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Abstract. We discuss the known results and methods for determining root
multiplicities for hyperbolic Kac–Moody algebras.

1. Introduction

Let g be a Kac–Moody Lie algebra over the field C of complex numbers, and let G
be a Kac–Moody group associated to g.

Kac–Moody algebras were introduced in the 1960’s independently by Kac, Moody
and Kantor as a generalization of finite dimensional simple Lie algebras. In general,
Kac–Moody algebras are infinite dimensional. While they share many structure
properties with their finite dimensional predecessors, there appear important new
phenomena. Some of the most mysterious ones are related to the imaginary roots.

There are certain subclasses of special interest. If g is of finite type, then g is
a finite dimensional simple Lie algebra, and G is a simple Lie group. The best-
understood infinite dimensional subclass is the one of affine Kac-Moody algebras.
Affine Kac–Moody groups and algebras give rise to a rich mathematical theory;
they are relevant to number theory and modular forms, lattices and conformal
fields theories.

The theory of hyperbolic Kac–Moody groups and algebras naturally generalizes
the theory of affine Kac–Moody groups and algebras. Recently hyperbolic and
Lorentzian Kac–Moody groups and algebras have been discovered as symmetries
in high-energy physics, and they are conjectured to serve as duality symmetries
of a proposed theory, known as M-theory, which unifies all superstring theories
([DHN1,DHN2,HPS,Ju,Kl1,Nic,RW1,RW2,SW1,SW2,We]).

Let g be a Kac–Moody algebra with Cartan subalgebra h and root data Δ. The
root space gα is defined by

gα = {x ∈ g | [h, x] = α(h)x, h ∈ h}.
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Then we have the root space decomposition

g =
⊕

α∈Δ+

gα ⊕ h ⊕
⊕

α∈Δ−

gα,

which is a decomposition of g into finite dimensional subspaces, where Δ+ (resp.
Δ−) is the set of positive (resp. negative) roots. The dimension of the root space
gα is called the multiplicity of α.

Root multiplicities are fundamental data to understand the structure of a Kac–
Moody algebra g. However, the status of our knowledge shows a dichotomy accord-
ing to types of g.

Let us recall the classification of types of Kac–Moody algebras g. Let A denote the
generalized Cartan matrix of g. Then the types can be classified as follows.

Finite type: A is positive-definite. In this case det(A) > 0 and A is the Cartan
matrix of a finite dimensional semisimple Lie algebra.

Affine type: A is positive-semidefinite, but not positive-definite. In this case we
have det(A) = 0.

Indefinite type: A is neither of finite nor affine type.

The simplest indefinite type is particularly important:

Hyperbolic type: A is neither of finite nor affine type, but every proper, inde-
composable principal submatrix is either of finite or affine type. In this case we
have det(A) < 0.

We also have

Lorentzian type: det(A) < 0 and A has exactly one negative eigenvalue.

The class of Lorentzian generalized Cartan matrices includes but is larger than the
class of hyperbolic generalized Cartan matrices (see [GN3]).

Assume that A is of hyperbolic type. Then A is said to be of compact hyperbolic
type if every proper, indecomposable principal submatrix is of finite type. If A
contains an affine submatrix, then it is said to be of noncompact hyperbolic type.

Now we recall that the associated Weyl group W acts on the set Δ of all roots,
preserving root multiplicities. If α is a real root, α has an expression α = wαi for
w ∈ W where αi is a simple root. It follows that dim(gα) = 1. Since all roots
in finite dimensional Lie algebras are real, all root spaces in finite dimensional Lie
algebras are 1 dimensional. Let g be an nontwisted affine Kac–Moody algebra of
rank � + 1. Then the multiplicity of every imaginary root of g is � ([K, Corollary
7.4]). There is a similar formula for twisted affine Kac–Moody algebras as well.

For hyperbolic and more general indefinite Kac–Moody algebras the situation is
vastly different, due to exponential growth of the imaginary root spaces. Our
knowledge of the dimensions of imaginary root spaces is far from being complete.
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Open problem 1. Find an effective closed form formula for the dimensions of the
imaginary root spaces for hyperbolic and other indefinite Kac–Moody algebras.

A weaker, nevertheless still useful form of problem 1 is the following open question:

Open problem 2. Prove effective upper or lower bounds for the dimensions of the
imaginary root spaces for hyperbolic and other indefinite Kac–Moody algebras.

A first step towards this aim might be:

Open problem 3. Conjecture effective upper or lower bounds for the dimensions of
the imaginary root spaces for hyperbolic and other indefinite Kac–Moody algebras.

The purpose of this article is to review known results and methods for hyperbolic
cases.

The following gives us a coarse upper bound for each imaginary root space gα,
α ∈ Δim

+ .

Theorem 1.1 ([Ca]). Let g be a Kac–Moody algebra. If α ∈ Δim
+ and dim(gα) > 1,

then for x ∈ gα, we have

x =
∑

ki1i2...ir [ei1 , [ei2 , [. . . , [eir−1
, eir ]]]]

where ki1i2...ir ∈ C, α = αi1 +αi2 + · · ·+αir for simple roots αi1 , αi2 , . . . , αir , not
necessarily distinct, and the sum is taken over the �r orderings of {αi1 , αi2 , . . . , αir},
with all but dim(gα) of the ki1i2...ir equal to 0.

Corollary 1.2 ([K]). Let g be any Kac–Moody algebra. Let α ∈ Δim. Then

dim(gα) ≤ �|height(α)| < ∞.

2. Berman-Moody formula and Peterson formula

The first formulas for root multiplicities of Kac–Moody algebras are a closed form
formula by Berman and Moody ([BM]) and a recursive formula by Peterson ([P]).
Both formulas are based on the denominator identity for a Kac–Moody algebra g:∏

α∈Δ+

(1− e(−α))mult(α) =
∑
w∈W

(−1)l(w)e(w(ρ)− ρ),

where mult(α) = dim(gα), e(α) is a formal exponential, l(w) is the length function
on W and ρ ∈ h∗ satisfies 〈ρ, α∨

i 〉 = 1, i = 1, . . . �. The denominator identity
is derived from the Weyl-Kac character formula for the trivial one dimensional
module, which has character equal to 1, and relates the orbits of the Weyl group
W and the root multiplicities of the Kac–Moody algebra.

The simple roots determine the Weyl group and hence the right hand side of the
denominator identity. The root multiplicities determine the left hand side of the
denominator identity. Therefore if we know the simple roots, the denominator
identity can in principle be used to give an alternating sum formula for the root
multiplicities. This is not effective in general, but as a systematic application,
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Peterson ([P]) used the denominator identity to give a recursive formula for the
root multiplicities of indefinite algebras. Peterson’s paper has never been published.
However, an outline of the proof can be found in Exercises 11.11 and 11.12 in [K].
One can find a complete proof by Kang, Kwon and Oh [KKO] in a more general
setting of graded Lie superalgebras. There is an improved version of Peterson’s
formula by Moody and Patera [MP].

Implementations of Peterson’s formula have been used by many authors. For ex-
ample, Peterson’s formula was used to produce the root multiplicity table in [K] for

the hyperbolic Kac–Moody algebra F with Cartan matrix

⎛
⎝ 2 −2 0
−2 2 −1
0 −1 2

⎞
⎠ of type

HA
(1)
1 . Borcherds [Bo1] used Peterson’s formula to compute root multiplicities of

the Lorentzian Kac–Moody algebra attached to the even unimodular lattice II25,1.
Bärwald, Gebert and Nicolai [BGN] used the formula for E10, and Kleinschmidt
[Kl2] used it to produce extensive tables for root multiplicities of E10 and E11.

Berman and Moody’s formula was also derived from the denominator identity by
taking logarithmic derivatives and using Möbius inversion. The resulting formula
is in a closed form. To describe this formula, we introduce the following notation.
We write λ|α if α = rλ for some positive integer r and denote 1/r by λ/α. For each
w ∈ W , let s(w) be the sum of the positive roots which are mapped into Δ− by
w−1, and for each s(w), set ε(s(w)) = (−1)l(w)+1. We enumerate s(w), 1 �= w ∈ W
as s1, s2, . . . in an order of increasing height. For λ ∈ Q := ⊕Z≥0αi, the set S(λ) is
defined to be {(n) = (n1, n2, . . . )|

∑
nisi = λ}. Then the Berman-Moody formula

is given by

(2.1) mult(α) =
∑
λ|α

μ
(α
λ

) λ

α

∑
(n)∈S(λ)

∏
ε(si)

ni
((
∑

ni)− 1)!∏
(ni!)

,

where μ is the Möbius function.

Example 2.1. Let A =

(
2 −3
−3 2

)
, and consider α = 4α1 + 5α2. Let w1 and w2

be the simple reflections. We set

s1 = s(w1) = α1, s2 = s(w2) = α2,
s3 = s(w1w2) = 4α1 + α2, s4 = s(w2w1) = α1 + 4α2.

Then we obtain

S(α) = {(4, 5, 0, 0), (3, 1, 0, 1), (0, 4, 1, 0)},
and get

mult(α) =
8!

4!5!
− 4!

3!
− 4!

4!
= 14− 4− 1 = 9.

Berman and Moody’s formula (2.1) can be considered as a generalization of Witt
formula [Se] for free Lie algebras and was later generalized by Kang ([Ka1,Ka2]).

Both Peterson’s formula and Berman-Moody’s formula enable us to calculate the
multiplicity of a given root (of a reasonable height), but they do not provide any
insight into properties of root multiplicities.
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3. Works of Feingold and Frenkel, and Kac, Moody and Wakimoto

Pioneering works on root multiplicities of hyperbolic Kac–Moody algebras began
with the paper by Feingold and Frenkel [FF], where the hyperbolic Kac–Moody

algebra F of type HA
(1)
1 was considered. Using the same method, Kac, Moody and

Wakimoto [KMW] calculated some root multiplicities for HE
(1)
8 (= E10).

Their method is based on the fact that any symmetrizable Kac- Moody Lie algebra
can be realized as the minimal graded Lie algebra g =

⊕
n∈Z

gn with the local part
V ⊕ g0 ⊕ V ∗, where g0 is a smaller (typically, finite-dimensional or affine) Kac–
Moody Lie algebra, V is an integrable irreducible highest weight representation
of g0, and V ∗ is the contragredient of V . More precisely, we consider the graded
Lie algebra G =

⊕
n∈Z

Gn, where G0 = g0 and G± =
⊕

n≥1 G±n be the free Lie

algebra generated by G1 = V ∗ (respectively, G−1 = V ). We let I =
⊕

n∈Z
In be

the maximal graded ideal of G intersecting the local part V ⊕ g0 ⊕ V ∗ trivially.
Then we obtain g = G/I.

Since G− is a free Lie algebra, its homogeneous dimensions can be computed using
the generalized Witt formula [Ka1] and one can use the representation theory of
g0 to determine the structure of In and get root multiplicities for gn. However, if
n is big, it is not easy to handle In explicitly.

Example 3.1. We again consider A =

(
2 −3
−3 2

)
and α = −4α1 − 5α2. We keep

the notations in the previous paragraph. We take the subalgebra g0 generated by
the Chevalley generators e2, f2 and the Cartan subalgebraH = Ch1+Ch2. Then we
have g0 ∼= sl2(C)⊕Ch1. Consider f1 as a highest weight vector for g0 under adjoint
action. Since [h2, f1] = 3f1, the element f1 generates the 4-dimensional irreducible
representation V with a basis {f1, [f1f2], [[f1f2]f2], [[[f1f2]f2]f2]}. From the Serre
relation, we see that I−i = 0 for 0 ≤ i ≤ 3. Since (−4α1−α2)(h2) = 10, the graded
piece I−4 is isomorphic to the 11-dimensional irreducible g0-module generated by
[f1[f1[f1[f1f2]]]]. From the representation theory of sl2(C), we know that each
weight space of I−4 is 1-dimensional. Using the generalized Witt’s formula for free
Lie algebras (cf. [Ka1]), we compute the dimension of the subspace of G−4 with
weight −4α1 − 5α2 and obtain 10. Since the dimension of the subspace of I−4 with
weight −4α1−5α2 is 1 as already observed, the root multiplicity of −4α1−5α2 for
g is 10− 1 = 9.

Using this inductive method, in the papers [FF,KMW], the authors calculated
root multiplicities up to level 2; that is, multiplicities for the roots belonging to g1

and g2. The results involve various partition functions, and will be presented in
what follows.

First, we recall that the rank 3 Kac–Moody algebra F of typeHA
(1)
1 has Weyl group

isomorphic to PGL2(Z) and that positive imaginary roots of F are identified with
2 × 2 semi-positive definite symmetric matrices. The algebra F has noncompact
hyperbolic type and was first studied by Feingold and Frenkel [FF]. They choose

a subalgebra F0 of affine type A
(1)
1 as the smaller algebra in the inductive method.

Then the level 1 root multiplicities of F are obtained from the weight multiplicities
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of the basic representation of the affine algebra F0. The character of the basic
representation was calculated by Feingold and Lepowsky [FL]. Using the character,
it was shown in [FF] that for each level 1 root α, we have

dim(Fα) = p

(
1− (α|α)

2

)
,

where p(n) is the classical partition function.

They also obtained the generating function of the multiplicities of the level 2 roots:
∞∑

n=0

M(n− 1)qn

=
q−3

2

( ∞∑
n=0

p(n)qn

) ∞∏
j=1

(1− q4j−2)

×

⎛
⎝ ∞∏

j=1

(1 + q2j−1)−
∞∏
j=1

(1− q2j−1)− 2q

⎞
⎠

= (1− q20 + q22 − q24 + q26 − 2q28 + · · · )
∞∑
n=0

p(n)qn,(3.1)

where M(2m) = mult

(
m 0
0 2

)
and M(2m−1) = mult

(
m 1
1 2

)
with identification

of positive imaginary roots with 2×2 semi-positive definite symmetric matrices. In
particular, this supports Frenkel’s conjecture in Section 5.

Next, let p(�)(n) be the number of partitions of n into parts of � colors. We write
ϕ(q) =

∏∞
n=1(1− qn). Then the generating function of p(�)(n) is given by

(3.2)

∞∑
n=0

p(�)(n)qn =
1

ϕ(q)�
.

Kac, Moody and Wakimoto [KMW] used the inductive method to calculate root
multiplicities of the hyperbolic Kac–Moody algebra g of type E10 for the roots of
level ≤ 2. They showed

(3.3) dim(gα) =

⎧⎨
⎩
p(8)

(
1− (α|α)

2

)
if α is of level 0 or 1,

ξ
(
3− (α|α)

2

)
if α is of level 2,

where the function ξ(n) is given by
∞∑

n=0

ξ(n)qn =
1

ϕ(q)8

[
1− ϕ(q2)

ϕ(q4)

]
.

4. Kang’s generalizations

The inductive method used in [FF,KMW] was systematically developed and gen-
eralized by Kang [Ka1] for arbitrary Kac–Moody algebras and for higher levels, and
has been adopted in many works on roots multiplicities of indefinite Kac–Moody
algebras. In his construction, Kang adopted homological techniques and Kostant’s
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formula ([GL]) to devise a method that works for higher levels. For example, Kang

applied his method to compute root multiplicities of the algebra F of type HA
(1)
1

up to level 5 ([Ka3,Ka4]).

Kang also took a different approach and generalized Berman and Moody’s formula
in [Ka2]. The resulting formula does not require the generalized Witt formula for
free Lie algebras. As in the inductive method, he chooses a smaller subalgebra g0

of g and considers the decomposition

g = g− ⊕ g0 ⊕ g+,

where g− =
∑

n<0 gn and g+ =
∑

n>0 gn. He then uses the chain complex of g−
and its homology modules to apply the Euler-Poincaré principle and obtains an
identity:

∞∑
k=0

(−1)kch Λk(g−) =
∞∑
k=0

(−1)kch Hk(g−),

where ch V is the character of a g−-module V . This identity can be considered as
a generalized denominator identity for the algebra g with respect to g0. From this
identity, Kang derives a recursive formula ([Ka2, Theorem 3.3]) and a closed form
formula ([Ka2, Theorem 4.1]) for all root multiplicities, though an actual compu-
tation, in general, requires a substantial amount of information on representations
of the Lie algebra g0. The closed form formula can be considered as a generaliza-
tion of Berman and Moody’s formula. By choosing various g0, one can have more
flexibility in computations and obtain interesting identities.

In order to understand the representations of g0 when g0 is of affine type, Kang
adopted the path realization of crystal basis ([KMN1,KMN2]) for affine Kac–
Moody algebras in [Ka3,Ka4,KM1]. This idea was followed by Klima and Misra
[KMi] for the indefinite Kac–Moody algebras of symplectic type.

There are many partial results for root multiplicities of hyperbolic and Lorentzian
Kac-Moody algebras by applying Kang’s methods. As mentioned earlier, Kang
used his inductive method to give root multiplicity formulas for the roots of F

of level ≤ 5 [Ka3,Ka4]. In an unpublished work, Kac also discovered a level 3
root multiplicity formula for F. The inductive method can be applied for higher
level roots, but it would be a daunting task to derive any concrete formula as the
complexity of computations grows fast in this method. Furthermore, even for levels
3 and 4, the generalized Witt formula requires long computations of partitions for
roots of large heights. Thus the following problem is wide open.

Open problem 4. Find a root multiplicity function for roots of F of all levels.

In addition to the works on F, Kang’s methods were used in the papers by Benkart,
Kang and Misra [BKM1,BKM2,BKM3], Kang and Melville [KM1,KM2],
Hontz and Misra [HM1,HM2], Klima and Misra [KMi]. In order to discuss these
results on root multiplicities, we introduce some notation for generalized Cartan
matrices. Following [BKM2,BKM3], we define
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IX(a, b) =

⎛
⎜⎜⎜⎜⎜⎝

2 −b 0 · · · 0
−a
0
... C(X)
0

⎞
⎟⎟⎟⎟⎟⎠

where C(X) is the Cartan matrix of a Kac–Moody algebra of type X. For almost
all positive integer values of a and b, IX(a, b) is a generalized Cartan matrix of
indefinite type.

◦ IA1(a, b) =

(
2 −b
−a 2

)
: This is a rank 2 generalized Cartan matrix which is

hyperbolic if ab > 4. Its connection to Hilbert modular forms was observed in an
earlier paper by Lepowsky and Moody [LM]. The root multiplicities of this algebra
were studied in [BKM1,KM2]. In particular, Kang and Melville [KM2] made
various observations on the relationships between root length and root multiplicity
for this algebra.

◦ IAn(a, b) and IXn(a, 1), X = B,C,D: Benkart, Kang and Misra [BKM2,
BKM3] studied the associated indefinite Kac–Moody algebras and found formulas
for root multiplicities for roots of degree ≤ 2a + 1 for type A and of degree ≤ 2a
for other types. The multiplicity formulas are obtained by exploiting representa-
tion theory of finite dimensional simple Lie algebras and involve the Littlewood-
Richardson coefficients and Kostka numbers.

◦ IA
(1)
n (1, 1) = HA

(1)
n : Kang and Melville [KM1] considered the root multiplicities

of the hyperbolic Kac–Moody algebra of this type. (Notice that if n = 1 then we
obtain the algebra F.) They gave a formula for all root multiplicities using the path
realization of affine crystals [KMN1,KMN2], but the formula depends on how to
compute the path realization. Hontz and Misra [HM1] also calculated some root
multiplicities for this type.

◦ ID
(3)
4 (1, 1) = HD

(3)
4 and IG

(1)
2 (1, 1) = HG

(1)
2 : Hontz and Misra [HM2] consid-

ered these types. They chose the subalgebra gl(4,C) to use the inductive method
and the combinatorics of the representations of gl(4,C). They obtained root mul-
tiplicities for roots of degree ≤ 8.

◦ IC
(1)
n (1, 1) = HC

(1,1)
n : Klima and Misra [KMi] used Kang’s formula and the

path realization of the crystals to obtain some root multiplicities and showed that
the multiplicities of these roots are polynomials in n.

The above results exploited various constructions and methods in the representation
theory of finite-dimensional and affine Kac–Moody algebras in order to apply the
inductive method. Root multiplicities of other indefinite algebras were also obtained
by [SUL] and [SLU]. Kang’s methods have been further developed to include
the cases of generalized Kac-Moody algebras [Ka5] and more general graded Lie
(super)algebras [Ka6].
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5. Frenkel’s conjecture

Despite all the results in the previous sections, we still do not have any unified, effi-
cient approach to computing all root multiplicities or explicit bounds. Essentially,
the methods give answers for root multiplicities one at a time, with no general for-
mulas or effective bounds on multiplicities. Furthermore, as far as we know, there
is no conjecture on root multiplicities for general indefinite Kac–Moody algebras.

For hyperbolic Kac–Moody algebras, in the setting of the ‘no-ghost’ theorem from
string theory, I. Frenkel [F] proposed a bound on the root multiplicities of hyperbolic
Kac–Moody algebras.

Frenkel’s conjecture: Let g be a symmetric hyperbolic Kac–Moody algebra asso-
ciated to a hyperbolic lattice of dimension d and equipped with invariant form (· | ·)
normalized to equal 2 on simple roots. Then we have:

dim(gα) ≤ p(d−2)

(
1− (α|α)

2

)
,

where the function p(�)(n) is defined in (3.2).

Remark 5.1. A caveat is that the dimension of a hyperbolic lattice and the rank of
the corresponding Kac–Moody algebra may be different. For example, the dimen-
sion of the even unimodular lattice II25,1 is 26, but the rank of the corresponding
Kac–Moody algebra is infinite. This fact is related to Conway’s work on II25,1
[Con].

Frenkel’s conjecture is known to be true in a number of important cases. In partic-
ular, there is a distinguished symmetric Lorentzian Kac–Moody algebra L of rank
26. The Dynkin diagram of L corresponds to the Dynkin diagram of the 26 di-
mensional even unimodular Lorentzian lattice II25,1. Conway [Con] showed that
the Dynkin diagram is given by the Leech lattice, i.e. the unique 24-dimensional
positive-definite even unimodular lattice with no roots. In [F], Frenkel used the
no-ghost theorem to show that

dim(Lα) ≤ p(24)
(
1− (α|α)

2

)
.

Frenkel’s method gives the same upper bound for the multiplicities of any symmetric
Kac–Moody algebra associated to a hyperbolic lattice of dimension 26, the critical
dimension.

Borcherds computed the root multiplicities of L using Peterson’s recursive formula
([Bo1]), and observed that ‘most’ root vectors of small norm have root multiplicities
equal to Frenkel’s upper bound. He then constructed a generalized Kac–Moody
algebra whose root multiplicities are exactly the same as the Frenkel’s bound. (See
Section 9.)

The conjecture is still open for the rank 3 hyperbolic Kac–Moody algebra F.

Open problem 5. [K, Exercise 13.37] Prove Frenkel’s cojecture for the rank 3
hyperbolic algebra F.
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Klima and Misra [KMi] showed that Frenkel’s bounds do not hold for indefinite
Kac–Moody algebras of symplectic type. However, this case is not of type ADE
and hence is not included in Frenkel’s conjecture.

6. Multiplicities of norm zero root spaces

By the ‘norm’ of a root α, we mean the ‘squared length’ (α|α). A theorem of
Niemann ([Nie]) gives a unified result concerning the multiplicities of norm zero
root spaces in simply laced hyperbolic Kac–Moody algebras with unique affine
subalgebras.

Theorem 6.1. [Nie, Theorem 6.1] Let g be a simply laced hyperbolic Kac–Moody
algebra of rank � with unique affine subalgebra g0. Then the multiplicity of every
norm zero root is �− 2.

The norm zero roots of the rank 3 Feingold–Frenkel algebra F lie on the boundary
of the lightcone of F and occur in lines, each of which is an embedding of the set of

imaginary roots of the unique affine algebra A
(1)
1 . Applying Niemann’s theorem, it

follows that all norm zero roots of F have multiplicity equal to 1.

7. Extended and overextended Dynkin diagrams

Let Δ be a finite indecomposable root system, that is, the Dynkin diagram of a
root system of a finite dimensional Lie algebra. Let Π = {α1, . . . , α�} be the simple
roots of Δ. For Δ indecomposable, there is a unique root θ called the highest root
that is a linear combination of the simple roots with positive integer coefficients.
The highest root θ satisfies (θ, α) ≥ 0 for every simple root α and (θ, β) > 0 for
some simple root β, where (·, ·) is the positive definite symmetric bilinear form
corresponding to Δ.

Let Π′ = Π ∪ {α0}. Then Π′ is called the extended system of simple roots corre-
sponding to Π. Let δ = α0 + θ, and δ is the minimal null root such that (δ, δ) = 0.
The Dynkin diagram of Π′ is called the extended Dynkin diagram or untwisted affine
Dynkin diagram corresponding to Δ. An extended Dynkin diagram has a vertex
labeled 0 corresponding to the root α0.

A generalized Cartan matrix A is called Lorentzian if det(A) �= 0 and A has exactly
one negative eigenvalue. A Lorentzian Dynkin diagram is the Dynkin diagram of a
Lorentzian generalized Cartan matrix. A Lorentzian extension D of an untwisted
affine Dynkin diagram D0 is a Dynkin diagram obtained by adding one vertex,
labeled −1, to D0 and connecting the vertex −1 to the vertex of D0 labeled 0 with
a single edge. A common notation for the Lorentzian extension of some finite simple
Dynkin diagram X is X++. It is sometimes called the over-extended diagram. The
addition of a third additional vertex then is denoted by X+++.

Every Lorentzian extension of an untwisted affine Dynkin diagram is a Lorentzian
Dynkin diagram, in fact a hyperbolic Dynkin diagram.
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Example 7.1 (E10 and E11). Let Δ be the Dynkin diagram for E8. We label the
first vertex of the ‘long tail’ by 1. Adding a vertex labeled 0 and connecting vertices
0 and 1 by a single edge yields the extended Dynkin diagram Δ′ which corresponds

to the affine Kac–Moody algebra E9 = E
(1)
8 . Adding a further vertex labeled −1

and connecting vertices −1 and 0 by a single edge yields the overextended Dynkin
diagram which corresponds to the hyperbolic Kac–Moody algebra E10. Adding still
another vertex yields E11. Hence we have

E+
8 = E9, E++

8 = E10, E+++
8 = E11 .

8. Root multiplicities for E10 and E11

The Lie algebras of types E10 and E11 are of special importance due to various
conjectures describing their appearance in string theory and M -theory. E10 also is
distinguished due to results of Viswanath, showing that any simply-laced hyperbolic
Kac–Moody algebra embeds into E10 ([Vis]).

Bauer and Bernard [BB] found the root multiplicities of E10 and F up to level 3
using the inductive method. However, their computations are written in terms of
conformal blocks rather than partition functions.

Even though Frenkel’s conjecture provides an important guideline to root multiplic-
ities of hyperbolic Kac–Moody algebras, there are some known counterexamples.

For example, Kac, Moody and Wakimoto [KMW] showed that the conjecture fails
for E10. More precisely, using the notations in (3.3), we have

ξ(6) = p(8)(4) + 1 > p(8)(4).

This implies that E10 does not satisfy Frenkel’s conjecture at level 2.

Extensive calculations of root multiplicities of over-extended, simply-laced hyper-
bolic Kac–Moody algebras were done by A. Kleinschmidt in his thesis [Kl1]. His cal-
culations suggest that for the Lorentzian extensions of An andDn, the bounds given
by Frenkel’s conjecture hold. Nevertheless Frenkel’s bounds fail for E++

8 = E10. If
we add one more vertex to the Lorentzian extensions, the behavior of root multiplic-
ities seems to be again in agreement with Frenkel’s conjecture. More unpublished
calculations by A. Kleinschmidt and H. Nicolai confirm these findings, that is,
the failure of Frenkel’s conjecture for E10 at higher levels ([KN]), and validity of
Frenkel’s conjecture for E11 ([KN]). Large tables of root multiplicities of E10 and
E11 can be found in [Kl2].

9. Borcherds’s constructions

As mentioned earlier, Frenkel showed that the root multiplicities of the Lorentzian
Kac–Moody algebra L has an upper bound p(24)(1 − (α|α)/2). We note that the
function p(24)(n) is related to the modular discriminant Δ(z) in the theory of mod-
ular forms, where Δ(z) = q

∏∞
n=1(1 − qn)24 = qϕ(q)24, q = e2πiz for z ∈ H the

upper half plane.
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One can ask: Is it possible to construct a Lie algebra whose root multiplicities are
exactly p(24)(1− (α|α)/2)?

Such a Lie algebra would show ‘modular behavior’. Indeed, in [Bo3], Borcherds
constructed the fake Monster Lie algebra M which contains the Kac–Moody algebra
L and whose root multiplicities are exactly given by p(24)(1− (α|α)/2).

The fake Monster Lie algebra M was obtained from a lattice vertex algebra [Bo2].
Let M be a nonsingular even lattice, and V (M) be the vertex algebra associated
to M . Then we have the Virasoro operators Li on V (M) for each i ∈ Z. We define
the physical space Pn for each n ∈ Z to be the space of vectors w ∈ V (M) such
that

L0(w) = nw and Li(w) = 0 for i > 0.

Then the space GM := P 1/L−1P
0 is a Lie algebra and satisfies the following prop-

erties [Bo2]:

(1) Let g be a Kac–Moody Lie algebra with a generalized Cartan matrix A
that is indecomposable, simply laced and non-affine. If the lattice M
contains the root lattice of g then g can be mapped into GM so that the
kernel is in the center of g.

(2) Let d be the dimension of M , and α ∈ M be a root such that (α|α) ≤ 0.
Then the root multiplicities of α in GM is equal to

(9.1) p(d−1)(1− (α|α)/2)− p(d−1)(−(α|α)/2).

Therefore, when we have a hyperbolic Kac–Moody algebra g with root lattice M ,
the Lie algebra GM contains g and provides an upper bound (9.1) for root multi-
plicities of g. Note that this bound is weaker than Frenkel’s conjecture. The Lie
algebra GM is not a Kac–Moody algebra but a generalized Kac–Moody algebra or
a Borcherds algebra, since it has imaginary simple roots.

When M = II25,1, the fake Monster M is obtained by taking a quotient of GM

by the kernel of a bilinear form, and the no-ghost theorem can be utilized to show
that the root multiplicities are exactly given by p(24)(1 − (α|α)/2). As a result,
Borcherds could write down the denominator identity of M:

e(ρ)
∏

α∈Δ+

(1− e(−α))p
(24)(1−(α|α)/2) =

∑
w∈W
n∈N

det(w)τ (n)e(w(nρ)),

where τ (n) is the Ramanujan tau function defined to be the Fourier coefficients of
Δ(z), i.e.

∑
n∈N

τ (n)qn = q
∏∞

n=1(1 − qn)24 = Δ(z). Borcherds also showed that
the denominator function is itself an automorphic form.

While describing root multiplicities of an indefinite Kac–Moody algebra is very dif-
ficult, Borcherds constructions produce many examples of generalized Kac–Moody
algebras whose root multiplicities are explicitly known. Moreover, Borcherds’s ex-
amples extend some Kac–Moody algebras to generalized Kac–Moody algebras so
that we may obtain automorphic forms from the denominator functions of the gen-
eralized Kac–Moody algebras. Pursuing Borcherds’s idea, Gritsenko, Nikulin and
Niemann constructed generalized Kac–Moody algebras to extend some hyperbolic
Kac–Moody algebras [GN1,GN2,Nie].
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For the hyperbolic Kac–Moody algebra F, possible connections to Siegel modular
forms were noticed by Feingold and Frenkel [FF]. Gritsenko and Nikulin’s construc-
tion indeed shows that the denominator function of the corresponding generalized
Kac–Moody algebra is a Siegel modular form. More precisely, they showed that
there exists a generalized Kac–Moody algebra G which contains F and whose de-
nominator function is the weight 35 Siegel cusp form Δ35(Z), which is called the
Igusa modular form. As a byproduct, they obtained the infinite product expres-
sion of Δ35(Z). Even though this construction manifests the connection of F to a
Siegel modular form, the root spaces of G are much bigger than those of F, and the
construction does not help understand root multiplicities of F.

In his Ph.D. thesis [Nie], P. Niemann constructed a generalized Kac–Moody algebra
G23 which contains F. The denominator function of G23 is closely related to the
eta product η(z)η(23z), where η is the Dedekind η-function. If qη−1(z)η−1(23z) =∑∞

n=0 pσ(n)q
n, q = e2πiz, he showed that

mult(F, α) ≤
{
pσ(1− 1

2 (α, α)) if α /∈ 23L∗,

pσ(1− 1
2 (α, α)) + pσ(1− 1

46 (α, α)) if α ∈ 23L∗,

where L is a certain lattice and L∗ is its dual. This bound is quite close to Frenkel’s
conjecture. Note that we have

∞∑
n=0

pσ(n)q
n = (1 + q23 + 2q46 + · · · )

∞∏
n=1

(1− qn)−1

= (1 + q23 + 2q46 + · · · )
∞∑
n=0

p(n)qn.

One can also compare this with the actual multiplicities of level 2 roots given in
(3.1).

10. Asymptotics by the method of Hardy-Ramanujan-Rademacher

Now that root multiplicities of G23 are given by Fourier coefficients of automorphic
forms, we can apply analytic tools to get asymptotic formulas for these multiplici-
ties; namely, one can use the method of Hardy-Ramanujan-Rademacher to obtain
asymptotic formulas for pσ(1 + n). See e.g. [Leh] for the details of this method.

As for Niemann’s bound, we consider f(z) = η(z)−1η(23z)−1, which is a weakly
holomorphic modular form of weight −1 with respect to Γ0(23), where

Γ0(23) =

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0(mod 23)

}
.

Kim and Lee obtained the following asymptotics using the method of Hardy-
Ramanujan-Rademacher:

Theorem 10.1. [KL]

pσ(n+ 1) =
2π

n
√
23

I2

(
4π

√
n√

23

)
+O

(
n− 1

2 I2

(
2π

√
n√

23

))
,

where I2 is the modified Bessel function of the first kind.
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This result has an immediate implication on root multiplicities of the hyperbolic
Kac–Moody algebra F. For example, if (α, α) = −56 then the main term of the
asymptotic formula gives 4578.99, while the actual value of the Fourier coefficient
is 4576. The exact value of mult(F, α) is 4557. In this way, we can calculate a sharp
upper bound for mult(F, α) even if |(α, α)| is big.

Example 10.2. If α = 10α1 + 10α2 + 5α3 = (10, 10, 5) then − 1
2 (α, α) = 25 and

we have mult(α) = 2434, and the main term of the asymptotics is 2437.16. We
calculate more cases and make a table:

(10.1)

α − 1
2 (α, α) mult(α) main term

(7, 7, 2) 10 56 56.65
(8, 10, 4) 20 792 793.19
(11, 11, 5) 30 6826 6867.52
(11, 14, 7) 40 44258 44975.14

(A table of mult(α) can be found in [K, p.205].)

Using the fact I2(x) ∼ ex√
2πx

, we can see pσ(n+ 1) ∼ e
4π

√
n√

23

n
5
4 23

1
4
√
2
. It is interesting to

compare it with p(n) ∼ e
π
√

2n
3

4n
√
3

and to see the deviation from Frenkel’s conjecture.

This method can be applied to other hyperbolic Kac–Moody algebras and to other
modular forms as shown in [KL].

11. Summary of results on root multiplicities

There are recursive formulas for root multiplicities by Peterson ([P]) and Kang
([Ka2]) as well as closed form formulas by Berman and Moody ([BM]) and Kang
([Ka2]).

A recursive formula for root multiplicities of hyperbolic or Lorentzian Kac–Moody
algebras assumes knowledge of the root multiplicities corresponding to subalgebras
of finite or affine type.

The known closed form formulas of Berman and Moody and Kang require a sub-
stantial amount of information for their application, such as representations and
root multiplicities of subalgebras. Moreover they give answers for root multiplicities
one at a time, with no general formulas or effective bounds on multiplicities.

There are many partial results for root multiplicities of hyperbolic and Lorentzian
Kac-Moody algebras by applying the formulas of Peterson, Berman and Moody,
and Kang with additional external data as in Feingold and Frenkel [FF], Kac,
Moody and Wakimoto [KMW], Benkart, Kang and Misra [BKM1], Kang and
Melville [KM2], Klima and Misra [KMi], Hontz and Misra [HM1], Kleinschmidt
[Kl2], Bauer and Bernard [BB]. However these results do not suggest any unified
approach to computing root multiplicities.

The only result which suggests a unified viewpoint on root multiplicities for hy-
perbolic and Lorentzian Kac–Moody algebras is a conjecture of Frenkel. In this
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approach, it is still an open problem to formulate precise bounds for root multiplic-
ities for hyperbolic and other indefinite Kac–Moody algebras. Such a conjecture
may emerge from connections of hyperbolic Kac–Moody algebras to automorphic
forms, which would make it possible to use powerful, analytic tools.
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