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WEYL GROUP MULTIPLE DIRICHLET SERIES
FOR SYMMETRIZABLE KAC-MOODY ROOT SYSTEMS

KYU-HWAN LEE AND YICHAO ZHANG

ABSTRACT. Weyl group multiple Dirichlet series, introduced by Brubaker,
Bump, Chinta, Friedberg and Hoffstein, are expected to be Whittaker co-
efficients of Eisenstein series on metaplectic groups. Chinta and Gunnells
constructed these multiple Dirichlet series for all the finite root systems using
the method of averaging a Weyl group action on the field of rational func-
tions. In this paper, we generalize Chinta and Gunnells’ work and construct
Weyl group multiple Dirichlet series for the root systems associated with sym-
metrizable Kac-Moody algebras, and establish their functional equations and
meromorphic continuation.

INTRODUCTION

Weyl group multiple Dirichlet series were introduced in the paper [3] by Brubaker,
Bump, Chinta, Friedberg and Hoffstein, and have been studied in their subsequent
works [4,BL[7]. These multiple Dirichlet series are defined for a finite root system
® of rank r and a number field F' containing the 2n-th roots of unity, and unify
many examples in number theory that have been studied previously on a case-by-
case basis, and are expected to be Whittaker coeflicients of Eisenstein series on
metaplectic groups. This expectation is now called an Fisenstein conjecture, and
the conjecture has been proven for the root systems of type A, [6]. Moreover, the
theory of Weyl group multiple Dirichlet series can be applied to the moments prob-
lem of the Riemann zeta function and Dirichlet L-functions. A nice survey on this
subject can be found in [9].

It is remarkable that there are two distinct constructions of these multiple Dirich-
let series. In the work of Brubaker, Bump and Friedberg [5[6], the local coefficients
are defined using the data from Kashiwara’s crystal graph [14]. More precisely, each
local coefficient is given as a sum of G(v) over the crystals v of the same weight,
where G(v) is a product of Gauss sums that are determined by the crystal graph.
The construction has been completed for most of the classical root systems.

The second construction is due to Chinta and Gunnells [I0LII]. They defined a
new Weyl group action on the field of rational functions in several variables. The
action involves Gauss sums and works for all the finite root systems in a coherent
way. By taking an average of the Weyl group action, they obtained a deformed Weyl
character and defined the local coefficients using the deformed character. The two
constructions are expected to be equivalent, and the equivalence in type A has been
established [6L12]16].
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Since Kac-Moody root systems naturally generalize finite root systems, it was
pointed out by Brubaker, Bump and Friedberg [5l[6] that multiple Dirichlet series
can be constructed for any symmetrizable Kac-Moody root systems. Indeed, in
this paper, we generalize Chinta and Gunnells’ construction to the root systems
associated with symmetrizable Kac-Moody algebras. So Weyl groups are infinite,
in general, and a root can have multiplicity bigger than one. Still, the results of this
paper show that the Kac-Moody multiple Dirichlet series have standard properties:
absolute convergence, functional equations and meromorphic continuation.

Nevertheless, the construction in the Kac-Moody case requires new ideas. To
generalize the action of the Weyl group, we have to separate the imaginary roots
from the real roots and work on a certain sublattice of the root lattice. Although it
may be that the field of Laurent series is more natural for the space of the action, it
is easily seen that it is not closed under the action. So it is necessary to consider the
space of formal distributions. The issue of convergence tells us that the whole space
of formal distributions is not closed under the action either. By carefully choosing
a subspace of the space of formal distributions, we define the Weyl group action
and generalize Chinta and Gunnells’s definition in the finite case. This enables us
to define the average function of the Weyl group action, and we use the function
to define the local coefficients of our Dirichlet series. Not suprisingly, the issue of
absolute convergence arises and becomes crucial at other places. Several lemmas
are proved to resolve the absolute convergence at those places. Finally, we provide
the details in the proof of the meromorphic continuation and functional equations
of our multiple Dirichlet series. In particular, we show how to obtain an overlap
between regions of analyticity before we apply Bochner’s Theorem. It turns out
that the continuation is not to all of h but to a convex subcone in the Tits cone
as a consequence of geometric properties of the action of the Weyl group on the
Cartan subalgebra.

It is expected that our multiple Dirichlet series would be related to a Whittaker
function up to a normalizing factor in the affine case. However, in the indefinite case,
the contribution coming from the imaginary roots can be much more complicated
for a Whittaker function, and it is beyond our comprehension at the present.

Similarly, the multiple Dirichlet series considered in this paper seems to be rel-
evant to the moment problem in the affine case Dfll). In a recent paper [§], Bucur
and Diaconu considered the fourth moment of quadratic Dirichlet L-functions over
rational function fields. They constructed a multiple Dirichlet series, where the
group of functional equations is the affine Weyl group Dfll). They adopted the
same averaging method as in this paper, i.e. Chinta and Gunnells’s method, and
used a deformation of the Weyl-Kac denominator function. One can see the simi-
larity between their construction and ours. (See the remark at the end of this paper
for more details.)

This paper consists of five sections. In the first section, we fix notation for Kac-
Moody root systems and for Hilbert symbols, power residue symbols and Gauss
sums. In Section 2, we show that the Weyl group action on the field of rational
functions, defined by Chinta and Gunnells, extends to the case of Kac-Moody root
systems and to the set of formal distributions, and we consider a deformed Weyl-
Kac character. In Section 3, the local coefficients of the multiple Dirichlet series
are defined using the deformed character, and some estimations for the size of the
local coefficients are made. In the next section, we review results and computations
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WEYL GROUP MULTIPLE DIRICHLET SERIES 599

in the rank one case and prepare for a proof of functional equations. In the last
section, we collect the results of the previous sections, define Weyl group multiple
Dirichlet series from the local coefficients via twisted multiplicativity, and prove
functional equations and meromorphic continuation of the multiple Dirichlet series.

1. PRELIMINARIES

We refer the reader to [I3] for a basic theory of Kac-Moody algebras. Let
A = (aij); =1 be an r x r symmetrizable generalized Cartan matrix of rank [
and (h, A, AV) be a realization of A, where A = {ay,...,a,} C h* and AY =
{h1,...,h.} C bhsuch that a;(h;) = a;5,4,5 =1,...,r. Let g(A) be the symmetriz-
able Kac-Moody algebra associated to (b, A, AY). Then we have dimbh = 2r — [.
We denote by ® the set of roots of g(A) and have ® = &, U P_, where O (resp.
®_) is the set of positive (resp. negative) roots. Denote by ®™ (resp. ®™) the set
of real (resp. imaginary) roots, and put ®%f = & N &, and " = &M N P,. We
fix a decomposition

(1.1) A = diag(ey, - ,€.)B,

where ¢; are positive rational numbers and B = (b;;) is a symmetric half-integral
matrix, i.e. b;; = bj;, bi; € Z and b;; € %Z. We will write b; = b;;. As in
Chapter 2 of [I3], we define a standard symmetric bilinear form ( , ) on h* such
that (Oti,Oéj) = bij for Z,] = 1, N &

We extend the sets A and AV, and choose bases

AU{op |k=1,....,r—=1} and AYU{dy|k=1,...,7r =1}

for h* and b, respectively, such that o;(dy) =0 or 1, dx(h;) = 0 or 1 and 0y (dy/) =
0 for j =1,...,7 and k, ¥ = 1,...,r —[. Let PV be the Z-span of the basis
AVU{dy | k=1,...,7r—1},and let hp = R®@ PV C h. Weset P = {\ € h*|\(PY) C
Z} and Py = {\ € h*|A(PY) C Z>¢}. Define w; € h* (i =1,...,7) by wi(h;) = d;j,
wi(dy) =0,7=1,....,r,k=1,...,r—land put p= >\ | w;. Slmllarly, we define
wleh(i=1,....r) by aj(w)’) = d;j, ok(w))=0,7=1,...,r, k=1,...,r =1
and put p¥ = >7_ wy. Define Q = @;_, Za; and Q1 = @,_,(Z>0);. We have
the usual ordering on P (and on Q) given by A > p < A —p € Q4. For 5 € Q, we
write 8 = kyag + -+ - + ko, and define d(B) = B(pY) = k1 + -+ + ky.

Let W be the Weyl group of g(A) generated by the simple reflections o; €

GL(h*). We have the standard actions of W on § and on h*. For w € W, we
let ®(w) = &4 Nw '®_ C 7. We denote by ¢(w) the length of w, and define
sgn(w) = (=1)“), If £(oyw )— £(w) + 1, then

(1.2) ®(ow) = &(w) U {w oy},
and if £(wo;) = ¢(w) + 1, then
(1.3) O (wo;) = 04(P(w)) U {a;}-

Let n > 1 be an integer and let F' be an algebraic number field that contains the
group uay, of 2n-th roots of unity. Let S be a finite set of places of F' containing
the archimedean ones, all those which are ramified over Q and enough others so
that the ring og of S-integers is a principal ideal domain. We embed og into
Fs = [],cs Fv along the diagonal. We choose a nontrivial additive character
¥ of Fg such that ¥(xzog) = 1 if and only if x € o0g. Let S, be the set of
archimedean places in S, and Sg, be the set of the nonarchimedean places so
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that S = S, U Sgn. We denote Fo = Hvesm F, and F3, = Hvesﬁn F,. Then
Fs = Foo X Fan. Let (z,y)s = [[,e5(Tv, Yo)v be the S-Hilbert symbol, where we
take the same convention on ( , ), as in [4], i.e. it is the inverse of the symbol
used in [I7]. If ¢,d are coprime elements of og, let (§) denote the n-th power
residue symbol. Then we have the reciprocity law (5) = (d,c)s (%) We fix an
isomorphism € : u,, — {# € C* | 2™ = 1} and will suppress this isomorphism from
the notation. If ¢ is any positive integer and a,c € 0g, we define the Gauss sum

o= 3 (il)w ().

d mod ¢

For x,y € (F&)" and for each i, we define

. 2bs;
(1'4) (XaY)gi = (wivyi)% H(xivyj)s )
J>1

where x = (z1,--+ ,2,) and y = (y1,- -+ ,¥»), and set (x,y)5 = H;Zl(x,y)gi. We

also define
T T bi y bi T, Qbij y Qbij
s =I1(5) (2) T() (2)
5(%.) E Yi Ti H Yj Ly

1<j

HIS (G R RS (6

2 = d an his - d

y i1 \Yi y i1 \Yi

when x,y € (FJ)" N (05)". Let Q = 05 F"", where F'" is the subgroup of n-th
powers in Fg, and let Mp(Q2) be the space of functions ¥ : (Fg)" — C such that
VU(ec) = (e,c)8 ¥(c) when e € Q" and ¢ € (FS)". If r =1 and B = (t) we simply
write Mp(Q) = M:(Q).

2. WEYL GROUP ACTION ON FORMAL DISTRIBUTIONS

In this section, we generalize the Weyl group action on the field of rational
functions, defined by Chinta and Gunnells, to the case of Kac-Moody root systems
and to a subspace of formal distributions. Since the subspace contains all the
monomials, we will be able to define f|,(x) for a general formal distribution f and
a Weyl group element w whenever the resulting expression is absolutely convergent.
In particular, the Weyl group action on the deformed Weyl-Kac character will be
well defined.

Let g be a positive integer > 2. We consider a collection of complex num-
bers (i) € C, indexed by the integers modulo n, and such that v(0) = —1 and
v(@)y(—i) =1/q if i 0 mod n. We also define

. n f o € ore
— ged(n,(a,q)) 1 )
m() { n if o € i,

Let A = C[Q] be the group algebra of the lattice Q. An element f € A can be

written as f = > 5., c(B)x? (c(B) € C) with almost all ¢(3) zero. We identify
A with Clzi!, -,z via x* — z;. We also let B = C[[zy,---,z,]] be the
ring of power series. More generally, let £ = C[[zT,--- ,2¥]] be the set of formal
distributions, which we identify with the set of elements 5. c(5) x4, ¢(B) € C,

so that we have A C £ and B C £.
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WEYL GROUP MULTIPLE DIRICHLET SERIES 601

Assume f; = ZBEQ ci(B)x? € £ (1 <i < k). We say the product f; --- fy is
defined if for any v € @, the sum

C(v) = Z c1(B1) - cr(Br)

Bit+Br=y
Bi€Q 1<i<k

is absolutely convergent. If this is the case, we define

frofr=Y_CHx.
vEQ
It follows that if a product is defined in &, it is independent of the order of its
factors. For example, we have

Xkai
<Z ka) Z 2_k -9 Z Xko(i.

keZ k>0 kez

However, the following product is not defined:

(Z Xkai> (1 _ Xai) Z Xkai

kEZ k>0

The use of formal distributions are common in the theory vertex operator algebras.
For more details on formal calculus, see, e.g. [15, Chapter 2].

We shall say that f € € is invertible if f € Blzy*, - ,2;'] € &, and f is
invertible in the ring B[z, -,z ']. Tts inverse in this ring will be denoted f~!.
For example, 1 — z; " is invertible, and its inverse is > po, —a¥ (not S5, z;%).
Let {fi(x)}ier be a family of formal distributions. We define the sum ), fi(x) if
the coefficient of each x? in the sum is an absolutely-convergent series of complex
numbers.

Let & be the subspace of £ defined by
€ ={f =2 cB)x" €& le(B)l < q""}.
B

Here |c(8)] < ¢*® means that there exists a positive real number A such that
le(B)| < Ag*P) for any B € Q. Obviously, this subspace contains all the monomials;
this is the subspace where the action of the Weyl group W is always convergent.
For an element f € &, denote

1) = [e(B)] 7, i fx) = e(B) x°.
BEQ BEQ
Trivially, f € £ if and only if |f| € £&’. Obviously A C &'. We write B/ = BN ¢&'.
Given f = ZBEQ c(B)xP € &, wesay B € Qis a lower bound for f if ¢() # 0 implies
B <. Tt is easy to see that f has a lower bound if and only if f € B[z}, -+, 1]
Let Q' C @ be the sublattice of Q generated by m(a)a (« € @), namely
Q' = spang{m(a)a | a € &} = spany{m(a)a | a € *},

by the definition of m(«a). It is easy to see that Q' lies between n@ and @ and is a
sublattice of @. It is also not hard to see that it is invariant under the action of W
on @, by noting that m(wa) = m(«) and that ®™ is invariant under W. Let v :
Q@ — Q/Q’ be the projection and define the subspaces Sé ={fe& | v(supp(f)) C
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602 KYU-HWAN LEE AND YICHAO ZHANG

{B}} c & for B € Q/Q’. Similarly B/B =BnN 5[’3, hence Bj and &) are defined, and
&= EBﬁEQ/Q, 5&. We shall need a lemma on Q.

Lemma 2.1. (1) For any 1 <1i,5 <r, we have
2ma) (0, )
m(o) (e, o)

(2) The lattice Q1 = spang{m(a;)e; : 1 < i <r} is W-invariant; hence Q' = Q1.
(8) For any B € Q and 1 <i<r, B(h;) € m()Z .

e Z.

Proof. (1) We fix any prime p and denote v, the valuation at p. Assume v, ((c;, a;))
= t;, vp((aj,;)) = t;, and v,(n) = s. Since all quantities are integers, we have
tistj, s € Z>o. Now

vp(m(ey;)) = s —min{t;, s} and v,(m(a;)) = s — min{t;, s}.

Since 2(wy, crj) is divisible by both (o, o;) and (aj, o), we have v,(2(a;, @j)) =
k > max{t;,t;}. What we are trying to show is t; — min{¢;, s} < k — min{¢;, s},
which is obvious by dividing it into two cases: t; < s and t; > s.

(2) It suffices to prove that o;(m(e;)a;) € Q1 for any ¢,j. It holds trivially if
1 =j. Now assume i # j. By explicit calculations,

2m(ay) (v, o)
m(a;) (e, o)

which is in @7 by part (1). Hence @ is W-invariant, and by the definition of real

roots, Q' = Q1.

(3) Tt is enough to show this for the generators of @)'. Since Q1 = @', we need
only to prove it for the generators of @1, in which case this is nothing but part
(1). O

aj(m(a;)a;) = m(a;)o; — m(aj)ay,

We write x = (21,...,2,) and define a change-of-variable formula by (o;x),; =
(qz;)~ %z, for a simple reflection o; € W, where A = (a;;) is the generalized
Cartan matrix. One can check that this definition extends to the whole group W.
For B =Y kia; € Q and wx = (y1,...,¥y,), w € W, we define (wx)? = yfl oy
Then we have

(2.2) (wx)? = g BT for w e W

In particular, we obtain (o;x)? = (qa;)~PP)x8,
In the rest of this section, we fix A € P,. We define a shifted action of W on @
(treating @ as a set) by

Uzﬂzo—l(ﬂ_A_p)—’_)‘—’_pa Ber i:]-a"'aT'
For any 8 € @), we set
i (B) = wi(B) = (A + p = B)(hi), i

1,...,m.

Then we have

(2.3)

wi(B)=pi(0)=pB(hi), 0i-B=pF4+u(B)a; = oiB+pi(0)as, pi(o;-B) =—pi(B),
oi-(B+y)=o0i-B+ory, and pi(B+7) = pwi(B) —v(hi).
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Now we define the action of W on £’. First, fix a generator o; € W and put
m = m(«;) for the moment. For an integer k, we denote by [k],, the largest multiple
of m that is smaller than or equal to k. We define, for any 5 € @Q,

Pp.a(x) = (@x*) @ (1 1/g) Y (g™ 'x"*)*  and
k=0
Qp.4(x) = 1(bigsi(8))g" P (1 - ") _(a" e
k=0

Note that Pg ;(x) and Qg ;(x) belong to &;.

Remark 2.4. The definitions of Ps; and Qg ; are slightly different from those in
[11], but the definition of the action of o; will be the same as in [I1].

Definition 2.5. For § € Q and each i = 1,...,r, we define
(xP30:)(x) = Ppi(x)x” + Qp.i(x)x7P.

Moreover, we extend it to £ by

> eB)x? || oix) =Y c(B) (xP|roi) (x).

BeQ \ BeQ
Finally, if f € & and w =0, - - - 0, € W, we define
fixw(x) = flxoi, [xai, - [aoi, (x).

We will show that the above definition indeed defines an action of W on &’.
In particular, (xﬂ | Aw) (x) will be well defined, and the following definition has no
ambiguity:

Definition 2.6. If f(x) =3 5., c(B)x? € &, then for any w € W, we define
Fiaw(x) = 3 e(8) (x|aw) (),
BEQ
provided the sum on the right-hand side is absolutely convergent.
Now we begin to prove that the action of W on &£’ is well defined. It is easy

to see that for any 3 and i, x®|y0;(x) € £'. However, this is not enough for our
purpose and we need to prove more:

Lemma 2.7. If f € &', so is flxo; for anyi=1,...,r

Proof. We need to show that in the expression of f|yo;(x), all coeflicients converge
absolutely, and the resulting distribution is in £’.
Put m = m(a;) and assume f(x) =3 5., c(B) x?. By definition,

f|)\0i(x) = Z C(B)XB(]_ _ q—l)(qx )[Mz(,@)]m Z(qm—lxmai)k
B k=0
+ Y e(BXT Py (b (8))g D (g X
B k=0

+ (—1)20(6))(‘716,7(()1/%(5)) Hl(ﬁ) mz m—1 mal
k=0

B
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604 KYU-HWAN LEE AND YICHAO ZHANG

For any v € @, denote

L(v) = {(kB) | B+ ([i(B)m +mk)a; =,k € Z>0,8 € Q},
L(y) = {(k,B) | oi-B+mhka; =7,k €Lz, B € Q},
IS(V) = {(kvﬂ) ‘ O—i'ﬂ+m(k_1)ai:Py’kEZZOaﬂeQ}'

It is easy to see that in each set, k and 8 determine each other. Then the coefficient
of x7 in f|xoy(x) can be written as ¢1(y) + ca(y) + ¢3(7y), where

a() = Y eB)(1—g gl Bmglm-Dk,
(k,B)EIL1(7)

() = Y dB)bip(8))g P g IR,
(k,B)EI2(7)

() = > (~DelByybimi(B))g g B glmIE,

(k,B)EL3(7)
We denote c(7), for j = 1,2,3, as the one obtained from c;(v) by replacing all
terms in the sum with their absolute values.
We now prove cj(y) < co and ¢j(y) < q*™) simultaneously. Here the former
gives f|ao(x) € € and the latter implies that it also belongs to £, since |¢;(y)| <

().
J

If j =1 and (k, B) € Li(7), we have 8 + ([ui(8)]m + mk)a; = v. Since we have
le(B)| < q?B) = 4=l (B)lm=mk e obtain

() <Y ¢" I < gt
k=0

Similarly, we can deal with the case j =2 and j = 3. O

Remark 2.8. The proof of Lemma 2.7 actually shows that the k-multiple sum for
the coefficient of X in f|x0y, |04, - - - |04, (X) is absolutely convergent for each .
To see this, we first replace f with |f|, and at each step of applying one simple
reflection, we replace all ¢;(7)’s by ¢}(7)’s as in the proof. At each step we have
an element in £ with all coefficients positive, and in the end we have an element
in £, say g. On the other hand, the sum for any coefficient in any of the resulting
products should be absolutely bounded by the corresponding coefficient in g, hence
absolutely convergent.

Lemma 2.9. (1) Let w € W. Then f(x) € £ if and only if f(wx) € &', and
f(x) € & if and only if f(wx) € &.

(2) Let f1 € &), fo € &' and assume |fi||f2]| € E'. Then for any i, we have
(2.10) (f1f2)roi(x) = fi(oix)(f2]r0i) (%).

In particular, this holds if f1 or fo is a monomial.

Proof. For (1), we only need to prove one direction from each statement. By the
definition of a change of variable, if f(x) =>4 c(B)x5,

Flwx) =" cu(B)x? = c(wp)g? P~ IxP.
B B
Then the coefficients of f(wx) satisfy

lew(B)] = |c(w5)|qd(5—w6) < qd(wﬁ)qd(ﬁ—wﬂ) — qd(ﬂ)_
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WEYL GROUP MULTIPLE DIRICHLET SERIES 605

Hence the first statement is true. The second statement is now obvious, since @’ is
invariant under the action of W.

For (2), we first prove the case when f; is a monomial. Let m = m(a;). The
assumption |fi||f2| € &’ is valid and both sides of (ZI0) are defined. By the
definition of the action of o, it suffices to assume that f, is also a monomial. Let
f(x) =x% B € Q and fy(x) = x*. Then by Lemma 21l [23) and the fact that
n|b;ym, it is easy to see that

o (B+a)=0B+0; wi(B + a) = pi(a) — B(hy),
Y(ipi (B + @) = v(bipi(a)), [11: (B + @)l = [pi(@)]m — B(hi).

Since we have (0;x)? = (gx)~Bhi)xP = ¢=B(hi)x78 e obtain

(x7F300) (%) = Ppai (X7 + Qg i(x)x7 0+

(qx )[Nr(a)]m_ﬁ(h) 1/q Z m—1 XM k B+a
k=0

+’7(bz,uz(04)) i (a)— B(h)(l_ Z m—1 XMt k aiBJraiu
k=0

= (aix)ﬁPaﬁi(x)xa + (aix)ﬁQaﬁi(x)x e
= (0:%)° (x*|x03) ().

Let us consider the general case. Assume

fi(x) = Z Cl(ﬂ)xﬁv fa(x) = Z 02(5)Xﬂa and  (f1f2)(x) = Z 0(5)3{6-

BeQ’ BEQ BeQ
Formally,

(fif)hoi(x) = > e(B)(x"]xai)(x)
BeQ

Y- alB)ea(Be) (X% r0i(x)
B1,82€Q
= Y alBe(b) (o) x%(10i(x)
B1,82€Q
f1(0iX)f2\,\0i(X)7

by the monomial case we just proved. What is missing in the calculation above
is the well-definedness of the product in the last line. However, by the assump-
tion that |fi||f2] € &£ and elementary calculations, we can see that all coeffi-
cients in this product are absolutely bounded by the corresponding coefficients in
(If1]1f2])Ixoi(x), which belongs to £ by Lemma 2.7 Hence the lemma follows. O

Proposition 2.11. Let W be the Weyl group of the symmetrizable Kac-Moody root
system ® with symmetrization [LI)). The action of o;’s on &' is compatible with
the defining relation of W; that is, the action of W is well defined on &'.

Proof. The group W is a Coxeter group. More precisely, W is generated by o;
(i = 1,...,r) and the defining relations are 0? = 1, (0;0;)™4 = 1 for 1 < i #
j < r, where m;; = 2 if a;ja;; = 0; my; = 3 1f aijaj; = 1; my; = 4if azja;; = 2;
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mi; = 6 if a;ja5;, = 3; my; = oo if a;jaj;, > 4. Here 2°° =1 for any x by notational
convention. Therefore, we need only to consider the following four cases:

aij =0, aj; =0, b; and b; are arbitrary;

a;;j =—1, a; =—1, b = bj;

A5 = _17 Qj5; = _2, bz = Qb],

Aij = _17 Q5 = _3, bz = 3b]

We need to verify the relation x?|y0? = x” for each i, and then we need to
check in each of the four cases whether the action of the generators o; and o; is
compatible with the defining relation. It is obvious that we have a very similar
situation as in the finite case (Theorem 3.2 of [I1]). Roughly speaking, we have to
verify the same identities on P’s and Q’s as Chinta and Gunnells did therein (up
to a slight modification caused from our modification on the P’s and Q’s). We will
make this precise and reduce our verification to theirs.

Recall the notation A = C[Q] C &’. Consider the multiplicative set S in A
generated by the set {1 — ¢~ (wx)™% :w € W,1 < i <7}, and let S™1 A be the
corresponding localized ring, namely

STTA=A[(1 — g™ Hwx)™*) L iwe W, 1 <i <7l

On the other hand, we consider the following ring inside £’:
R=A Z(qmi*l(wx)miai)k rweW,1<i<r
k=0
Let us first verify that R is indeed a ring, that is, all finite products in R are defined
and belong to £’. The generators are all of the form

fal Zq—k kmid(8) ykmiff

Then a general finite product (i.e., a monomial in R) is of the form

9() fa,.0, (%) fa0 (%), g(x) =) c(B)x’ € A.

B

The summation in the coefficient C(vy) of x7 in this product is absolutely bounded
by

Z ‘C(ﬂ)|qfkr-~szqd(’y)*d(ﬁ)

Bk, ki >0
Btkimi, Bit-tkimg Bi=

— Z Z \e(B)|gFr kg —d(B)

k1, ki >0
kimgy B1+-+kimi, Bi=y—f

< Z Z \C(B)|q_k1_'”_qud(7)_d(6)

B ki, k120

< Z ‘ d(’Y)

< q ( ",
since g € A and ¢(5) = 0 for almost all 5. Therefore R is a ring.
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Now consider the inclusion A < R. Since all elements in S are invertible in R
under such inclusion, there exists a unique injective ring homomorphism S~'A —
R, which is compatible with the inclusion. (Actually, this is an isomorphism.) Tt
follows that any identity in S~'.4 has a counterpart in R. In particular, all those
identities of P’s and Q’s in S~ A, verified by Chinta and Gunnells, can be carried
over here in R. Note that their P’s and Q’s in S~'.4 have the images that are
essentially equal to our P’s and Q’s in R. (Notice that our minor modification on
P’s and Q’s, which is just a redistribution of some monomials to make them belong
to &), does not give rise to any problem.)

Consequently, the compatibility of the W-action on monomials follows from that
of the finite case, and we refer the reader to Chinta and Gunnells’ computations in
Theorem 3.2 of [I1]. O

Remark 2.12. With the above theorem established, we recall Definition and
note that the formal distribution (f| w)(x) is well defined for any w € W and
f € & if it is absolutely convergent. However, as mentioned in the introduction,
this definition does not give an action on the whole space £.

We denote the multiplicity of & € ® by mult(«) and define

(2~13) A(x) = H (1 _ qm(a)d(a)xm(a)a)mult(a)
acdy
and D(x) = H (1 — gm(@)d(@)—1ym(@)aymult(a)
acd

Note that A(x), D(x) € By.

Lemma 2.14 (Compare with Lemma 3.3 in [11]).

(1) The formal distribution A(wx) is invertible in € for each w € W, and we
have

where B =73 cq () M)
(2) Let j(w,x) = A(x)/A(wx). Then the function j(w,x) satisfies the cocycle
relation

jlww', x) = j(w, w'x)j(w',x)  forw,w €W
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Proof. (1) Since m(wa) = m(a) and mult(wa) = mult(a) = mult(—a), we have

A(wx) = H (1 _ qm(a)d(a)(,wx)m(a)a)mult(a)

acd
_ H (1 _ qm(a)d(w7la)xm(a)(wfla))Inult((y) (using (m))

acd
_ H (1 _ qm(a)d(w_la)xm(oc)(w_loc))mu]t(a)

ac®
w—lacd_
% H (1 _ qm(a)d(wfla)xm(a)(wfla))mult(a)
Q€D
wlagd,

_ H (1 _qm((y)d(a)xm(o{)a)mult(a) H (1_qm(a)d((y)Xm(a)oz)mult(a)

acd_ Q€D

waEd waEd |
_ H (1_qu(oz)d(a)xfm(oz)a)mult(a) H (1_qm(a)d(a)xm(a)a)mult(a).

aEd(w) €Dy

waed

It follows from ®(w) C @™ that mult(a) = 1 for each a € ®(w), and we obtain

A(wx) = H — g~ m@dle)g—mla)a | A (x),
aced(w)

Since |®(w)| = £(w) < oo, we see that A(wx) is invertible in €. Now we have
A

(x) _ m(a)d(a) om(a)a _ d(B8) B
A(’LUX) - H _q X - Sgn(w)q X )

acd(w)

where 8= 3" cq ) m(a)a.
(2) It is straightforward to verify the identity, using the definition of j. It can
also be proved directly using part (1). a

We need the following lemma to show that some elements to be defined later
belong to B.

Lemma 2.15. Let A€ PL and B € Q.
(1) The function (wx)~?j(w,x)(x|xw)(x) is an element of B for w € W.
(2) For any w € W, the lattice point § = Y, w) YV IS @ lower bound for
J(w, x)(1xw)(x).

Proof. We prove (1) and (2) simultaneously using induction. If w = 1, there is
nothing to prove for both (1) and (2).
Assume that £(o;w) = ¢(w) + 1. Then, using Lemma [214] (2), we obtain

7€P(

(owx) P j (0w, x)(x° |roiw) (x)
= (inx)_ﬁj(ai,wx)j(w,x) [(P@i(x)xﬁ + Qﬁ)i(x)x‘”'ﬁ) |>\w}
—(oiwx) TP g™ (wx) ™D j (w, x) [Py i (wx) (x| \w) + Qpi(wx) (x7 7 [yw)] .
We first consider the term having a P factor. By induction, we have

(wx) ™7 j(w, x) (x"|yw)(x) € B
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WEYL GROUP MULTIPLE DIRICHLET SERIES 609

and we need only to consider
(oywx) P (wx) ™ (@)% (3 ) s BNm oy @i (4% ) P
— qﬁ(hi)(wx)7Jiﬁ+m(ai)ai+[Hi(ﬁ)]1n(ai)ai+ﬁ

qﬁ(hi) (wx)ﬁ(hi)ai +m(ai)ai+[pi(0)=B(hi)lm(a, @i
‘We see that

B(hi) + m(es) + [1:(0) = B(hi)lm(ar)
= m(a) + [1:(0) = B(hi)lm(ar) = (1i(0) = B(hi)) + 1s(0) > p1:(0).
Since w™ta; > 0 by ([L2) and p;(0) > 1, we have proved that the term having a

P factor is an element of B. Putting 5 = 0, we also prove, by induction, that the
term having a P factor in this case has a lower bound

w_lai—i- Z B = Z B.
BED(w) BED(o;w)

Now we consider the term having a Q factor. Again by induction, we need only
to consider

(inx)fﬁ(wx)m(m)ai (wx)*m(ai)ai (wx)‘”'ﬁ — qﬁ(hi)(wx)*ﬂiﬁ‘i’ﬂi'ﬁ
= qﬁ(hi)(wx)m(O)ai,

and see that the term is an element of B as well. Putting 8 = 0 again, we have the
same lower bound as above. This completes the induction. ([l

Since A € Py, we have p;(0) > 0 and consider the sum

s(6A) = D (w, x)(1w)(x).

weWw

Lemma 2.16. s(x,\) is an element of B.

Proof. Lemma says that we only need to show that s(x,\) is well defined.
Consider any v € Q. It is clear from Lemma that if ¢(w) is big enough, then
our lower bound obtained there will be large enough to exclude the x” term in
J(w,x) (1] xw)(x). In other words, only finitely many terms in s(x, \) contribute to
the coefficient of x7, hence the series is absolutely convergent. O

Note that A(x) is a unit in 5. We define
h(x;A) = A(x) " 's(x,0) = Ax) 7Y Gi(w,x)(1)w)(x) € B and

weWw
N(x;\) = h(x; \)D(x) € B.

Remark 2.17. The function h(x;A) should be considered as a deformed Weyl-Kac
character. More precisely, when n = 1, the change of variables ¢x® + z~%
for each i makes the function z*h(x; \) the Weyl-Kac character of the irreducible
representation V() of the Kac-Moody algebra g(A). See [I3] for the details on
Weyl-Kac characters.

Proposition 2.18 (See Theorem 3.5 in [I1]). The distribution (h|yw)(x, ) is well
defined and (h|\w)(x,\) = h(x; ), for each w € W.
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610 KYU-HWAN LEE AND YICHAO ZHANG

Proof. Fix any w’' € W, and we first prove that (s[yw’)(x, ) is well defined and
that (s|yw’)(x,A) =j(w’,x) " 1s(x,\). Indeed, if we write (1| w) (x) = 28 cw(B)xP,
then

(slaw’)(x, A) > cwlB)iw,w'x)(x" | xw') (x)
B w

S5 culB)iw,w'x) (57 u) (x)
w B

J(w', %)™y (ww, x) (1 ww') (x)

= j(w,x)"ts(x,\),
where the switch of the two summations can be justified by absolute convergence
as follows.

From Lemma we know that j(w,x)(1|xw)(x) has a lower bound given by
the sum of roots in ®(w); namely, all the nonzero terms should have exponents
bigger than such a sum of roots. Write such a bound as S(w), and we see that
d(B(w)) = o0, as L(w) — oco.

Now we can prove the absolute convergence by showing that for each v € @
there are at most finitely many w € W such that

> cw(B)i(w, w'x) (x"|xw') (x) = (j(w, x)(1w)(x)) [xe’
8

contributes to the coefficient of x”. We know that j(w,x) is a monomial supported
on @', so

> cw(B)i(w, w'x) (7 |yw') (x) = ji(w, w'x) (1 ww')(x)
8

— (w07 (i’ %) (1w’ ) ().
This distribution is bounded below by S(ww’) — B(w’), and with w’ fixed we have
d(B(ww') — B(w')) — oo, as £(w) — oo.
So if ¢(w) is large, the contribution of
(J (w, x) (1) xw) (%)) [xw’

to the coefficient of x7 is zero. Therefore the switching of the double sum is justified.
Let us prove the proposition. Assume that

Ax)"! = Z a(B)x? and s(x,\) = Z c(B)xP.
BeQ’ BeQ
Then we have

(Bhw)(x,A) = Y | D aBely = B) | (7 [zw)(x)
YEQ \BEQ’
= Y S alBretr - ) | (wx)P(xF yw) (x)
YEQ \BEQ’
= A(wx)il(shw)()(?)‘) = h(X, )‘)a
and the convergence also follows from this. O
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WEYL GROUP MULTIPLE DIRICHLET SERIES 611

Fix a simple root a; and let m = m(«;) for the time being. We write N(x;\) =
> peqapxt. Given any 8 € Q, we set

S ={B+kma; | k € Z},

and define
Ngi(x) = Z a,x" € B.
HESE i
Now choose 8 € @ and define

N i(x) = 7(=bipi(B)) (gx) —#BEDm N, 5 :(x)

_ am—1yma;

1— qm—lxmai

if m 1t pi(B);

otherwise.

Here, as before, we denote by (k),, the remainder upon division of k¥ by m. By our
convention, 1 — g™~ 127 is invertible in £, with inverse Y po, ¢*m~Vakm.

Proposition 2.19 (Compare with Theorem 3.6 in [11]). We have

(gxee) e BDm=mil0) f5(x) - if m 4 pi(B);
(gx@i)m=ri0) f5 4 (x) otherwise.

fai(oix) = {

Proof. Assume that m 1 p;(8). We write Ng;(x) = (X 4ez @g+kma, X)) x? and
define

Bﬂ’i(x) = Za@rkmaikam € By,
kez
so that we have Ng;(x) = Bg;(x)x”. We also define
_ Npi(®) + Noypi(®) _ Bpi(x)x” + By, 54 (x)x7F

Fﬁvi (X) 1— qm—lxmai 1— qm—lxmai

We obtain from Proposition 218 that
N(x;\)

1— qulxmai

is invariant under the action of |yo;. Indeed, the action is well defined by the same
argument as in the proof of Proposition 218 The invariance follows from that of
h(x, ) and the invariance of D(x)(1 — g™ 1x™%)~! under the change of variable
x — o;x. Then it implies that Fp; is invariant under [yo;. On the other hand,
applying o; to Fg;, we get

(ox ) (xPyo: ) (x (o) (2% B\ o) (x
Fi(x) = (Fgilxoi)(x) = B.i(oa)6ri) () 1 Boupiloix) (@ Tlaci) ()

1— q—m—lx—mai
Using this, we compute further and obtain

1) — Boaloo@x) e~ By (oo (Cbig(B) (ax) e
"t - 1— quflemai .

Now the assertion of the proposition follows from this.
The proof for the case that m|u;(5) is similar, and we omit the details. O
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612 KYU-HWAN LEE AND YICHAO ZHANG

3. THE COEFFICIENTS H

In this section we define the coefficients H and find bounds for them. The
coefficients H will be the essential data in defining the Weyl group multiple Dirichlet
series.

We specialize (i) to be

i) = {g(l,w;z‘)/q it i 2 0 (mod n),

-1 otherwise,

where w is a prime in 0g and ¢ is the norm of @ in 0g. We define

wg = (@h, - @") e (0s)" and wp = (@', , @) € (05),
where 8 =Y"_, kia; € Q4 and A =Y, liw; € P;. Denote the x”-coefficient of
N(x;A) by
(3.1) H(wg; wp).
We fix a generator w for each prime ideal of 0g. For a = (a1, -+ ,a,) € (0g)",
we have decompositions
(3.2) a:ungw:unl’\f’, ue (03)",

with 8, € Q4+ and A\, € Py for each prime w. We define H(c;m) for any
c,m € (05)" N (Fg)" in what follows. First we set H(u;m) = 1 for u € (03)".
If we have ged(cy -+ ¢p,cy---ch.) =1 for ¢ = (¢1, -+ ,¢.) and ¢’ = (¢}, , ), we

» Cr
require that the twisted multiplicativity should hold:

(3.3) H(cc';m) = Ep(e,c/)H(c;m)H(c'; m).
We also require the relation
m'] "
(3.4) H(c;mm') = [—] H(c;m)
c
if ged(ey---¢pymy---ml) =1 for ¢ = (c1,--+ ,¢-) and m’ = (m},--- ,ml). Now

note that we have defined the coefficients H(c; m) for any ¢, m € (og)" N (F3)".

We fix ¢ for the time being. Let g = R® PY C h. For s € b, we write
s = Re(s) + vV—1 Tm(s) with FRe(s),Im(s) € hg. We define the evaluation map
EV,:Exh—Chby

EVy | D eBxs | = e(B)a",

B B

whenever it is convergent. Similarly, we define |[EV],: € x h — C by

BV, | Y eB)x?s | =3 1e(B)a PO =3 [e(B)lg P,
B B

B
whenever it is convergent.
Proposition 3.5. Let € Q and w € W, and suppose that
(3.6) Re(a;(s)) > 1 foreachi=1,...,r
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Then we have
|EV], (j(w,x)(xﬁ\,\w),s) < 34(w)q*d(ﬂ)q(w_1'ﬁ)(PV*W(S)).

Proof. We may assume that s is real, i.e. s = Pe(s). We use induction on the
length of w. If w =1, then

BV, (j(1,%)(x%|x1),5) = |BV|, (x°) = ¢#®.

Now assume that {(o;w) = ¢(w) + 1 for w € W and write m = m(c;). We see
from ([2) that w™'a; is a positive root, and we get w™ta;(p¥ —s) < 0 from the
assumption. We consider

)tk 1-1/q
EV|,(Pgj(wx),s) = [EV (qwx% (15 (B))m _ ,s>
|[BV]4(Ps.j(wx),s) = [EV], | (a(wx)™) 1— (g(wx)*)™ /q
- (qd<w*1aj>q7w<aj)(s))[ujw)]m 1-1/q
1—(qUw ) g @)™ /g
_ (qw—1aj(pv_s)>[#j(5)]m 1 _1/(]
1— (qu e =sN)" Jq
(15 (B)mw ™ e (p —s)
(3.7) <q
and
) 1-— (Q(’LUX)O‘J')_m
EV] (Qp(wx),s) < |EV g1 ® "
PGS | |q< 1 — (qwx))™ /q
' ) 1-1/q
= (5) a m
= qM EV (—qwx; + | 7S>
| |q ( ( ) ) 1— (q(wx)oz]) /q
wi(B) —mw tay(pY —s) 1— 1/(]
< q’ (q J + 1_qmw710‘j(Pvfs)/q
mw ta;i(pY —s
1 —gmw tosle *S)/q
(3:8) < o -muay -9,

Combining (317) and (B8)) with the computation
j(ojw, %) (x"[xojw) = j(o, wx)j(w,x) [(Ps,;(x)x” + Qp,;%x77) [yw]
= —¢" (wx)"™ j(w, %) [Pg; (wx) (x| \w) +Qp.j (wx) (x7 7 | w)],
we obtain by induction
|EV|q (j(ajw,x)(x/6|,\ajw)7 s)
< gl Blm)w™ ay(p” —s) BV, (j(w,x)(xﬁb\w),s)
+2¢" 7 | BV (j(w,%)(x7 P yw),s)
< 3f(w)q—d([3)q(m+[u;‘(ﬁ)]m)wflaj(pv—S)+(w71'5)(l)v—5)

+ 2. 3tw) g=d(B) g (w™-5-8)(p" =s)
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614 KYU-HWAN LEE AND YICHAO ZHANG

The exponent of ¢ in the first term becomes
(m+ [ (B)]m)w ™ ay(p” =) + (w™h - B)(p" — )
< p(Bwtay(p” —s) + (wt - B)(p¥ —s)
= ((gjw)™-B)) (" —s).
The exponent of ¢ in the second term is
(W™ 05 B)(p" =) = ((o5w) ™" - B)) (p” — ).

Therefore, we obtain

)~ 1. V_g
BV, (j(0jw, %) (6 |xojw),8) < 340 1qmd@ ()7 m) (0 =),

Given 8 € @4, we define
N ) = 3 By
j=0

where m = m(a;). Let A € Py be such that w? is the w-factor in the decomposition
of m,ie. A= XAg in (B2). We write

m/:m/wéz (mllv 7m;')7

and set 1;(8) = piA(B) = (A + p — B)(h;) as before. We put g = |w| and define
F57 (x;m)
N§Z (x;m) = g~ g(m], @ —bips(B)) (qx**) i Im N ) (x;m)

1— qulxmai

if pi(8) 1 m;

Ngf)(x; m) )
—_— - otherwise .
1— qulxmai

Theorem 3.9 (Compare with Theorem 4.1 in [I1]). We have

(g) D=0 () (am)—if e 1 (B);

(qxai)m—m(O)f[g’j) (x;m) otherwise.

P

Proof. We first establish the following identities:

() m’ - () m’ -
(3.10) Ng;'(xim) = |—5 Ngi(x) and fg7'(x;m) = | — f8.:(x).
@ w
Q Q
From the twisted multiplicativity, we obtain
H(wgﬂmai; m) = H(wgﬂmai ;wpm’)
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ml _bL m/ —bLm
since ( L ) = (—Z) = 1. Then we have
w

o)

—B —B
(@) m’ Btjmai. Ay Bijma; _ |
Ny (xm) = | — > H(wy Lo )X == Nsx).
wao §>0 waq

Since we have o; - 8 = 8+ p;(8); and the multiplicativity of the power residue

symbol, we obtain
-B
m’ m; —bipi(B)
NUri'ﬁfi(X) = l7] <—> Noiﬂ,i(x)'
@G w

, —-B
m

0B
wWaq

0By

N&) (x;m) = l

On the other hand,

m! bipi(B)
gt (5 = (") gl bis(),

Now it it straightforward to see that

-B
w m’
157 (x;m) = [—5] fa.i(x).
w
Q
Thus we have proved the identities in (3I0). Now the theorem follows from
(BI0) and Proposition [ZT9l O

4. RANK ONE COMPUTATIONS

In this section, we gather results from [2], [4] and [II] and make some compu-
tations as a preparation to obtain functional equations of the Weyl group multiple
Dirichlet series in the next section.

For j € Zso, ¥ € M;(Q) and a € 0g, we define

D)= 3 gla,c U lal
0#c€os/oy
This series is absolutely convergent for fRe(s) > 3/2. Let m = n/ged(n, j) and set

Gm(s) = ((Qﬂ)_(m—l)(S—l)F(mS —m)/T(s — 1)) [F:Q]/2 .

Define
D*(Sa a; \Ilaj) = Gm(s)CF(ms —m+ 1)D(Sv a, \Ilaj),
where (r is the Dedekind zeta function of F. If ¥ € M;(Q) and n € FZ, we define
B, (e) = (1, (e ).
The following result is fundamental.

Theorem 4.1 ([2]). The function D*(s,a; ¥, ) has a meromorphic continuation
to C and is holomorphic except for possible simple poles at s = 1+1/m. Moreover,
there exist S-Dirichlet polynomials P(s;an,j) such that

D*(s,a;0,5) = > P(s;an,j)D*(2—s5,a; ¥y, ).
776F§< /stn
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616 KYU-HWAN LEE AND YICHAO ZHANG

Let m = (mq,--- ,m,) € (05)" N (FJ)" be fixed for the rest of this section. Let
2 be the ring of Laurent polynomials in |, |*, i = 1,...,r, where v runs over the
places in Sg,. We define

(4.2) Mp(Q) =A@ Mp(Q).
Then it is natural to set M (Q) = A ® M, (Q) for ¢t € Z~ . We write

s; = a;(s) forse b

and regard an element of Mp () as a function on h x (F§)". Denote by ¢ the
diagonal embedding:

L FE = (FS), z— (v,m, - T).
If ¥ eMp(Q) and a= (ar, - ,a,) € (05/05)", we define
U3 (si0) = (a,u(0)d; U(siar, - aic, - ,ap),

where the notation (-,-)§; is defined in (L4).
Lemma 4.3 ([4]). We have T2 € My, (£2).

We define a shifted action of W on b by

gios=oi(s—p’)+p".

Now we define an action of o; on Mp(Q) as follows. For ¥ € Mp(N), we set

(o—i\Ij)(S; a) = Z (L(n)v a)g,i P(sl ) nmiaihi’bi) \Il(o'l-os; ag, - ;ainila e aar)a
neEFS/FE™

where
ahi — Haj—ﬂ(j(hz') _ Haj_aij.
J J
The element a~" was denoted by b; in [11], while we set b; = (cy, ;) in this paper.
The following proposition plays a crucial role in describing functional equations.
Proposition 4.4 ([]). If U € Mp(Q), then o;¥ € Mp(Q).

Ifc=(c1, - ,cr) € (0g)" and s € b, we set

45) ey =]]le
i=1

We let ¢ be the (r — 1)-tuple (¢1,- ,é;, -+ ,¢) for ¢ = (1, -+, ¢.), where the hat
on ¢; indicates that this entry is omitted. Let U € Mp(Q). We define

w; (s) )

r
ai(s) _ ler]*t -+ le|®r and  |c|p = H |ci
i=1

E(Sl,é,m,\ll,’l): Z H(Clv"' 3 Ciy o vt aCT;m)\II(S;Ch"' TR 7CT)|ci|_Si
07501'605/0;5
= Z H(c;m)U(s;c)le;| ™.
Oyﬁcieos/ag
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WEYL GROUP MULTIPLE DIRICHLET SERIES 617

We also define
g(s7é;m7\:[j>i) = Z H(Cl,"',Ci,"',Cr;m)\IJ(S;Cl,"',Cl‘,"',cr)
07501‘605/0;

| —Si
el

¢|g’(m[p
= Y H(em)¥(s;c)le|®|mlp.
075()7‘,605'/0§
Let m = m(«;) and s; = a;(s). We set

E*(si,¢;m, U 0) = Gy (si)Cr(ms; —m + 1)E(s;, ¢; m, ¥ i) and

E*(s,&;m, U, 4) = G (5:)Cp(ms; —m +1)E(s, &;m, U, 4).
The following proposition adapts the functional equation (Theorem E.T) of the
Kubota’s Dirichlet series D*(s, a; ¥, j) for our purpose.
Proposition 4.6. Let C' =[], c;aij. Then the function £*(s;,¢;m, U, 3) (resp.
E*(s,&;m, U,4)) has a meromorphic continuation to C (resp. §) and is holomorphic
except for possible simple poles at s; =1+ 1/m. Moreover, we have the functional

equations
(4.7 E*(s4,&;m, U, 4) = |Cmy |5 E*(2 — 54, & m, 0,V,4) and
(4.8) E*(s,&;m, U, ) = g‘*(ai os,¢;m,o; W, 7).

Proof. With Theorem B.9 established, the meromorphic continuation and functional
equation of £* follows from Theorem 5.8 of [I1]. Now the meromorphic continuation
of £* is clear, and its functional equation is obtained from that of £* by direct
computation. O

5. THE MULTIPLE DIRICHLET SERIES

In this section, we define the Weyl group multiple Dirichlet series from the local
coefficients via twisted multiplicativity, and prove functional equations and mero-
morphic continuation of the multiple Dirichlet series. As mentioned in the intro-
duction, it is expected that our multiple Dirichlet series would be related to a
Whittaker function up to a normalizing factor in the affine case. However, it is also
expected that, in the indefinite case, the contribution coming from the imaginary
roots is much more complicated.

Let m = (my,---,m,) € (05)" be fixed. Then we have m = u[]_w}~, u €
(03)", with Ay € Py. Let ¥ € Mp(R), and we define a function Z(s;m, V) on h
by

Z(s;m, ¥) = H(c;m)¥(s; c)lc|g|mlp,

where the sum is over ¢ = (c1,---,¢,) such that 0 # ¢; € og/og fori =1,...,r.
Although this is a function on h, except the factor |m|%, it only depends on
(Sla e 757")'

In order to investigate the convergence of Z(s;m, ¥), we first prove the following
lemma.
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618 KYU-HWAN LEE AND YICHAO ZHANG
Lemma 5.1. Let q be the norm of a prime w € 0g and consider

v mult ()
D(X) B 1— qm(a)a(p —s)—1
= (5a) = 11 ( [= g '

acd

Assume that Re(a;(s)) > 1 for each i = 1,...,r. Then the product EV, (%, S)

is absolutely convergent for sufficiently large q. In this case, if Re(a;(s)) > 1+ ¢
for each 1 < i <r, we have

BV, (Res) ~ 1+ 0l

where the implicit constant only depends on e.

Proof. We may assume that s is real and that fMe(a;(s)) > 1+ log,r + ¢ for
sufficiently large ¢ and for each i = 1,...,r. We have

1— qm(a)a(pv—s)—l qm(a)a(pv—s)(l _ q—l)

1= grtater=s) — Lt T pm@ale—s)

Therefore
D(x) gm(@alp” —s)
log (EVq (m, S)) ~ Z mult(a) W

aced

For each k € Z~g, there are at most r* linearly independent root vectors all together
for positive roots with depth & in the Kac-Moody algebra g(A); that is to say,

Z mult(a) < 7.

aEd
d(a)=k

Then we have

gm@e (p—s)
B S — a(p’ —s)
Z mult(a) — @) < Z mult(a) ¢***

acd, OZE‘I)+
oo
—

where A could be chosen to be (1 —27¢)~!. The last assertion of the proposition
follows from this by taking the natural exponential function, and we see that the
implied constant only depends on €, that is, independent of g. (I

Theorem 5.2. Assume that ¥ € Mp(Q). The series Z(s;m, V) absolutely con-
verges for s € by satisfying the condition:

Re(a;(s)) = Re(s;) > max{l + log, r, 2} foreachi=1,... 7.

Proof. We may assume that s is real. Since the function ¥ is bounded, it is sufficient

to consider
ZIH (em)llelo® =[] D [H(@);@p)llw| 7,
@ BEQ4

which only depends on (s1,--- , ;). We fix @ for the time being, and write ¢ = |w].
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WEYL GROUP MULTIPLE DIRICHLET SERIES 619

Suppose that w = oy, --- 05, € W is a reduced expression. Then one can show
that

B =i, (B)oi i, ey (B)os i, + (B, + B

Using this identity with g = 0, let us prove that, for any M > 0, if ¢(w) is large,
then

(5.3) (w™-0)(p¥ —s) < —M{l(w) -min{s; —1: 1 <i <7}

Note first that it holds trivially for any w if M = 1. In general, since w—! -0 is the
weighted sum of all roots in ®(w) by p;(0) > 1,4 =1,...,r, it is enough to show
that as f(w) — oo,

T > e

a€q> (w)
Indeed, for any M > 0, let M’ = {a € &, : d(a) < 2M}. If £(w) > 2M’, then

> d(a) > 2M(L(w) — M') > M{(w),
acd(w)

and (B3] is proved.

We first assume that ¢ is sufficiently large so that we have

si>2+log,r+e foreachi=1,...,r.
From the definition of H (wg; @), we have

M H@hiwp=)g PO = BV, (N(x;A).s)
BEQ+

= EV, (%,s) EV, (Z j(w,x)(lhw)(x),s) .

weW
We obtain from Lemma [5.1] Proposition B.5 and (G.3) that

—B(s D(x .
> [H@diw)la " < BV, (—X§ ) BV, (Z a(w,xxmw)(x),s)
BEQT weW
X w w- L. V_g
<|EV|, (A Xg, ) Z 3tw)g 0)(p" —s)
weW
D X) w —L(w €
<|EV|‘1(A 2, ) T 3w+
weW
D(x = 3r \"
< |EV|q(A(X§,S) <1+Z( 1+s> )
k=1 q

(5.4) ~140(g19)

for sufficiently large ¢. Here we applied the trivial case M =1 of (&.3).
For a general ¢, since Re(a;(s)) > 1 +1logyr > 1+ log, 7 for each i, the same
estimation as in Lemma [B.1] shows that

2V, ()

Licensed to Univ of Conn, Storrs. Prepared on Fri Nov 21 15:54:31 EST 2014 for download from IP 137.99.16.10.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



620 KYU-HWAN LEE AND YICHAO ZHANG

is absolutely convergent. Using (5.3]) and choosing M large enough so that 6r <
M(1+€)
q )

[EV]q (Z j(w,X)(llxw)(X),S> < Y 3Hwlg M)

weWw weWw
') 3 k
< <1+Z<W> ) < 1.
k=1
Therefore, all factors in
A -
II > 1H@wp)lle|
w BeQt
are absolutely convergent, and the absolute convergence of the whole product is

obtained using (&.4)). O

For any a € ®, we define
Cal(s) =Cr (L+m(a)a(s —pY)) and Ga(s) = G (L+al(s —pY)).

It is easy to see that G, (0;08) = Gy,4(8) and (4 (0; 08) = (s,a(s). Then we have,
for w e W,

(55) Ga(w o S) = waloz(s) and Ca(w o S) = C’w*la(s)'

In particular, Gy, (0; 08) = G_,,(s) and (n,(0; 08) = (_4,(s). Now we define

k3

_ Ga(s)Ca(s)
o= I & ode

Let §={s€br | a;(s) =s; >1foralli=1,...,r}. We define the shifted Tits
cone X C hgr to be
X = U wog.

weWw
Proposition 5.6 ([ILI3]). The shifted Tits cone X is a convex cone, and we have
X = bg if and only if |W| < 0.

Let £ = {s€br | a;(s) =s; >max{2,1+1logyr} foralli=1,...,r}, and we

define
X, = convex hull ( U wo 2) Cx.
weWw

Theorem 5.7. The Dirichlet series Z(s;m, V) has meromorphic continuation to
all s € b such that Re(s) € Xy and satisfies the functional equation

Z(wos;m,w¥) = G(w,s)Z(s;m, V)

for each w € W, where the action of w on ¥ is given by the composition of simple
reflections o;. The set of polar hyperplanes is contained in the W -translates of the
hyperplanes s; = 1 £ m(a;)/n.

Proof. If r = 1, we essentially have the Kubota’s series, and we are done in this
case. Let us assume r > 2 from now on. It follows that 1+ log,r > 2.
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WEYL GROUP MULTIPLE DIRICHLET SERIES 621

The Dirichlet series defining Z(s; m, ¥) is absolutely convergent by Theorem [5.2]
in the region Ag = {s € h | Re(s) € £}. We write

Z(s;m, ) = 3 H(eim)¥(s:c)lelg|mlp

= > Y H(em)¥(sio)lelg’mlp

¢ 075()7‘605'/0§
E(si, € m, ¥, i)
(58) = \pZ ,
];éz ‘C]‘

where ¢ is the (r — 1)-tuple (¢1,---, ¢, ,¢.) with ¢; omitted.
With the expression (B.8)), let us first continue Z(s;m, ¥) to a larger region as
follows. We consider the modified series

Zi(s;m,0) = (s; — 1 —m(a;)/n)(s; — 1+ m(a;)/n)Z(s;m, ¥) and
F(si,&;m, U i) = (s; — 1 —m(a;)/n)(s; — 1+ m(a;)/n)E (s, ¢;m, U, 1),

By Proposition 4.6l F is analytic on C with a functional equation. We claim that
for any € > 0, on the region with Re(s;) > 1+ log, r + €, we have

F(si,e;m, U, ) H|c |1 +log, e
J#i

where the implied constant is independent of ¢. Actually, since the multiple sum
> H(e;m)¥(s; ¢)le|g®ml3
C

is absolutely convergent on the region with fRe(s;) > 1+logyr +€ (1 < j <7r), the

general term
E(si, 6;m, U 1)
I lejl*
over ¢ in (5.8)) is then bounded and the claim follows by taking the infimum. By
the functional equation, we have for Re(s;) < 1 —logyr —

Flsin&m, 0,i) = O [ O T ey HHiosa e
J#i
=0 H |Cj|faij(179Re(5i))+1+10g2 r+e
J#i

In particular, on the line Re(s;) = 1 — log, 7 — € we have

]:(81'7 éa m, \:[17 Z) = O H |c]‘|1—"_(1_al’j)(10g2 T+6)
J#i
Now by the Phragmén-Lindel6f Theorem, on the strip defined by 1 —logyr — e <
Re(s;) < 1+ logyr + €, we have the bound

Flsi&sm,0,i) = O | [ e+ omar+0
J#i
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622 KYU-HWAN LEE AND YICHAO ZHANG

Finally, by putting the above bounds into Z; and considering the expression (5.8]),
we then see that for any u € R, there exists a positive real number v’ such that the
series Z; (over ¢) is absolutely convergent on the region

Au,u') = {s € b : Re(a;(s)) > u, Re(a(s)) >u',j # i}

Note here that the dependence on the variables other than the s;’s in |m|$% does
not affect the absolute convergence. This provides the analytic continuation of Z;
and hence the meromorphic continuation of Z, from Ay to Ag U A(u,u’).

By the functional equations in Proposition again, Z can be meromorphically
continued to o;0Ag. Now we choose u so that A(u,u’) intersects both Ay and o;0A.
Since the union of these pieces is (simply) connected, the function Z; is analytic
on the union of these regions. Applying Bochner’s Tube-Domain Theorem, we see
that we may continue Z meromorphically to A;, the convex hull of AgUoc;0Ay. On
this region, we have, by Proposition 6]

1

G(oi,8)Z(s;m, V) = G5 a(® > E%(s,&m, T, 4)
1 . -
= Gai (U’L 5 S)CQL (0-7{ 5 S) ;g (O—'L os,C,1m, 0—7,\113 ’1/)
= Zé(oi os,¢m,o;V,1q)

= Z(o;0s,;m,o;V).

Now we extend the meromorphic continuation to Re(s) € Xy. The argument is
similar to that of the finite case ([3l/4]), though we need to make some modifications.
If A, = hor A, = b, we are done. If not, we consider A; U Ay. It is easy
to see that the union is simply connected since both are convex. Because they
intersect nontrivially, Z is continued to the union. We multiply Z by linear factors
to eliminate the possible poles on such a union, and then apply Bochner’s Theorem.
Then consider A3 and the union A; U Ay U A3 similarly. At the end, either we stop
somewhere and we have continuation to h or we have continuation to the convex
hull, say Aél), of |J; As. In the latter case, repeat the whole procedure from the
beginning by replacing Ag by A(()l), except that all the translates of A(()l) intersect
Aél) nontrivially and we do not need to do the growth estimate of the £-series.

Such a process may not stop in finitely many steps, and it is clear that we
need more and more linear factors to eliminate the poles of Z as we carry out this
procedure. However, since any s € h with fRe(s) € Xp is contained in a union
of a finite number of W-translates of A;’s, we need at most finitely many steps to
continue Z to s, therefore at most finitely many linear factors in such a continuation.

The functional equation Z(w o s;m,w¥) = G(w,s)Z(s;m, ¥) for each w € W
can be proved using (L2), (E3) and induction, along with the continuation. The
possible polar hyperplanes are clear from our continuation and the poles of Kubota’s
series. We are done with the proof. (I

Example 5.9. Let us consider the hyperbolic Kac-Moody root system associated

_23 _23) Then the Weyl group W is

the free group generated by the simple reflections o1 and os. As in the proof of

with the generalized Cartan matrix A = <
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Theorem 5.7 we let A; be the convex hull of Ag U (0, 0 Ag) for ¢ = 1,2. Then the
projections on the real plane of the regions A; and Ay are given by

Ay 3x+y>5, 3r+2y>10, y>2,
and
As r+3y>5, 2x+3y>10, x>2,
where x = Re(s1) and y = MRe(sz). The shifted Tits cone X is given by
X (B+V5)z+2y>5+V5, (3—VB)z+2y>5—5.

On the other hand, the boundary of the convex hull X is the piecewise linear curve
connecting the points in each column of the following:

(2,2) (2,2)
(Oa 5) =010 (2a 2) (5v O) =020 (2a 2)

(—3,12) 2010'20(2,2) (12,—3) — 0201 0(2,2)
(—10,30) = g109071 0 (2,2) (30, —10) = 090102 0 (2,2)

In particular, (3/2,3/2) € X\ X.

Remark 5.10. One method to investigate the moment problem of Dirichlet L-
functions L(s, xq) with quadratic characters over Q in d-aspect is to consider the
multiple Dirichlet series of the form

Z L(s1,xa)L(s2,Xa) - -~ L(sr, Xa)
|d Sr41 !

d

Sufficient meromorphic continuation of this series will produce asymptotic formulas
for the r-th moment. However, only in the cases » = 1,2,3 has necessary contin-
uation been obtained. Actually, in those cases the series can be continued to the
whole C". If r > 3, the group of functional equations becomes infinite, and we
are not able to continue the series sufficiently at the present. For more details, see
Bump’s survey paper [9].

Remarkably, in a recent paper [§], Bucur and Diaconu considered quadratic
Dirichlet L-functions over rational function fields in the case r = 4 and managed
to continue the corresponding multiple Dirichlet series sufficiently. This is the first
such result where the group of functional equations is infinite.

More specifically, they consider two multiple Dirichlet series, one from the mo-
ment problem and the other from the corresponding Weyl group action. Since the
latter can be sufficiently continued, by proving a uniqueness theorem (up to a single
variable power series), they prove sufficient continuation of the multiple Dirichlet
series from the moment problem.

Their Weyl group multiple Dirichlet series are constructed in a similar way with
those considered in this paper. In their case, the root system is of affine type Dfll),
and by identifying s; with «;, they put s = (s1,...,s;) and

(5.11) A(s) = H (1- qd(a)—a) and D(s) = H (1— qd(a)—a-i-l).
acdle aedre

Here ¢ is the order of the finite field, and we have changed their notation to be
consistent with ours. One can compare ([L.I1]) with (ZI3]). Moreover, they define a
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624 KYU-HWAN LEE AND YICHAO ZHANG

matrix-valued rational function M (w,s) that satisfies the same cocycle relation as
j(w,x) in this paper. Then they construct the matrix series

D(ws)
Z(s) = ——M(w,s
©= 3 R M)
weW
and proved its analytic continuation and functional equations, namely

Z(s) = M(w,s)Z(ws), for any we W.

In general, over number fields, the multiple Dirichlet series obtained from the
moment problem are expected to be different from their counterparts constructed
from the Weyl group actions. In the affine case Dfll), they are expected to differ
by a normalizing factor. In the indefinite case, the situation may be much more
complicated.
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