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1. INTRODUCTION

Let . be a free (commutative, associative, or Lie) algebra over a field k,
let S c be a set of relations in ., and let {(S) be the ideal of &
generated by S. One of the fundamental problems in the theory of abstract
algebras is the reduction problem: given an element f €./, one would like
to find a reduced expression for f with respect to the relations in S. One of
the most common approaches to this problem is to find another set of
generators for the relations in S that can replace the original relations so
that one can get an effective algorithm for the reduction problem. More
precisely, if one can find a set S¢ of generators of the ideal {S) which is
closed under a certain composition of relations in S, then there exists an
easy criterion by which one can determine whether an element f €. is
reduced with respect to S or not.

In 1965, inspired by Grobner’s suggestion, Buchberger found a criterion
and an algorithm of computing such a set of generators of the ideals for
commutative algebras [16], which were modified and refined in [17, 18].
Such a set of generators of ideals is now referred to as a Grobner basis, and
it has become one of the most popular research topics in the theory of
commutative algebras (see, for example, [3]). In 1978, Bergman developed
the theory of Grobner bases for associative algebras by proving the
diamond lemma [4]. His idea is a generalization of Buchberger’s theory and
it has many applications to various areas of the theory of associative
algebras such as quantum groups.

For the case of Lie algebras, where the situation is more complicated
than commutative or associative algebras, the parallel theory of Grobner
basis was developed by Shirshov in 1962 [30], which is even earlier than
Buchberger’s discovery. In that paper, which was written in Russian and
never translated in English, he introduced the notion of composition of
elements of a free Lie algebra and showed that a set of relations which is
closed under the composition has the desired property. Shirshov’s idea is
essentially the same as that of Buchberger, and it was noticed by Bokut
that Shirshov’s method works for associative algebras as well [7]. For this
reason, we will call such a set of relations of a free Lie algebra (and of a
free associative algebra) a Grobner—Shirshov basis. (See [2] for a more
detailed history of Grobner—Shirshov basis.) It has been used to determine
the solvability of some word problems [29, 30, 6] and to prove some
embedding theorems [5, 7, 8]. In a series of works by Bokut, Klein, and
Malcolmson, Grobner—Shirshov bases for finite-dimensional simple Lie
algebras and for the quantized enveloping algebra of type A, were
constructed explicitly ([9-11, 14]).
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In this work, we develop the theory of Grobner—Shirshov bases for Lie
superalgebras and their universal enveloping algebras. This paper is orga-
nized as follows. In Section 2, after introducing the basic facts such as
super-Lyndon—Shirshov words (monomials) and composition lemma, we
prove that a set of monic polynomials in a free Lie superalgebra is a
Grobner—Shirshov basis for a Lie superalgebra if and only if it is a
Grdbner—Shirshov basis for its universal enveloping algebra (Theorem
2.8). This is a generalization of the corresponding result for Lie algebras
obtained in [15]. Thus the theory of Grobner—Shirshov bases for Lie
superalgebras and that of associative algebras are unified in this way, and
as a by-product, we obtain a purely combinatorial proof of the Poincaré—
Birkhoff-Witt theorem (Proposition 2.11).

In Section 3, we investigate the structure of Grobner—Shirshov bases for
Kac—-Moody superalgebras and prove that, in order to find a
Grobner—Shirshov basis for a Kac—Moody superalgebra, it suffices to
consider the completion of Serre relations of the positive part (or negative
part) which is closed under the composition (Theorem 3.5). As a corollary,
we obtain the triangular decomposition of Kac—Moody superalgebras and
their universal enveloping algebras (Corollary 3.6). Our result in this
section is a generalization of the corresponding result for Kac—Moody
algebras obtained in [14].

Finally, in Section 4, we give an explicit construction of
Grobner—Shirshov bases for classical Lie superalgebras. The outline of our
construction can be described as follows. We first start with a Kac—Moody
superalgebra which is isomorphic to a given classical Lie superalgebra.
Using the supersymmetry and Jacobi identity, we expand the set of Serre
relations to a set R of relations and determine the set B of R-reduced
super-Lyndon—Shirshov monomials. Now comparing the number of ele-
ments of B with the dimension of the corresponding classical Lie superal-
gebra, we conclude that the set R is indeed a Grobner—Shirshov basis.

2. GROBNER-SHIRSHOV BASES FOR
LIE SUPERALGEBRAS

Let X = X5 U X7 be a Z,-graded set with a linear ordering <, and let
X* (resp., X*) be the semigroup of associative words on X (resp., the
groupoid of nonassociative words on X). Then the semigroup X* (resp.,
the groupoid X*) has the Z,-grading X* = X§ & X7 (resp., X* = X7 &
X7) induced by that of X. The elements of X7 and XZ (resp., X3 and
X7) are called even (resp., odd).



464 BOKUT ET AL.

We denote by I(u) the length of a word u and the empty word is denoted
by 1. For an associative word u € X*, we can choose a certain arrange-
ment of brackets on u, which will be denoted by (u). Conversely, there is a
canonical bracket removing homomorphism p: X# — X* given by p((u))
=u for u € X*.

We consider two linear orderings < and < on X* defined as
follows:

(i) u <1 for any nonempty word u; and inductively, u < v when-
ever u = xu', v =x;v',and x; <x; or x; =x; and v’ < v’

(i) u<viflw) <Il(v)orl(u)=I(v)and u < v.

The ordering < (resp., <) is called the lexicographical ordering (resp.,
length-lexicographical ordering). We define the orderings < and < on
X# by (i) u < v if and only if p(u) < p(v), and (ii) u < v if and only if
p(u) < p(v).

A nonempty word u is called a Lyndon—Shirshov word if u € X or
vw > wo for any decomposition of u = vw with v,w € X*. A nonempty
word u is called a super-Lyndon—Shirshov word if either it is a
Lyndon-Shirshov word or it has the form u = vv with v a Lyndon-Shirshov
word in Xi. A nonempty nonassociative word u is called a
Lyndon—Shirshov monomial if either u is an element of X or

() if u=uyu,, then u,,u, are Lyndon—Shirshov monomials with
Up > Uy,
(i) if u = (vw,)w then v, < w.

A nonempty nonassociative word u is called a super-Lyndon—Shirshov
monomial if either it is a Lyndon-Shirshov monomial or it has the form
u = vv with v a Lyndon-Shirshov monomial in X7.

Remark. In some literatures, the Lyndon-Shirshov words have been
referred to as regular words, normal words, Lyndon words, etc. Since the
definition of Lyndon-Shirshov words dates back to the works by Chen,
Fox, and Lyndon [19] and Shirshov [27], we decide to call them
Lyndon-Shirshov words. The definition of super-Lyndon-Shirshov words
can be found in [1, 24].

The following lemma asserts that there is a natural 1-1 correspondence
between the set of super-Lyndon—Shirshov words and the set of super-
Lyndon-Shirshov monomials.

LEMMA 2.1 ([1, 19, 24, 26]).  If u is a super-Lyndon—Shirshov monomial,
then p(u) is a super-Lyndon—Shirshov word. Conversely, for any super-
Lyndon—Shirshov word u, there is a unique arrangement of brackets [u] on u
such that [u] is a super-Lyndon—Shirshov monomial.
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Let k be a field with char(k) # 2,3, and let &/, be the free associative
algebra generated by X over k. The algebra ./, becomes a Lie superalge-
bra with the superbracket defined by

[x y] =xy — (_1)(d69x)(degy)

yx

for x,y €. Let & be the subalgebra of &/, generated by X as a Lie
superalgebra. Then %, is the free Lie superalgebra generated by X over
k. As we can see in the following theorem, there is a canonical linear basis
for the free Lie superalgebra .%;:

THEOREM 2.2 ([1, 19, 24, 26]). The set of super-Lyndon—Shirshov mono-
mials form a linear basis of the free Lie superalgebra &, generated by X.

Remark. The existence of linear bases for free Lie algebras of this form
was first suggested by Hall [22], and later by Shirshov in a more general
form ([26, 28]). The linear basis for a free Lie superalgebra given in the
above theorem is called the Lyndon—Shirshov basis. 1t is a special case of
the Hall-Shirshov basis.

Given a nonzero element p €./, we denote by p the maximal mono-
mial appearing in p under the ordering <. Thus p = ap + X Bw, with
a, B €k, w,eX* a+0, and w, < p. The coefficient « of p is called
the leading coefficient of p and p is said to be monic if o« = 1.

The following lemma plays a crucial role in defining the notion of Lie
composition.

LEMMA 2.3 ([19, 24, 26]). Let u and v be super-Lyndon—Shirshov words
such that v is contained in u as a subword. Write u = avb with a,b € X*.
Then there is an arrangement of brackets [u] = (a[v]b) on u such that [v] is a
super-Lyndon—Shirshov monomial, [u]= u and the leading coefficient of [u]
is either 1 or 2.

Let u = avb be a super-Lyndon-Shirshov word, where v is a super-
Lyndon-Shirshov subword and a,b € X*. We define the bracket on u
relative to v, denoted by [u],, as:

() [ul, = (alv]b) if the leading coefficient of [u] is 1,
(i) [ul, = %(alv1b) if the leading coefficient of [u] is 2,

where the arrangement of brackets [u] on u is the one described in
Lemma 2.3. Note that [u], is monic and [u],= u.

Similarly, if p is a monic polynomial in the free Lie superalgebra &,
such that p is super-Lyndon-Shirshov, then we define the bracket on u
relative to p, denoted by [u], to be the result of the substitution of p
instead of p in [u];. Clearly, [u], is monic and [u], = u.
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We now define the notion of associative composition of the elements in
the free associative algebra .7, generated by X. Let p,g be monic
elements in &/, with leading terms p and g. If there exist a, b € X* such
that pa = bg = w with I(p) > I(b), then we define the composition of
intersection (p, q),, to be

(P, q)w =pa — bq. (2.1)

If there exist a,b € X* such that p = agb = w, then we define the
composition of inclusion to be

(p.q9)w =p — aqb. (2.2)

Note that we have ( p, g), << w in either case.

Next we proceed to define the notion of Lie composition of the elements
in the free Lie superalgebra &%, generated by X. Let p,q be monic
polynomials in the free Lie superalgebra %, with leading terms p and gq.
If there exist a, b € X* such that pa = bg = w with I(p) > I(b), then we
define the composition of intersection { p, q),, to be

prqw=1[wl, = [wly (2.3)

If there exist a,b € X* such that p = agb = w, then we define the
composition of inclusion to be

(p.gow=p—[wl. (2.4)

We have Zp, qyw << w in this case, too.

Remark. Our definition of Lie composition is essentially the same as
the one given in [6, 23, 24, 29]. We modified the definition in [6, 23, 24, 29]
to define the Lie composition { p, g), at one stroke.

Let S be a set of monic polynomials in %, C./, let I be the (Lie) ideal
generated by S in the free Lie superalgebra %, and let Jbe the (associa-
tive) ideal generated by S in the free associative algebra .o,. We denote by
L =%,/I the Lie superalgebra generated by X with defining relations S
and let (L) =/, /J be its universal enveloping algebra.

For f,g e, and w € X*, we write f=, g mod(S,w) if f—g=
Y a;a;s;b;, where «; € k, a;,b, € X*, 5, € S with asb;, < w for each i.
Similarly, for f, g €%, and w € X*, we write f =, g mod(S,w) if f — g
= Ya,(als)b,), where o; € k, a;, b; € X*, 5, € S with (a,(s;)b;) < w for
each i. The set § is said to be closed under the associative composition
(resp., Lie composition) if for any f, g € S, we have (f, g),, =, 0 (resp., {f,
2o =; 0) mod(S, w).
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A set of monic polynomials S in the free Lie superalgebra .%; is called
a Grobner—Shirshov basis for the ideal J (resp., for the ideal I) if it is
closed under the associative composition (resp., Lie composition). By
abuse of language, we also refer to S as a Grobner—Shirshov basis for the
associative algebra %(L) and for the Lie superalgebra L, respectively. An
associative word u is said to be S-reduced if u # asb for any s € S and
a,b € X*. A nonassociative word u is said to be S-reduced if p(u) is
S-reduced.

The following lemma is a generalization of Lemma 1 in [9].

LEMMA 2.4. (@) Every nonempty word u in the free associative algebra
&y can be written as

u= Y ou; + ) Basb;, (2.5)

where u, is an S-reduced word, «;, B; € k, a;, bj e X*, s; € S, andajs_jbjﬁu
for all i, j. Hence the set of S-reduced words spans the algebra %/ (L).

(b)  Every super-Lyndon—Shirshov monomial u in %, can be written as
w= Y au; + Y B(a;(s)b), (2.6)

where u; is an S-reduced super-Lyndon—Shirshov monomial, «;, B € k,
a, b, € X* s, €S, and (aj(sj)bj)ﬁﬁ for all i, j. Hence the set of S-re-
duced super-Lyndon—Shirshov monomials spans the Lie superalgebra L.
Proof. Since the proof of (a) is similar to that of (b), we only give a
proof of (b). If u is S-reduced, we are done. Thus we assume that uz = asb
for some s €S, a,b € X*. Then u and § are super-Lyndon-Shirshov
words and u — a[u],< u for some « € k. Since u — a[u], is a linear
combination of super-Lyndon-Shirshov monomials whose leading terms
are less than &, we may proceed by induction, which completes the proof.

The following lemma plays a crucial role in our discussion of Grobner-
Shirshov bases. It is originally due to Shirshov [30] and is now known as the
composition lemma.

LemmMA 2.5 (cf. [1, 6, 24, 30)). If S is a Grobner—Shirshov basis for the
ideal J, then for any f € J, the word f contains a subword s with s € §.

It is clear that if a polynomial f.%, satisfies f=, 0 mod(S,w) for
w e X*, then f=, 0 mod(S,w). The converse is also true if S is closed
under the associative composition.

LEMMA 2.6.  Assume that S is closed under the associative composition. If
a polynomial f € %, satisfies f =, 0 mod(S,w) for w € X*, then f=, 0
mod(S, w).
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Proof.  Suppose f =, 0 mod(S,w) for w € X* and our assertion holds
for all w < w. Then f e J, and by the composition lemma, f = asb for
some a,b € X* and s € S. Since f—[f], =, 0 mod(S, f) and f < w,
our assertion follows by induction. i

LEMMA 2.7. Let f,g €S be monic polynomials in £, such that the
associative composition (f, g),, is defined. Then we have

(f.8)w =4 {f g mod(S,w). (2.7)

Proof. We consider the composition of intersection only. The proof for
the composition of inclusion is similar. Recall that [w], = fa + Y a;a, fb;
with a,fb, < w and [wl, = bg + X B,c;gd; with c;gd; < w. Thus {f, g

[w]f [w] =fa — bg +h=C(fg),+h where h=,0 modS,w).
Hence (f, g)w =, {f, g mod(S,w). 1

Combining Lemmas 2.6 and 2.7, we obtain the main result of this
section, which is a generalization of the main theorem in [15].

THEOREM 2.8. Let S be a set of monic polynomials in the free Lie
superalgebra %.. Then S is a Grobner—Shirshov basis for the Lie superalgebra
L =%;/1 if and only if S is a Grobner—Shirshov basis for its universal
enveloping algebra %(L) = %/, /J. That is, S is closed under the Lie composi-
tion if and only if it is closed under the associative composition.

The following proposition, which is a generalization of Proposition 2 in
[9], provides us with a criterion for determining whether a set of monic
polynomials in the free Lie superalgebra is a Grobner—Shirshov basis
or not.

ProPosITION 2.9. (a) If the set of S-reduced words is a linear basis of
%(L) =y /], then S is a Grobner—Shirshov basis for the ideal J of /y.

(b) If the set of S-reduced super-Lyndon—Shirshov monomials is a
linear basis of L =%, /1, then S is a Grobner—Shirshov basis for the ideal 1
of %.

Proof. Since the proof of (b) is the same as (a), we prove (a) only.
Suppose on the contrary that S is not closed under the associative
composition. Then there exist f, g € S such that (f, g),, #, 0 mod(S,w)
for w € X*. By Lemma 2.4, we may write

(f 8)w = Lo+ Y. Bja;s;b;,

where «;, B; € k, u, is S-reduced, a;, b; € X*, 5; € S, and a;sb; < w for
all i and j. Since (f, g),, #, 0 mod(S,w), we have Xa;u; # 0 in /. Since
the set of S-reduced words is a linear basis of #(L), we have Y a;u; # 0 in
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2(L). But, since (f,g), €J, we have Yo,u;, =0 in %(L), which is a
contradiction. |

Conversely, by Lemma 2.4 and the composition lemma, we can show
that a Grobner—Shirshov basis gives rise to a linear basis for the corre-
sponding algebras.

THEOREM 2.10. (@) If S is a Grobner—Shirshov basis for the Lie superal-
gebra L =%y /1, then the set of S-reduced super-Lyndon—Shirshov monomi-
als forms a linear basis of L.

(b) If S is a Grobner—Shirshov basis for the universal enveloping
algebra % (L) = o/ /J of L, then the set of S-reduced words forms a linear
basis of %(L).

Proof.  Since the proof of (b) is similar to that of (a), we prove (a) only.
By Lemma 2.4 the set of S-reduced super-Lyndon—Shirshov monomials
spans L. Assume that we have a,u; = 0 in L, where o; € k and u; are
distinct S-reduced super-Lyndon—Shirshov monomials. Then Y o,u; € I in
the free Lie super algebra %,. Since I CJ, we obtain X o,u; € J. By the
composition lemma (Lemma 2.5) the leading term Y a,u; contains a
subword § with s € S. Since each u; is S-reduced, we must have «; =0
for all i. Hence the set of S-reduced super-Lyndon—Shirshov monomials is
linearly independent. |

As a corollary, we obtain a purely combinatorial proof of the
Poincaré-Birkhoff-Witt theorem.

ProposITION 2.11. Let L = L ® Ly be a Lie superalgebra with a linear
basis Z = {z,, z,,...} such that each z; is homogeneous with respect to the
Z ,-grading. Then a linear basis of the universal enveloping algebra % (L) of L
is given by the set of all elements of the form z; z; -+ z; where i} < i, and
g # i1 if z;, € Ly

Proof. LetY ={y,,y,,...} be aZ,graded set identified with the set Z
by a map « such that «(y;,) =z, and «(Y,) = Z, with « € Z,. Let &, be
the free Lie superalgebra generated by Y. Let S C.¥, be the set of
elements of the form

[yiyj] - Z aiﬁ)’kv
k

where i >jand i #j if y, € Y5, and ai’; is the structure constants given by
the equation [z,z,] = X, ai’;zk in L. Let [ be the ideal of %, generated by
S. Then, clearly, %, /I is isomorphic to L and the set of S-reduced
super-Lyndon-Shirshov monomials is just the set Y. By Proposition 2.9 the

set S is a Grobner—Shirshov basis for L and then by Theorem 2.8 the set
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S is also a Grobner—Shirshov basis for Z(L). Now our assertion follows
from Theorem 2.10. |}

Let S be a set of relations in the free Lie superalgebra %, generated by
X. We will see how one can complete the set S to get a Grobner—Shirshov
basis. For any subset T' of %y, we define T= {p/al| a € k is the leading
coefficient of p € T). Let S© = § and S0y = {{f, g #, 0 mod(S@,w) |
f,g €8P For i>1, set S, ={{f gl #. 0 mod(SV,w)|f, g e S}
and §© = S¢-Dy S

Then the set S¢ = U,>0 S% is a Grobner—Shirshov basis for the (Lie)
ideal I generated by S in <. Hence, by Lemma 2.7, it is also a
Grobner—-Shirshov basis for the (associative) ideal J generated by S in %, .
It is easy to see that if every element of S is homogeneous in x; € X, then
every element of S¢ is also homogeneous in x;’s.

3. KAC-MOODY SUPERALGEBRAS

We now investigate the structure of Grobner—Shirshov bases for
Kac—Moody superalgebras. Our result is a generalization of the work by
Bokut and Malcolmson [14] on the Grcobner—Shirshov bases for Kac—
Moody algebras. In the section, since we consider the associative congru-
ences only, we use the notation = in place of =, .

Let Q ={1,2,...,r} be a finite index set and = be a subset of Q. A
square matrix A = (a;;); ;<o Is called a generalized Cartan matrix if it
satisfies:

() a,=2or0fori=1,...,randif a; =0, then i 71,
(i) if a; # 0, then a;; € Z_, for i #,
(iii) a;; = 0 implies a; = 0,

(iv) if a; =2and i€ 7, then q;; € 27.

Let E={e}lcq, H={h}icq F={f)icq, and X=EUHUF. We
define a Z,-grading on () by setting degi = 0 for i & 7 and degi = 1 for
i€, and on X Dby dege;, = deg f; = degi and deg A, =0. We give a
linear ordering on X by e; > h; > f, for all i,j,k€Q and e, > ¢,
h; > h;, f; > f; when i > j. Then we have the lexicographic ordering and
the length-lexicographic ordering as in Section 2. We denote the left
adjoint action of a Lie superalgebra by ad and the right adjoint action by ad.
The Kac—Moody superalgebra & = £( A, 7) associated to (A, ) is defined
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to be the Lie superalgebra with generators X and the following defining
relations,

Wikl (i>)),
[eifi] = 8k [eh] +aye;,  [Mfi] +ayf,
S, i(ade) e, (i>)),
ei(é‘&ej)lfnfi (i >j),
S, o [[exsr exllex,ex_1]]  fork e, (3.1)
S_at(ad )" (> ),
rladr) ™" >,
Sz [[feer Fllfes fioal] Tor k€ m,

where
a; ifa;=2o0ra;=0

M=\ 21 ifa;—Oanda;#0 O F (3.2)

and 7 is the set of indices k such that k7, k+1¢& 7, a, =0,
a1 4-1=0 and a;,,, +a,, =0 Let §, =5, ,US,, and
S(A4,7)=S,UWUS_. We denote by Z_ (resp g, and Z_) the
subalgebra of z generated by E (resp., H and F).

Set t,; = [e,f;1 — & ;h;, which belong to the relations W. We define the
dzﬂerentzal substltutzon d9; = d(e; = h;) acting as a right superderivation on
& by

(e)& lj j’
(w)d; = u(v) 3, + (- 1) (W) g0 for u,v €.

(3.3)

It is easy to prove that for any p €.,
pf = (—1) 9Py 4 (p) 3, mod(W,w) (3.4)

for some w > pf;. Note that ;9; is also a right superderivation on .%;.

LeEmmA 3.1. Let p be a homogeneous monic element of & such that
(p.t;)), is defined for w € X*. Then we have

(pvtij)w = (P)‘}; mod({p} U W,w).
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Proof. It suffices to consider the composition of intersection. We can
write p = p + p’ with p = be;, where all the terms of p’ are lower than p.
Then w = pf; = be,f;. Since p is homogeneous, deg p = deg p’. From
(3.4), we have

(deg i)deg /)
(P,tij)w =Pfj - b(eifj - (-1 e/ fjei - 5ijhj)
:prfj + (_1)(deg i)(deg j)bfl»ei + ‘Sijbhj
_ ( X ) ’ "N
=(-1) dea pdes s (f;P +fjbei) +(p )&j
+ ( _ l)(deg i)(deg j)(b) b;ei + Sijbhj

_ ( X ) >~
= (—1)" P9 b+ (p)a,

= (p)d, mod({p} U W,w).

In the rest of this paper, we omit brackets whenever it is convenient.
Namely, the Lie product [a, b] is written as ab. Moreover, (ad x)"y is
written as x"y and x(ady)” as xy”. It would be clear from the context
whether a product ab means a Lie product or not.

We write f = g mod(S, n) if f — g = La;a;s;b; with I(a,5,b;) < n, where
ne€lZ., o €k, a,b, €X* and s, €8S.

LEmMMA 3.2, Letp € S.. Then foranyl = 1,...,r, we have

(p)d; = 0mod(S, U W,I(p)).

Proof.

Case 1. Relation S, ;:
Since e} "ie; = ae;e; "1 with « € k, it suffices to prove our assertion for
p =e;je; " for i #j. We first consider the case when a,, = 2. We have
only to check the cases when [ =i and [/ =j. If [ = i, we have

(p)d, = (et )3,
= (eyer )i+ (=)™ ((eje; 1) )e
+(=1)7 0 (ejey 072 hy)e? 4 o+ (—1) U (e e
= ajjeje; i+ (=1)*(a; — 2)e;e

+(_l)2degi(aij _ 4)ejei—ai/- 4o +(_1)*aijdegi(_aij)ejei_ail'
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If i & 7, then, clearly, the coefficient of ee;“v is 0. If i € 7, then
a;; € 27 by the assumption on the generalized Cartan matrix A, and
hence the coefficient of ¢;e; i is also 0.

Similarly, if / = j, we have

(p)gj' — (ejei_l_—a”.)g; — (_l)(lfaij)(deg i)(degj)h-e}_a”

J

ae;e; ‘i =0.

= ( _ l)(l—a[/-)(deg i)deg j)

The proof for the case a;; = 0 is the same.

Case 2. Relation §, ,:
Let p = (e, e, Nece, ,) With k € n. If [ = k — 1, since (e, , ,e,)e, OF
e, 1€, i1sin S, we have

(P):jkfl: ((ek+lek)(ekek 1))07k 1= (erren)(ehy_q)
—a_q (eprrer) ey

0mod(S, U W,I(p)).

Similarly, (p)d, ., = 0 mod(S, U W, I(p)).
If I =k, since a; ,_, +a;,,,=0and ¢, ,e,_, €S, we have

(P)%c = ((ek+1ek)(ekek71))§'k
= (exs1er)(hper_q1) — (exrihy)(eper—q)
=a; joq(epirei) €1+ ay rr€pia(ener_q)

= (g o1+ ag gr1)erra(ener_1) T ap o1(epiep) ey

0mod(S U W,I(p)).

LemMA 3.3. For any elementp € S andj = 1,...,r, we have

(p)d; = 0mod(S U W, I(p)).

Proof. As we have seen in Section 2, we have S¢ = US{ with
SO c SU*Y for i > 0. Hence our assertion is equivalent to saying that if
p €SP, then (p)a = 0 mod(S U W, I(p)) for each i > 0. We use induc-
tion on i. For i =0, it is simply Lemma 3.2. Suppose that (q)a =0
mod(S® U W, I(g)) forall g € S©. Let p € SV \ S¢. Then p = (q, o
for some ¢g,r € S¢ and (q,r}w =(q,r), mod(SE?,w) by Lemma 2.7.
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Since I(w) = I(p), we have
(q, 3, = (q,7),d; mod(SY U W, 1(p)).

Thus it is enough to show that (g, r)w(}; =0 mod(SY U W, I(p)). Write
p = (q,r), = gqa — br. Then by the induction hypothesis, we have

(q,l‘)ngt _ q(a)&"’j + (_l)(dega)(degj)(q)o-)"’ja _ b(r)o'?N/
(deg r)(deg ) ~
-(-1 ! (b)‘?jr

= 0mod(SY U W,I(p)).

Combining Lemmas 3.1 and 3.3, we obtain:

ProposITION 3.4.  For any element p € S, we have

(pitidw = (p,tij)w = 0mod(S$ U W,w).

Proposition 3.4 implies that all the compositions between the relations
in §< and W are trivial. Similarly, one can show that all the compositions
between the relations in S¢ and W are also trivial. Now we can present
the main theorem of this section.

THEOREM 3.5. Let & = Z(A, 1) be a Kac—Moody superalgebra with the
set of defining relations S(A,7) = S, U WU S_. Then the set S U WU §¢
is a Grobner—Shirshov basis for the Kac—Moody superalgebra (A, 7). That
is, S(A,7)° = 8% U WU S°. Hence it is also a Grobner—Shirshov basis for
the universal enveloping algebra %(%) of Z(A, 7).

Proof. By definition, there is no nontrivial composition among the
relations in S¢ and the relations in S¢ and S$¢ . Also, all the compositions
between the relations between S< and W are trivial (see the remark after
Proposition 3.4). Thus we have only to consider the compositions among
the elements in W. We will show that {p,g), =0 mod(W,w) for all
p.q € W, where w € X* is determined by p and g. There are four cases
to be considered.

If p="hh; (i>))and q = h;hy (j > k), then w = h;h;h, and

{(p.q)w= [W]p - [W]q = (hihj)hk - hi(hjhk)
= (h;hy)h; = 0 mod(W,w).
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If p=eh; + a;e; and g = h;h;, (i > k), then w = e;h;h, and
(P, @ = [W]p - [W]q = (ejhi)hk + aijejhk - ej(hihk)
(ejhk)hl- +a hy

ijeih = —ayeh; + a;e;

= a,;a;e; — a;a;e; = 0mod(W,w).

ij€j ij€i
Similarly, if p=~hh; (i>j) and g =h,f, +a,f,, then (p,q), =0
mod(W,w). Finally, if p =eh; + a;e; and q = h,fi + a; f;, then w =
e;h;f, and

(P, gl = [W]p - [W]q = (ejhi)fk + aijejfk - ej(hifk) - aikejfk
= (eifi)hi + a;ieif, — aye;fy
= 8 hih; + 8a;;h; — Sy a,h; = 0mod(W,w),

LY
which completes the proof. |

As a corollary, we obtain the triangular decomposition of Kac—Moody
superalgebras and their universal enveloping algebras.

COROLLARY 3.6. Let & = £(A, 1) be a Kac—Moody superalgebra. Then
we have

=g, 05,07_ (3.5)
and
UZ)=U(%,) ®U(%) ®U(Z_) (3.6)
as k-linear spaces.

Proof. Observe that any super-Lyndon-Shirshov monomial of degree
> 2 cannot be W-reduced if it contains 4, or e;f; as a subword. Hence by
Theorem 3.5, the set B of S(A, r)-reduced super-Lyndon-Shirshov
monomials is given by B = B, U H U B_, where B, (resp., B_) is the set
of S¢ -reduced (resp., S¢-reduced) super-Lyndon—Shirshov monomials in
e;’s (resp., f;’s). By Theorem 2.10, B is a linear basis of &, which proves
the k-linear isomorphism (3.5). The isomorphism (3.6) follows from the
Poincaré—Birkhoff—-Witt theorem. |

4. CLASSICAL LIE SUPERALGEBRAS

In this section, we give an explicit construction of Grobner—Shirshov
bases for the classical Lie superalgebras. A Grobner—Shirshov basis S is
said to be minimal if no proper subset of S is closed under the Lie
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composition. We first set up some notations. Recall that we omit brackets
whenever it is convenient. For the elements x; € X, we set [x,x, --- x,,] =
xlx, - x,land {x; -+ x,,_;x,} ={x; - x,_x,, (m=>=D. If i >j, we
write x;; = [x;x;_; -+ x;]. For simplicity, we also denote x; = x;. We use
the lexicographical ordering for the set Q X Q: (i, j) > (k, ) if and only if
i>kori=k, j>1I

We briefly recall the definition of classical Lie superalgebras [21]. Let
V = V5 @ V7 beaZ,-graded vector space with dim 5 = m and dim V7 = n,
and let L be the space of k-linear endomorphisms of V. For each « € Z,,
set

L,={T:V->VIT(V,)CV,,,forall g z,}.

[e3 o

Then L has a Z,-graded decomposition L = Lz ® Ly and it becomes a
Lie superalgebra with the superbracket defined by

[X,Y]=XxY - (-1)*vXx

for XelL, YELg a, B€Z, The Lie superalgebra L is called the
general linear Lie superalgebra and is denoted by gl(m, n).

Let v,,...,v,, be a basis of V5 and v, 4,...,0,,,, be a basis of 7.
Then L can be interpreted as the space of (m + n) X (m + n) matrices
over k, and we have

L= {(’g g)‘A isan m X m matrixand D isann X n matrix},

L; = {(g g)‘B isan m X n matrixand C isan n X m matrix}.

For

X = (‘é g) egl(m,n),

we define the supertrace of X to be str X = tr 4 — tr B, where tr denotes
the usual trace function. Then the subspace si(m, n) of gl(m, n) consisting
of the matrices with supertrace 0 forms a Lie superalgebra which is called
the special linear Lie superalgebra.

Let B be a nondegenerate consistent supersymmetric bilinear form on
V. Thus V5 and V; are orthogonal to each other, B |, ., is symmetric,
and B |y, . is skew-symmetric (which implies n must be even). For each
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a € Z,, define
osp(m, n).,
= (T € gl(m.n) JB(Tv,w)
= —(=1)*“*"B(v,Tw) forall v,w € V'}.

Then the subspace osp(m, n) = osp(m, n)z ® osp(m, n); becomes a Lie
superalgebra. We set

B(m,n) = osp(2m + 1,2n) (m=0,n>0),
C(n) = osp(2,2n — 2) (n=2)), (4.1)
D(m,n) = osp(2m,2n) (m=2,n>0).
These subalgebras are called the ortho-symplectic Lie superalgebras of type
B(m, n), C(n), and D(m, n), respectively.
4.1. The Special Linear Lie Superalgebra sl(m, n) (m,n > 0)
Let E;; denote the (m + n) X (m + n) matrix whose (i, j)-entry is equal

to 1 and all the other entries are 0, and let

x,=E .1, vi=E.,,; (i=1,2,....,m+n—1). (4.2)

Then the elements x;,y;,,z; =[x, y,] (i =1,2,...,m +n — 1) generate
the Lie superalgebra si(m, n).
On the other hand, let O ={1,2,...,m +n -1}, 7={m} C Q, and
consider the generalized Cartan matrix A4 = (a;;), ;< o defined by
a =0, Ay mer =1, a -1,

~1 ifli—jl=1 and (i,j) # (m,m+1), (4.3)

m+1l,m =

S
It

0 ifli—jl> 1.

S
I

Let & = 2(A, 7) be the Kac—Moody superalgebra associated with (A4, 7)
and denote by ¢, f;, h;, (i = 1,...,m + n — 1) the generators of &. Then
it is straightforward to verify that the generators x;,y,, z; i = 1,...,m +
n — 1) of the Lie superalgebra si(m, n) also satisfy the defining relations
of the Kac—Moody algebra & = £(A, 7). Hence there exists a surjective
Lie superalgebra homomorphism ¢: & — sl(m, n) givenby e; = x;, f; = y,,
h,—»z,(i=212...,m+n-1).

In the following lemma, we derive more “refined” relations of &, which
are used to construct a Grobner—Shirshov basis for the special linear Lie
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superalgebra s/(m, n). Recall that we use the notation e;; = [e;e;_;, - ¢]
fori>jande; =e,.

LEMMA 4.1.  In the Kac—Moody superalgebra & = Z( A, 1), we have

e = 6,y ey forall (i,j) = (k,1). (4.4)

Proof. We proceed in several steps.

Step 1. Forall j >k + 1, we have ¢;;e,, = 0.

By the Serre relations, we have e;e, = 0 for all j >/ + 1. Next, fix / and
assume that j > k£ + 1, kK > [. Then by the Jacobi identity and induction
hypothesis, we get

d
eier =ei(exer_1) = (ee)e_1, + (1) ex(eje_1) =0,

where d = (deg e;)Xdeg e, ) € Z,. Finally, fix j and assume that i >j > k
+ 1. Then the induction argument yields

ejen = (ee,_1 ;)ey =ee_yq ex) + (_1)d(eiekl)eifl,j =0,
where d = (deg ¢;)deg e;_,) € Z,.

Step 2. Forall i, j, k € Q, we have e;;e;_; , = e;.
If i = j, there is nothing to prove. If i > j, then by induction argument
and Step 1, we obtain

d
€ii€i—1k = (eiei—l,j)ej—l,k = ei(ei—l,jej—l,k) +(-1) (eiej—l,k)ei—l,j

=€€i_1,k = Ciks

where d = (deg e,Xdege;,_,) € Z,.

Step 3. Forall i > j, we have ¢;e;; = 0 and ¢;;e; = 0.
By the Serre relations, we have e;e;;_; =0. If i >j + 2, then Step 2
implies e;; = e, ;,_,¢;_, ;. Hence by Step 1, we obtain
d
€;¢;j = ei(ei,i—lei—z,j) = (eiei,i—l)ei—z,j +(-1) ei,i—l(eiei—z,j) =0,

where d = (deg e;)(deg e, ; ) € Z,.

Similarly, we get ¢;;e; = 0 for i > j.
Step 4. Forall k,1 > 1, we have h;e;,, ; ,=0.
By the relations in W, we obtain

hiei iy i1 = (ai,i+1 t+a; + ai,i—l)ei+k,i—l =0.
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Step 5. For all i > j, we have e;e;_, = 0.

If j =i—1, then by the Serre relations, we get e¢;e;_; = 0. Suppose
first that j <i — 1 and i — 1 # m. Then by Step 3, we obtain

(eijei—l)ei—l = ((eieifl,j)eifl)ei—l
= (ei(ei—l,jei—l) + (_1)d(eiei—l)ei—l,j)ei—1
= (_1)d(eiei—1)(ei—1,jei—1) + (_1)d,((eiei—1)ei—1)ei—1,j
=0,

where d = (deg e;)X(deg e;_,) and d’' = (dege;_;Xdege,_; ;). Multiplying
both sides by f;_, yields

0= ((eijei—l)ei—l)fi—l
= (eijei—l)(ei—l i—1) T ((eijei—l)fi—l)ei—l
= (eijei—l)hi—l + (eijhi—l)ei—l + ((eijfi—l)ei—l)ei—l'

The second summand is equal to 0 by Step 4. Since e,;f;_; is a scalar
multiple of e;e;_, ;, the third summand is also equal to 0. By the Jacobi
identity and Step 4, the first summand yields 2e;;e;_; = 0, which proves
our claim.

If j<i—1andi—1=m,since (e,, e,)Ne,e,_.) =0 by the Serre
relations, we get

Cm+ 1,jem

= em+l(emjem) - (em+lem)emj

— (€ lem)(em(em—lem—z,j))

_(em+lem)((emem—l)em—z,j)
= _((€m+1em)(ememfl))emf2,j + (emem—l)((emﬂem)em—z,j)

=0.

Step 6. Foralln>k>=0,m>1>0,wehavee,, ; , i€,ism1=0.
Suppose k = 0. If [ = 0, then we have to show that e,e,, = 0. Note that

0= em(emem—l) = (emem)em—l - em(emem—l) = (emem)em—l'
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Multiplying both sides by f,,_,, we obtain

0 = ((emem)emfl)fmfl
= (emem)(emfl mfl) + ((emem)fmfl)emfl
= (emem)hmfl = 2emem'

which implies e,e,, = 0.

Next, suppose [ > 0. If ¢ 0, then

m,m—lem,m—l =
O = ((em,mflem,mfl)emflfl)emflfl
= (em,m—lem,m—l—l)em—l—l + (em,m—l—lem,m—l)em—l—l
= 2em,m—l—lem,m—l—l’

which yields ¢, ,, , e, , ;1 = 0. Hence, by the downward induction,
we conclude e, ,, e, ,_,=0forall m>1=>0.

Finally, if £ > 0, then our assertion follows from the same downward
induction argument as above.

Step 7. Forall k> k', I <I',wehavee, ;. i€,it.mr=0.
Suppose k' = k. If [ =1', then our assertion was proven in Step 6. If
I<l'and e, ;v 1€nik.m_r =0, then

0= (em+k,mfleerk,mfl’)emfl’fl
= em+k,mfl(em+k,mfl’fl) + (€m+k,mflem71’71)em+k,m71’
= em+k,m—lem+k,m—l’—1'

Hence by the downward induction, we get e, ,, €, 4 n_p = 0 for all
I <.

If k> k', our assertion follows by the same downward induction argu-
ment.

Step 8. Forall i >j> 1, we have ¢;e; ;_; = 0.
If i = j, then our assertion is just the Serre relation. Suppose i > j and

i+1+#m. Thenif e;e;, ;_, =0, we have

0= ei+1(ei+1(eijei,j—1))
d
= ei+1(ei+l,jei,j—1) +(-1) ei+1(eijei+l,j—1)
d d
=(-1) €iy1,j€iv1j-1 T (-1 €ir1,j€iv1,j-1

where d = (deg e;.;)Xdeg e;;) and d' = (dege;, )(deg e, ; ;). Since i + 1
#m, we have ¢, ;e;.; ;- =0 and the induction argument gives our
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relations. If i >j, i + 1 =m, and e¢;e; ;_, = 0, then by Step 7, we get

€i+1,j€i41,j-1 = €mj€m, j-1 = 0. Hence our assertion follows from the in-
duction.

Step 9. Forall k +j—1,(i,j) = (k, 1), we have e;;e;, = 0.
Fix k = i. If [ = j, then our assertion holds by Step 6. If [ =j — 1, then
it is just Step 8. If / <j — 1, then, by Steps 1 and 8, we have

€€ = eij(ei,j—lej—z,l)
d
= (eijei,j—l)ej—z,l +(-1) ei,j—l(eijej—z,l) =0,

where d = (deg e;;X(dege; ;1) € Z,.

Suppose k <i. If j >k + 1, our assertion holds by Step 1. Let us
assume k > j. If k = [, then we may assume k£ <i — 1 by Step 5, and we
have

€€ = (ei,k+2ek+l,j)ek
d
=€ kro(€rsr ) T (—1)7(€; ri2€r)€rsr,; = 0.

We use induction on k — [. Note that if k£ > [, then we have

d
eie = ej(ee_1) = (eje)er T (=) e(ee1,),

where d = (deg e;;)(deg e;) € Z,. The first summand is equal to 0 by the
case k = [. Consider the second summand. If j # k, then it is 0 by the
induction hypothesis. If j = k, then by Step 2, it is equal to

d d
(—1) er(ener—q) = (—1) ee; =0.

Let X=EUHUF={e,h;,f;1ieQ} be a Z,-graded set, where
QO =1{1,2,...,m +n — 1} and 7 = {mj} is the set of odd index. Let R, be
the set of relations in E* given by:

I ee; (i>j+1),
1. ejeqy (i > ),

. eje; ;- (=) > 1),

V. e, iimilmixmt (n>k>=0,m>1>0).

Let R_ be the set of relations in F* obtained by replacing e;'sin R,
by f.;’s, and let R(A,7) = R,U W U R_. Consider the Lie superalgebra

L =%,/{R(A, 1)), where {R(A, 7)) denotes the ideal in %, generated
by R(A, ). Then, by Lemma 4.1, there is a surjective Lie superalgebra
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homomorphism ¢: L — £ defined by e, = e, h, = h;, ;= f. (i € Q).
We now prove the main result of this subsection.

THEOREM 4.2. The set R(A, ) of relations in & is a Grobner—Shirshov
basis for the Lie superalgebra L.

Proof. Set R = R(A, 7). As in the proof of Corollary 3.6, the set of
R(A, 7)-reduced super-Lyndon-Shirshov monomialsis B =B, U H U B_,
where B, is the set of R -reduced super-Lyndon—Shirshov monomials in
% (resp., in %;). We claim that the set of R_-reduced Lyndon-Shirshov
monomials in % is

B, ={ejlm+n>ix>j=>1}.

Let w be an R_-reduced Lyndon-Shirshov monomial in %. If I(w) = 1,
then there is nothing to prove. Suppose that /(w) > 1. Then w = uv,
where u, v are R, -reduced Lyndon—Shirshov monomials. By induction, we
have w = e;;e;;, where i > j, k > [, and (i, j) > (k, ) in the lexicographi-
cal ordering. Note that we must have i > k, for if i =k, then j — 1>
and e;e; ;_, is a subword of w. We show that k =j —1 and i =j. If
k > j, then w contains e, , ; ;e, as a subword, and if & = j, then w contains
(er+1¢;) e, as a subword. Finally, if k <j — 2, then W contains e;e, as a
subword. Hence we must have k =j — 1. Moreover, since w is a
Lyndon—-Shirshov monomial, we must have i =j. Therefore, we obtain
w = e;;, Which proves our claim.

Now, let w be an R -reduced super-Lyndon—Shirshov monomial in .%;.
Then w is a Lyndon-Shirshov monomial or w = uu with u a
Lyndon-Shirshov monomial in Ef. If the latter is true, then, as we have
seen in the previous paragraph, we have u =e,, ., (n >k >0, m > 1
> 0), in which case w is not R ,-reduced by IV. Therefore we have

B,=B, ={ejlm+n>i>j>1}

Similarly, we get B_= {f,.j lm+n>i>j>1}.

By Lemma 2.4, B spans L. Since ¢ and i are surjective, we have
card(B) > dim s/(m, n). But the number of elements of B is (m + n)? — 1,
which is equal to the dimension of si(m, n). Thus ¢ and ¢ are isomor-
phisms and B is a linear basis of L. Therefore, by Proposition 2.9, R is a
Grobner—Shirshov basis for L. 1

Remark. The proof of Theorem 4.2 shows that the Lie superalgebras
L,%(A,7) and sl(m, n) are all isomorphic. Hence Theorem 4.2 gives a
Grobner—Shirshov basis for the Lie superalgebra si(m, n). Our argument
also shows that R(A, 7) is actually a minimal Grobner—Shirshov basis.
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4.2. The Lie Superalgebras of Type B(m,n) (m,n > 0)

Let E; denote the 2m +2n + 1) X (2m + 2n + 1) matrix whose
(i, j)-entry is 1 and all the other entries are 0. Set

X = Epp vt omvive = Eomintivo,omentivt (l<i<n-1),

X, =Epini11 Y Epitomeon+ts

Xpri =Ei i1 = Epyivt mai (l<i<m-1),
xm+n = \/E(Em,2m+l - E2m+l,2m)’ (45)
Vi=Eomiivaomvivr — Eominsivt,2mentiv2 (I1<i<n-—-1),

yn = E1,2m+n+1 - E2m+2n+l,m+1'

Yosi =Eiv1i = Emiimyia (l<i<m-1),

ym+n = ‘/E(E2m+1,m _E2m,2m+1)'

Then the elements x;,y;, z; = [x;, ;] (i =1,2,...,m + n) generate the
ortho-symplectic Lie superalgebra B(m, n) = osp2m + 1,2n) (m,n > 0)
and x,, y, are the odd generators.

On the other hand, let Q = {1,2,...,m + n}, 7 = {n} € Q, and consider
the generalized Cartan matrix 4 = (a;)); ;< o defined by

an,n = 0’ an,n+l = 1' am+n,m+n—l = _2'
a;=-1 ifli—jl=1,(G,j)#(nn+1),(m+nm+n-1),
a; =0 ifli—jl> 1. (4.6)

Let & = 2(A, 7) be the Kac—Moody superalgebra associated with (A4, 7)
and denote by e;, f;, h; (i = 1,2,...,m + n) the generators of £. Then, as
in the case of si(m,n), one can verify that the generators x;,y;, z;
(i=1,2,...,m + n) of the Lie superalgebra osp(2m + 1,2n) satisfy the
defining relations of the Kac—Moody superalgebra £(A4, 7). Hence there
exists a surjective Lie superalgebra homomorphism ¢: £ — osp(2m +
1,2n) givenby e; = x;, f; = y;, h; = z; (i = 1,2,...,m + n). As in Section
4.1, we first derive more relations in &, which are used to construct a
Grdbner—Shirshov basis for the ortho-symplectic Lie superalgebra B(m, n)
= osp(2m + 1,2n) (m,n > 0).

LEMMA 4.3.  In the Kac—Moody superalgebra & = Z(A, 1), we have

e;je = O_1 r€; if (i,j) = (k,1),m+n>k,

[€m+n,iem+n,jem+n,k] = 0 (l’]'k = Q)’ (47)

(em+n,iem+n,j)(em+n,kem+n,l) =0 (l’]’k’lEQ)
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Proof. As in Lemma 4.1, we will prove our assertion in several steps.

Step 1. Forall (i, j) > (k,l)and m + n > k, we have e;;e;; = §;_; e,
If we remove the (m + n)th row and the (m + n)th column of A, then
we get the generalized Cartan matrix for the Lie superalgebra si(m, n).
Thus we have only to consider the case when i = m + n. Suppose k < m

+n—21If j=m+n, then e, e, =0 as in Step 1 of the proof of
Lemma 4.1. If j <m + n, then we have

€

m+n,jvkl = (em+nem+n71,j)ekl

d
em+n(em+nfl,jekl) + (_1) (eernekl)eernfl,j

=1, kCmtnCman—1,1= 0i—1 kCmin,1»

where d = (deg e, ,Xdege, ., ;).
ifk=m+n-1and j=m+n,thene,, e, ., ., =e,,,, andif
j<m+n—1, then
em+n,jem+n71,l
= em+n,j(em+n—lem+n—2,l)
d
= (em+n,jem+n—l)em+n—2,l + (_1) em+n—1(em+n,jem+n—2,l)
d
= (em+n,jem+n—l)em+n—2,l + (_1) 8j—l,m+n—2€m+n—1em+n,l’

where d = (deg e, , ;)dege,, ., ). Asin Step 5 of the proof of Lemma
4.1, we have e, , ;e,.,_1 = 0, which proves our claim.

Step 2. Forall i € Q, we have [e,,, e, ,,e,.,:]=0.
It is clear that [e,, . ,€,, ., +,] = 0. Suppose that [e e 1=

m+n m+n m+n,i

0 for i < m + n. Multiplying both sides by e,_,, we obtain

O = [€m+nem+nem+n,i]ei71
d
em+n((em+nem+n,i)ei—l) + (_1) (em+nei—l)(em+nem+n,i)

d
em+n(em+nem+n,i71) + (_l) em+n((em+nei71)em+n,i)

[em+nem+nem+n,i—1]'

for d,d" € Z,, and the downward induction on i gives our claim.



GROBNER—SHIRSHOV BASES 485

Step 3. [e,:n€minCmin-1)Cminmin_1) =0
If m # 1, then by the Serre relation, we get
[em+nem+n€m+n—1](em+nem+n—1)
= ([em+nem+nem+n—1]em+n)em+n—1
+ em+n([em+nem+nem+n—1]em+n—1)
= —[€nsnCnsnCninCnin-1l€nin_1

+em+n(€m+n{em+nem+nf1em+n71}) = 0

If m =1, then

[enr1€ns1€,](ensres)
= (lenirenraenlenii)e, +enia(leniien e, ]e,)
eura(enrdeniienest) —ena((eniien)(e,ie,))
= —lesrieniie,](eni1e,) = (enine,)le e, 06, ]
= —2[e,,1€,,16,](e,1¢,),
which yields [e, . ;e, . ¢e,lle,,€,] =0

Step 4. For all i € Q, we have

[em+nem+nem+n—1]em+n,i = 0' (em+nem+n,i)(8m+nem+n—l) = 0

Leta = [em+nem+nem+n—l]em+n,i and b = (em+nem+n,i)(em+nem+n—l)'
If m # 1, then by Steps 2 and 3, we obtain
= [em+nem+nem+n,i]em+n71
= em+n{em+nem+n,iem+nfl} + (em+nem+nfl)(em+nem+n,i)

= em+n{em+nem+nflem+n,i} - b =a— 2b'

and

0 = ([em+nem+nem+n—1](em+nem+n—l))em+n—2,i
[em+llen1+nem+n—l]em+n,i + ([em+nem+nem+n—1]em+n—2,i)

X (e

m+n€m+n— 1)

a+ em+n{em+nem+n—lem+n—2,i}(em+nem+n—l) =a+ b
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Hence we have a = b = 0. Similarly, if m = 1, then we get @ + b = 0 and
a + 2b = 0, which implies a = b = 0.

Step 5. Forall i,j € Q, we have {e,, e e }=0.

m+ntm+n,i“m+n,j

If j=m+norj=m+n— 1, our assertion holds by Steps 2 and 4.
We will use the downward induction on j. Suppose j <m +n — 1 and
{e,,. e e } =0 forall i € Q. Then we have

m+n,i“m+n,j
0= {em+nem+n,iem+n,j}ej—1
= (em+nem+n,i)em+n,j + ((em+nem+n,i)ej—l)em+n,j
= {em+nem+n,iem+n,j—1} + aij(em+nem+n,i—1)em+n,j
= {em+nem+n,iem+n,j—l}’
which proves our claim.

Step 6. For all i,j, k € Q, we have [e,,,, €, ., j€nini] =0
If i = m + n, Step 5 implies
em+n(em+n,jem+n,k) = (em+nem+n,j)em+n,k + em+n,j(em+n€m+n,k) = 0.

If i <m + n, by the above observation, we get
[€m+n,iem+n,jem+n,k]
= (em+nem+n—1,i)(em+n,jem+n,k)

=em+n[em+n71,iem+n,jem+n,k]
d
+(_1) [em+nem+n,j€m+n,k]€m+nfl,i
d'
= (_1) 8m+n,j[em+nem+n,iem+n,k]

d4"
+(_l) 8m+n,k[em+nem+n,jem+n,i] = O’

where d,d',d" € Z,.
It remains to prove the last relation. But it is an immediate consequence
of Step 6. 1

Let X=EUHUF=V{e,h;,f1icQ} be a Z,graded set, where
Q={1,2,...,m + n} and 7 = {n} is the set of odd index. Let R, be the
set of relations in E* given by:

. eiej(m+n2i>j+1>l),
. eje,y(m+n=i>j=1),
M. eje,;y(m+n>i=j>1),
V. e, xnilpikn(m>k>0n>1>0),
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V. le, e Cpinj—tlm+n=ix=j>1,

VI {e,sniCnin jCnini— (Mm+n=i>j=1),
VI (epin iCmin XelpminiCpin ) M tn=i>n=j=1),
VI” (em+n,iem+n,j)(em+n,iem+n,j—l) (I’l = l >j > 1)

Let R_ be the set of relations in F# obtained by replacing e;’sin R,
by f.;'s, and let R(A,7) = R, U W U R_. Consider the Lie superalgebra
L =%,/{R(A,1)). Then, by Lemma 4.3, there exists a surjective Lie
superalgebra homomorphism ¢: L — & defined by e; — ¢;, h; = h;, and
f; = f; (i € Q). Then we have:

THEOREM 4.4. The set R(A, 1) of the relations in % is a
Grobner—Shirshov basis for the Lie superalgebra L.

Proof. Set R = R(A, 7). As in the case of sl(m, n), the set of R(A, 7)-
reduced super-Lyndon—Shirshov monomials is B=B,UH UB_. We
claim that the set of R, -reduced Lyndon—Shirshov monomials in .%; is

By = {ey 112} U fenininon 165}

Let w be an R_-reduced Lyndon—Shlrshov monomial in <. If I(w) = 1,
there is nothing to prove. If I(w)> 1, then w = uv, where u,v are
R ,-reduced Lyndon-Shirshov monomials. Hence by induction, we have
u,v € B',. We show that either u=e,., ;, v=ce,,,, with j>1 or
u=e;, v =e;_,,; which would prove our claim. We need to consider the

following four cases.

m+n,j

Casel. u=e;v=ney, (=) k=10

Since uv is Lyndon-Shirshov, we have (i, j) > (k, [) lexicographically. 1f
i=k=m+nthenu=e, ., v=e,,, Wthj>LIfi=k<m+n,
then j — 1>/ and €€ contains e;;e; ;_, as a subword. Hence w is not

R_-reduced by II. If i =j >k and k=1i—1, then u and v have the
desired form and we are done. If i =j > k and k <i — 2, then w is not

R_-reduced by I. If i > k and i > j, then we must have k =i — 1, since
;= ee; and e;_; ; < e, by the definition of Lyndon-Shirshov mono-

ivi—1,j
mlals Hence w is not R, -reduced by II.

Case 2. u=-ey,0==e,,,,€ns,; @ >]j k=D
Since uv is Lyndon-Shirshov, we have k = m + n and [ > i. Then w is

not R,-reduced by V, since w contains e, ,, (€, ., €nini1) 8 @
subword.

Case 3. u=ce e sv=eu (U>], k=D

m+n,i"m+n,j’

Since uv is Lyndon—Shirshov, we have e, , ; > ¢, > e, ;. It follows

that k =m + nand i > 1 > j. Hence w contains {e,, , ;€,, 1, j€nin i1}
as a subword, and w is not R_-reduced by VI.
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Case 4. u=e,,, €pniniV="CpipiCpnin; i>] k>1):

Since uv is Lyndon—Shirshov, we have (i,j) > (k,!) and e, ; <
€pin k€men - THuswe have j <k andeitheri=k>j>lori>k>j If
i=k>j>I then w contains (e, , i€y, ;)(€nin i€nin j—1) a a sub-
word, and w is not R_-reduced by VII or VIII. If i >k >j, then w
contains {e e €, ini 1) as asubword, and w is not R,-reduced
by VI.

Now, let w be an R -reduced super-Lyndon—Shirshov monomial in %.
Then w is Lyndon—-Shirshov or w = uu with u a Lyndon—Shirshov mono-
mial in EZ. If the latter is true, then we have the following three
possibilities:

m+n,i“m+n,j

(I) U =€k n-1 (m>k20,n>120),
(i) u=e,,,; QA<j<n),
(i) u=e e m+n=i>n=j=1.

m+n,im+n,j
But the cases (i) and (iii) ceinnot occur by IV and VII. Therefore the set of
R _-reduced super-Lyndon-Shirshov monomials is given by
B,={e;li=j}u {emﬂliemM'in >j} v {emﬂ,yjem“yjll <j< n}
Similarly, we get
B_= {fij|i Zj} U {fm+n,ifm+n,j|i >j} U {fm+n,jfm+n,j|1 <j< ”}-

By Lemma 2.4 B spans L. Since ¢ and i are surjective, we have
card(B) > dimosp(2m + 1,2n). But the number of elements of B is
2(m + n)?> + m + 3n, which is equal to the dimension of osp(2m + 1,2n).
Hence B is a linear basis of L and by Proposition 2.9, R = R(A4,7) is a
Grobner-Shirshov basis for the Lie superalgebra L. |

Remark. The proof of Theorem 4.4 shows that the Lie superalgebras
L,%(A,7) and B(m,n) =osp(2m + 1,2n) are all isomorphic. Hence
Theorem 4.4 gives a Grobner—Shirshov basis for the Lie superalgebra
B(m,n) = osp(2m + 1,2n). Our argument also shows that R(A,7) is
actually a minimal Grobner—Shirshov basis.

4.3. The Lie Superalgebras of Type B(0,n) (n > 0)

Let E;; denote the (2n + 1) X (2n + 1) matrix whose (i, j)-entry is 1
and all the other entries are 0. Set

X =E 0 Eionien (1<i<n—1),
Xp = ‘/E(El,Zn+l +E,11)
Vi=Ei i1 Eiiitinsive (1<i<n-1),

yn = ‘/E(Eln - E2n+1,1)'

(4.8)
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Then the elements x;, y;,z; = [x;,y;] generate the Lie superalgebra
B(0,n) = osp(1,2n) (n > 0) and x,, y, are the odd generators.

On the other hand, let Q ={1,2,...,n}, = {n} € Q, and consider the
generalized Cartan matrix A4 = (a,;); ;< o defined by

n,n—1 = _2’

a; = —1 ifli—jl=1,(i,j) # (n,n— 1), (4.9)

a, , =2, a

a; =0 ifli —jl> 1.

Let & = Z(A, 7) be the Kac—Moody superalgebra associated with (A, 7)
and denote by e;, f;, h; (i = 1,2,..., n) the generators of . Then, by the
same argument as in the proof of Lemma 4.3, we obtain:

LEMMA 4.5.  In the Kac—Moody superalgebra & = Z( A, 1), we have
eijer = 81 ey if (i,)) = (k,1),n>k,

J

[eni€qjen] =0 (i,j, k€ Q), (4.10)
(enienj)(enkenl) =0 (l,],k,lEQ)

Let X=EUHUF={e,h;,f;lieQ} be a Z,-graded set, where
Q={12,...,n} and 7 = {n} € Q is the set of odd index. Let R, be the
set of relations in E* given by:

1. eiej(n2i>j+l>1),
. ejey(n=i>j=1,
M. eje ;1 (n>i>j>1,
V. le, e, e, ;-1l(n=i=j>1),
V. fe, e, e, (n=i>j=1),

VL (e, e, Ne, e, ;) (n=i>j>1).

Let R_ be the set of relations in F* obtained by replacing e;’sin R,
by f.;'s, and let R(A,7) = R, U W U R_. Consider the Lie superalgebra
L =%,/{R(A, 7)). Then there is a surjective Lie superalgebra homomor-

phism ¢: L — &, and using the same argument as in the proof of
Theorem 4.4, we obtain:

THEOREM 4.6. The set R(A, 1) of the relations in % is a
Grobner—Shirshov basis for the Lie superalgebra L.

Remark. The set of R_-reduced super-Lyndon—Shirshov monomials in
Z Is given by

B, = {ejli = j} U e, e, li = j}.

n,ivn,j
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and the Lie superalgebras L, 2(A, ), and B(0,n) = osp(1,2n) are all
isomorphic. Moreover, R(A, 7) is a minimal Grobner—Shirshov basis.

4.4. The Lie Superalgebras of Type C(n) (n = 2)

Let E;; denote the (2n + 1) X (2n + 1) matrix whose (i, j)-entry is 1
and all the other entries are 0. Set

Xy =E;3 —E, 5,

X =E i~ Eivane (2<i<n—1),

X, =E, 100 (4.11)
y1=Egy +E; 40,

Vi=Eivo i1~ Epvinvisa (2=<i<n-1),

Yo = Egp ni1:

Then the elements x;, y;, z; = [x;, y;,]1 (i = 1,2,..., n) are the generators of
the Lie superalgebra C(n) = osp(2,2n — 2), and x,, y, are the odd gener-
ators.

Let Q ={1,2,...,n}, 7= {1} € Q and consider the generalized Cartan
matrix A = (a;;); ;o defined by

a;; =0, a, =1, Ay_1,, = —2,

—1 ifli—jl=1,(i,j) # (1.2),(n — 1,n), (4.12)

ol
II

a; =0 ifli—jl>1.

Let & = Z(A, 7) be the Kac—Moody superalgebra associated with (A, 7)
and denote by e;, f;, h; (i = 1,2,..., n) the generators of £. Then there is
a surjective Lie superalgebra homomorphism ¢: & — osp(2,2n — 2) given
bye, —»x;, fi=y, h—z (=12..,n).

By a similar argument in the proof of Lemma 4.3, we can derive a more
refined set of relations in &, which gives a Grobner—Shirshov basis for the
Lie superalgebra osp(2,2n — 2) (n > 2). Since the argument is a variation
of the one given in Lemma 4.3, we omit the proof here.

LEMMA 4.7.  In the Kac—Moody superalgebra & = Z( A, 1), we have
e;jex = 90_1 ey U (i,j) = (k,l)andk #n — Lwheni=n,
{enien—l,jen—l,k} =0 (n>1i),
{enien—l,jenk} =0 (i,j, k€ Q),
(eni€n—1,;)(€, r€4-1,) =0 (i, k,1€Q).

(4.13)
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Let X=EUHUF={e,h,f|icQ} be a Z,-graded set, where
Q=1{12,...,n} and 7= {1} c Q is the set of odd index. Let R, be the
set of relations in E* given by:

I ee;(n=i>j+1>1),

. ejey(n>i>j=1),

M. eje; y(n=i>j>1,

IV. eqe, (n>i>1),

V. fe,e,1 e, (n>j=i=1),
VI e, e,_1 e,y (n>j=i>1),
VII. [e, e, .e,_1(n=i>1),

nivn,ivn—1
VI (e, 6,1 Xe, 16,1 ) (n>j>1),
IX. (e, e,_1 e, €,_q;-1)(n>j>i>1).

Let R_ be the set of relations in F# obtained by replacing e;’sin R,
by f.;'s, and let R(A,7) = R, U W U R_. Consider the Lie superalgebra
L =%,/C{R(A, 1)). Then there is a surjective Lie superalgebra homomor-
phism : L — & defined by e; = ¢;, f: = f., h; = h, (i € Q). Moreover,
we have:

THEOREM 4.8. The set R(A, ) of the relations in %, is a
Grobner—Shirshov basis for the Lie superalgebra L.

Proof. Since our argument is similar to the one for the proof of
Theorem 4.4, we just give a sketch of the proof. We first prove that the set
of R(A, 7)-reduced Lyndon—Shirshov monomials in %, is given by

B, = {e,-jli zj} U {en,ien,lyjln >j>i>1and(i,j) # (1,1)},

and conclude the set B, of R_-reduced super-Lyndon-Shirshov monomi-
als in % is equal to B, .
We see that B =B, U H U B_ spans L, where

B ={fli=j}U{f, fo s n>j=i>1and(i,j)+# (1,1)}

is the set of R_-reduced super-Lyndon-Shirshov monomials in .%. The
number of elements in B is 2n? + n — 2, which is equal to the dimension
of osp(2,2n — 2) (n = 2). Hence the homomorphisms ¢ and ¢ are
isomorphisms, and B is a linear basis of L, which proves our assertion. i

Remark. The Lie superalgebras L, £(A, 7), and C(n) = osp(2,2n — 2)
are all isomorphic and R(A, 7) is a minimal Grobner—Shirshov basis.
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4.5. The Lie Superalgebras of Type D(m,n) (m = 2, n > 0)

Let E;; denote the (2m + 2n) X (2m + 2n) matrix whose (i, j)-entry is
1 and all the other entries are 0. Set

X =Eiiomrivt — Eomintivtomen+i (l<i<n-1),

xn = E2m+n,1 + Em+1,2m+2n’

Xpwi =Ei i1 = Epiivt mei (I1<i<m-1),
xm+n = Em 2m—1 Em—l 2m
' ' (4.14)
Vi=Eppiivtomei = Eomsnviamentivr (I<i<n-1),

yn = E1,2m+n - E2m+2n,m+1’
Yari = Eiv1 i = Epvimsina (I<i<m-1),

ym+n = E2m71,m - E2m,m71'

Then the elements x;, y,, z; = [x;, y,] G = 1,2,...,m + n) are the genera-
tors of the Lie superalgebra D(m, n) = osp(2m,2n), and x,, y, are the
odd generators.
Let O ={1,2,...,m + n}, = {n}, and consider the generalized Cartan
matrix 4 = (a;)); ;< o defined by
a,, = 0, Ay nv1 = 1, Apvn—2,m+n = -1,
m+n—1,m+n = 0’ a _1' a
a;=—1 ifli—jl=1and (i, j) # (n,n+1),
(m+n—-1,m+n),(m+nm+n-—1),
a; =0 ifli—jl>1and (i, j)# (m+n—2,m+n),

a 0,

m+n,m+n72= m+n,m+n71=

(4.15)

(m+n,m+n-—2).

Let & = £(A, 7) be the Kac—Moody superalgebra associated with (A4, 7)
and denote by e, f;,h; (i =1,2,...,m + n) the generators of £. Then
there is a surjective Lie superalgebra homomorphism ¢: £ — osp(2m, 2n)
givenby e, » x;, fi—=y, h; =z, (=12,...,m+n).

We modify some of our notations:

(i) We neglect e

em+nem+n—2,j'

(ii) We introduce a modified Kronecker’s delta:

if j<m+n— 2, we write e =

m+n,m+m-—1 m+n,j

('3\: 1 ifi=j0l’i=j+l=m+n—l,
i 0 otherwise.
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In the following lemma, we list a set of relations in & which would yield
a Grobner—-Shirshov basis for the Lie superalgebra D(m, n) = osp(2m, 2n)
(m = 2, n > 0). We omit the proof which is similar to that of Lemma 4.3.

LEMMA 4.9.  In the Kac—Moody superalgebra & = Z( A, 1), we have

~

eje =08_1 ey U (i,j) = (k1) (i, k) #(m+nm+n-—1),
Cmin,iCmin-1,i=0 ifi>n,
m4n,i Cmini-1Cmin-1: Yi=n,
{emsn iCnin-1jCmin—14} =0 (i,j, k),
{em+n,iem+n—1,jem+n,k} =0 (i,j,kEQ),
(emsniCmin—1,)(€minkCmin-11) =0 (i,j,k,1€Q).
(4.16)

e e

m+n—1,i-1 "

Let X=EUHUF=V{e,h;,f;1icQ} be a Z,graded set, where
Q={12,...,m+n}and 7= {n} C Q is the set of odd index. Let R, be
the set of relations in E* given by:

. oee, (i>j+1,GH#m+nm+n—2)e,,,e

m+ntm+n—1

. eje, s (m+n>i>jf e, ., €, o(m+n—2xj),

M. eje; ;- (=j>1 with j<m+n-—2 when i=m +
n’em+n(em+nem+n72)’

V. em+n,iem+n—1,i (m +tn—-2x>1i> I’l), em+n,iem+n—1,i—l -
em+n,i—lem+n—l,i (l < n)'

V. en+k,n—len+k,n—l (m > k> 01 n>Ilx> 0)1

VI {em+n,iem+n71,jem+nfl} (l <j <m + I’l), {em+n,iem+n71,i
Cpin-1) i 1),

VIL. {e, ni€mninimind (m+n—2=>1i),

VIII. {em+n,iem+n—l,jem+n,i—l} (1 <i <j <m + I’l), {em+n,iem+n—l,i
em+n,i71} (l = n)’

IX. (em+;1,iem+n—l,j)(en1+n,iem+n—l,j—1) (fl +1<i+1 <j <m +
fl), (em+n,iem+n—l,j)(em+n,iem+n—l,j) (l =n, i <])

Let R_ be the set of relations in F# obtained by replacing e;'s by f;;'s
in R, and let R(A4,7) =R,U WU R_. Consider the Lie superalgebra
L =%,/{R(A, 1)). Then there is a surjective Lie superalgebra homomor-
phism ¢: L — % defined by e¢; = e, fi—f, h; = h, (i € Q), and we
have:

THEOREM 4.10. The set R(A, ) of the relations in %y is a
Grobner—Shirshov basis for the Lie superalgebra L.
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Proof.  As in the case of C(n) = osp(2,2n — 2), we only give a brief
sketch of the proof here. The set of R ,-reduced super-Lyndon—Shirshov
monomials in <, (resp., %) is given by

B, ={ejli=j}U{e, n i€min1li<jori=j<n}

sz {fl]|l Z]} U {fm+n,ifm+nfl,j|i <j0r i :j < 11}.

Hence the number of elements in the set of R(A,7)-reduced super-
Lyndon—Shirshov monomials in %y is 2(m + n)> — m + n, which is equal
to the dimension of the Lie superalgebra D(m, n) = osp(2m, 2n). There-
fore, B is a linear basis of L and R(A, 7) is a Grobner—Shirshov basis
for L. |1

Remark. The Lie superalgebras L, £(A, 1), and D(m,n) = osp(2m,
2n) are all isomorphic and R(A, 7) is a minimal Grobner—Shirshov basis.
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