5 6 5 5 5 5

6 6 6 6 6 1, 3, 4, 5, 6

1 6 1 6 1 6

2 2 2 4 2 6

3 1, 4, 6 3 1, 4, 6 3 6
2

4 1, 4, 6
4

4 1, 4, 6
6

4 6

5 1, 3, 4, 5, 6 5 1, 3, 4, 5, 6 5 6

6 6 6 6 6 6
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