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0. Introduction

The purpose of this paper is to study the structure of Specht modules
over Hecke algebras of typg using theGrobner—Shirshov basis theofgr
representations of associative algebras. The Grobner basis theory has originated
from Buchberger’s algorithm of solving the reduction problem for commutative
algebras [3]. In [1], it was generalized to associative algebras through the
Diamond Lemmgand during the past three decades, a wide variety of interesting
and significant developments has been made both in pure and applied algebra in
connection with Grébner basis theory.

On the other hand, in [11], Shirshov developed a parallel theory for Lie
algebras by proving th€omposition Lemmaand in [2], Bokut showed that
Shirshov’s method works for associative algebras as well. For this reason,
Shirshov’s theory for Lie algebras and their universal enveloping algebras is called
the Grébner—Shirshov basis theory

The next natural step is to develop the Grébner—Shirshov basis theory for
representations. For commutative algebras, there is no difference between the
Grobner basis theory for algebras and the one for their representations because
the two-sided ideals and the one-sided ideals coincide. But for general associative
algebras, we need a generalized version of Shirshov’s Composition Lemma that
combines both two-sided ideals and one-sided ideals.

In [8], Kang and Lee developed the Grobner—Shirshov basis theory for the
representations of associative algebras by introducing the noti@rdiner—
Shirshov pair More precisely, letd be a free associative algebra and(I&t7)
be a pair of subsets of monic elementsfLet J be the two-sided ideal oft
generated by andA = A/J be the quotient algebra. We denote byhe right
ideal of A generated by (the image df). Then the rightA-moduleM = A/I is
said to bedefined by the paitS, 7). The pair(S, T) is called a Grobner—Shirshov
pair for M if itis closed under composition. In this case, the s&t5fl")-standard
monomialdorms a linear basis af/.

In this paper, using the Grébner—Shirshov basis theory, we construct the Specht
modules over Hecke algebras in terms of generators and relations, and determine
the Grobner-Shirshov pairs and monomial bases for the Specht modules. The
Specht modules are canonical indecomposable modules over Hecke algebras and
are labeled by partitions. Our approach can be explained as follows.

Fix a positive integen, let A be a partition ofz, and IetS‘? be the Specht
module over the Hecke algebt4,(¢) corresponding ta.. We denote by* the
unique standard tableau of shapeuch that* (i, j + 1) = ¢*(i, j) + 1 for alll
nodes(i, j), and define

Xy = Z Ty,

weW,
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where W, is the row-stabilizer of*. We first construct aﬂi,,(q)-modulefq"
defined by the paitR,, R), whereR, is the set of defining relations for the
Hecke algebraH,(¢) and Rj} is the set of annihilating relations af,. Then
we show that there is a surjective homomorphi@m@? — Sy Taking the
composition of relations i, and R} and their extensions, we derive sufficiently
many relations fofS\q,A to obtain a pai(R,, RQ), and determine the sét()) of
Ry, Rg)-standard monomials. Now we show that the G¢t) is in one-to-one
correspondence with the set obzy tableauwof shapei. Since the number of
cozy tableaux of shapeis the same as the dimension of the Specht moﬂgjje
we conclude that thé{,,(q)—module@} is isomorphic to the Specht modufg,
the pair(R,, Rg) is the Grobner—Shirshov pair f@, and the seG (1) forms a
linear basis oﬁqk. Actually, the monomial basi& (1) is mapped onto thBlurphy
basisof S under the isomorphisnr (cf. [10]).

The Grébner—Shirshov basis theory can be applied to find a recursive algorithm
of computing the Gram matrices of the Specht modules. Grem matrix I,
of the Specht moduléj} is the matrix of the canonical bilinear form : Sg X

S; — F induced by the bilinear map

Hu(q) x Hp(g) — S; defined by (u, v) — uv*x;.

If ¢ is not a root of unity, the Specht modules are irreducible and the Gram
matrices are nonsingular. 4fis aneth root of unity, then the Specht modules are
no longer irreducible and the irreducible modules arise as the simple quotients
of the Specht modules corresponding to theegular partitions However, in
general, the dimensions of irreducible modules are not known explicitly. Since the
rank of the Gram matriX;, is equal to the dimension of the irreducible mo
corresponding to aerregular partitiom, it is an important problem to determine
the entries and the rank of the Gram maifjx

We briefly explain our algorithm of computing the Gram matrices. Using the
Grobner—Shirshov paifR,;, Rg), we can compute, (u, 1) forall u € G(1). Let
u,v € G(A) and assume tha, (u, w) can be computed for all, w € G(A) with
I(w) < I(v). Observe that every € G(1) can be written a® = v'T; for some
v e G(A) with [ (V') =1(v) — 1. Then we have

B;(u,v) = By (u,v'T;) = By (uT;, v).

By the division algorithmgiven in Lemma 1.4 T; can be expressed as a linear
combination of the elements i6'(1). Hence, by induction, we can compute
B (u,v) = B; (uT;,v') forall u,v € G(1).

At the end of this paper, we discuss the application of our algorithm to
several interesting examples. Furthermore, viewing the Temperley—Lieb algebras
as the quotients of Hecke algebras, we can determine the Grébner—Shirshov pairs
and the monomial bases for the Specht modules over Temperley—Lieb algebras.
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Therefore, as in the case of Hecke algebras, the division algorithm in Lemma 1.4
gives a recursive algorithm of computing the Gram matrices of Specht modules
over Temperley-Lieb algebras.

1. Grébner-Shirshov pair

First, we briefly recall the Grobner-Shirshov basis theory for the representa-
tions of associative algebras which was developed in [8,9]. In this paper, we will
deal with right modules.

Let X be a set and lex* be the free monoid of associative monomialsXon
We denote the empty monomial by 1 and thagth of a monomialu by ().

Thus we havé(1) =0.

Definition 1.1. A well-ordering< on X* is called amonomial orderif x < y
impliesaxb < ayb forall a, b € X*.

Example 1.2.Let X = {x1, x2, ...} be the set of alphabets and let

U= Xj; Xiy - Xig V=XjXj, X € XL

(a) We definer <deglex v if and only if k </ ork =1 andi, < j, for the firstr
such that, # j,.;itisa monomial order oX* called thedegree lexicographic
order.

(b) We defineu <degriex v if and only if k </ or k =1 andi, > j, for the last
r such thati, # j,; it is a monomial order ork™* called thedegree reverse
lexicographic order

Fix a monomial orde on X* and let.Ax be the free associative algebra
generated byX over a fieldF. Given a nonzero element € Ay, we denote
by p the maximal monomial appearing im under the ordering<. Thus p =
ap+> Biw; witha, 8; € F, w; € X*, a 20 andw; < p. If « =1, p is said to
bemonic

Let (S, T) be a pair of subsets of monic elements&yf, let J be the two-sided
ideal of Ax generated by, and let/ be the right ideal of the algebra= Ax/J
generated by (the image df). Then we say that the algehda= Ay /J is defined
by S and that the rightA-moduleM = A/I is defined by the pai(S, 7). The
images ofp € Ax in A and inM under the canonical quotient maps will also be
denoted byp.

Definition 1.3. Given a pair(S, T') of subsets of monic elements dfy, a mono-
mial u € X* is said to be(S, T)-standardif u # asb andu # 7c for anys € S,

t € T anda, b, c € X*. Otherwise, the monomialis said to bgS, T')-reducible

If T =g, we will simply say that: is S-standardor S-reducible
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Lemma 1.4[8,9]. Everyp € Ax can be expressed as

p=> aaisibi+ Y _Bjtici+ > viur, (1.1)
wherew;, B, vk € F, a;, bi,cj,ur € X*, s, € S, t; €T, a;5ib; X p, tjc; < p,

ur < p anduy are (S, T)-standard.

Proof. We may assume € X*. If p is (S, T)-standard, then there is nothing to
prove. If p = asb, s € S, thenp =asb+ Y njv; with v; < p. If p=itc,t €T,
thenp =rc+ ) njv; with v; < p. We now apply the induction to complete the
proof. O

Remark. The proof of the above lemma actually gives an algorithm of writing an
elementp of Ay in the form (1.1). It may be considered adigision algorithm

The term)_ yxuy in the expression (1.1) is calledrermal formof p with
respect to the paitS, 7') (and with respect to the monomial orde}. In general,
a normal form is not unique.

Example 1.5.Let X = {x1, x, x3} and choose the monomial ordegeglex. If we
set
S = {xlxg —x3,x1x3+x3} and T = {X§ +1},

then the element?x2x3x1 becomes

2.2 2 2
X7X5X3X1 = xl(xlxz — x3)X3x1 + x1x53x1
2 2
= xl(xlxz - x3)X3x1 + (x1x3 + x3)x3x1 — X5X1
2 2
= xl(xlxz — x3)X3x1 + (x1x3 + x3)x3x1 — (x3 + 1)x1 + x1.

Thus a normal form of2x3x3x1 isx1. O
As an immediate corollary of Lemma 1.4, we obtain the following proposition.

Proposition 1.6 [8,9]. The set of(S, T')-standard monomials spans the right
A-moduleM = A/I defined by the pai¢S, T').

Definition 1.7. A pair (S, T') of subsets of monic elements dfy is aGrobner—
Shirshov pairf the set of(S, T)-standard monomials forms a linear basis of the
right A-moduleM = A/I defined by the pairS, 7). In this case, we say that
(S, T) is aGrobner—Shirshov paifor the moduleM defined by(S, T). If a pair

(S, 9) is a Grobner—Shirshov pair, then we also say thiataGrébner—Shirshov
basisfor the algebrad = Ay /J defined bys.
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Let p andg be monic elements ofly with leading terms andg. We define
thecompositiorof p andg as follows.

Definition 1.8. (a) If there exista andb in X* such thatpa = bg = w with
[(p) > 1(b), then thecomposition of intersectioiis defined to be(p, ¢)y, =
pa — bg. Furthermore, ib = 1, the compositiorip, q),, is calledleft-justified

(b) If there exista andb in X* such thatb # 1, p = agb = w, then the
composition of inclusiois defined to b&p, ¢) = p — agb.

For p,q € Ax andw € X*, we define &ongruence relatioon Ay as follows:
p=gmod(S,T;w) if and only if p — g = > waisib; + Y Bjtjc;j, where
Oél',,Bj € F,ai,bi,cj e X*, 5 €8, tj € T,a;5;b; <w, andtjcj < w. WhenT = ¢,
we simply writep = g mod (S; w).

Definition 1.9. A pair (S, T') of subsets of monic elements iy is said to be
closed under compositidh

(i) (p,q9)w=0mod(S; w) forall p,q € S, w e X*, whenever the composition
(p, q)w is defined;
(i) (p,q9)w =0mod(S,T;w) for all p,q € T, w € X*, whenever the left-
justified compositior(p, ¢), is defined;
(i) (p,q)w =0mod(S,T;w) forall peT, q €S, we X*, whenever the
composition(p, q),, is defined.

If T =0, we will simply say thatS is closed under composition.

In the following lemma, we recall the main result of [8], which is a generaliza-
tion of Shirshov's Composition Lemma (for Lie algebras and associative algebras)
to the representations of associative algebras.

Lemma 1.10[8]. Let (S, T) be a pair of subsets of monic elements in the free
associative algebraly generated by, let A = Ax/J be the associative algebra
defined bys, and letM = A /I be the rightA-module defined b§s, T'). If (S, T)

is closed under composition and the imagepof Ay is trivial in M, then the
word p is (S, T)-reducible.

As an immediate consequence, we obtain the following theorem.
Theorem 1.11[9]. Let (S, T) be a pair of subsets of monic elementsdig. Then

the following conditions are equivalent

(a) (S, T) is a Grobner—Shirshov pair.
(b) (S, T) is closed under composition.
(c) For eachp € Ay, the normal form op is unique.
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2. Specht modules

In this section, we recall Murphy’s construction [10] of Specht modules over
Hecke algebras of typa. One of the nicest features of Murphy’s construction is
that it works over any integral domain. We first study our object over the ring
Flv, v-1] with v an indeterminate, and then specializ¢o a nonzero scalar
q e F*.

Let S, be the symmetric group on letters and letr; = (i,i + 1) be the
transposition of andi + 1. Then theHecke algebraH,, (v) of typeA is defined
to be the associative algebra oWp, v—1] generated byX = {T1, 1>, ..., T—_1}
with defining relations

LT, =T,T; fori>j+1,
Ry 1T?=@w-DTi+v forl<i<n-—1, (2.1)
Ti1TiTiv1 =TiTiaTy forl<i<n-—2

We write T; j = T;T;—1---T; for i > j and T/ = T;Tj41---T; for j <i
(henceT;; = T; and 7" = T;). We also sefl}; ;1 =1 (i >0) andTH 1 =1
(i > 1.Wedefinefoll =7,,T;,---T;, e H,(v), T* =T, T;,_, --- T;; and extend
* to an anti-automorphism oft, (v) by linearity. Note that7;; = T/, For
areduced expression= t;, 7, - - - 7;, € S, we defineTy, € H,(v) to be

Tw:TilTiz"’Tiw

ThenT, is well-defined and’,; = T;,—1. For any subsel¥’ C S,,, we define

(W)=Y Ty.

weW

A composition. of n, denoted by, = n, is a sequence= (A1, A2, ..., Ag) Of
nonnegative integers whose sunmmisBy convention we setg = 0. A partition
A of n, denoted by F n, is a composition such that= (A1 > X2 > -+ > Ag).
For a composition ofi, thediagram[A] is the set ohodes{(i, j) | 1 < j < A,
i=1,2,...,n}

Definition 2.1. Suppose that is a composition of:.

(&) AAi-tableauisamap:[A] — (1,2,...,n). Ifa A-tableau is a bijectiony is
said to bebijective

(b) A tableaw is row-standardif it is bijective andr (i, j) < (i, j + 1) forall i
andj.

(c) A tableaur is standardif A is a partition,z is row-standard and(i, j) <
t(i+1, ) foralli and;.

The diagram corresponding to a tableawill be denoted by{z]. If m < n
andr is a row-standard tableau withnodes, then the restriction ofo the image
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set{l,2,...,m} is a row-standard tableau denotedrbym. The corresponding
diagram will be denoted bly | m].

Let* be the unique standa#dtableau such that (i, j + 1) = *(i, j) + 1 for
all nodes(i, j). For example;>-321 s the following tableau:

1[2[3[4]5]
678

9 [10

11

The symmetric group,, acts naturally from the right on the set of all bijective
A-tableaux. Ifr is row-standard, we denote llfz) the element of5,, for which
t = t*d(t). We denote by, the group of row stabilizers af.

For compositiong andu of n, we writea > if Y721 4; > Y 7" 4 w; for each
m. Lets, t be row-standard- andu-tableaux, respectively. We write> ¢ if for
eachm <n,[s | m]> [t | m]. LetA be a composition of. By aA-pair we mean
a pair(s, t) of row-standard.-tableaux. Ax-pair is calledstandardif both s and
t are standard.

For a composition. of n and for anyr-pair (s, t), we define

X) = Z T, and xst:T;(s)kad(t)~ (2.2)
weW,

Hencex,,,» = x;. From now on, whenever the subscriptts we will abbreviate
it to A. For example, we will writex,,,» = x5 = x5 andx,.; = x;.

For a partition: - n, let N* (respectivelyN*) be theF[v, v—1]-submodule of
‘H, (v) spanned by,;, where(r, s) runs over all standarg-pair for a partition
w - n with > A (respectivelyu > 1). Let M* = x;'H,, (v) be the cyclicH,, (v)-
module generated by, and setM* = M* N N*.

Definition 2.2. The H, (v)-module S* = M*/M* is called theSpecht module
overH, (v) corresponding to the partition

Proposition 2.3[10]. The Specht mgdulé{} is a freeF[v, v—1]-module with
a basis consisting of the vectorg, + M*, where s runs over all standavdtab-
leaux.

The basis ofS? in the above proposition is called tiurphy basisof the
Specht modules?.
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3. Some natural relations inS

In this section, we will derive some natural relationssSih which will serve
as the defining relations and will be extended to form a Grébner—Shirshov pair
in the next section. One can observe that the basic relations are the relations in
Lemma 3.2 along with the defining relations (2.1) for the Hecke algéf@).
All the other relations will be derived from these basic relations. This indicates
what would be the set of defining relations for the Specht modules, and leads us
to the abstract definition of the Specht modules by generators and relations in the
next section.

Lemma 3.1.The relations
TapTea=Te—1.a-1Tap (@=2c>d>D) (3.1)
hold in H, (v).

Proof. If b =a — 1, then (3.1) becomes one of the relations in (2.1), so assume
thatb < a — 2. Suppose further that= ¢ = d. SinceT, commutes withT} for
b<k<a-—2,we have
Ta,bTa = Ta,a—lTa—Z,bTa = a,a—lTaTa—Z,b = Ta—lTa,a—lTa—Z,b
= Ta-1T4.bs

which is the desired relation.
If a >d > b, we use induction on. If ¢ =d then

Ta,ch = Ta,c+1Tc,th = Ta,c+1chch,b = chlTa,ba
as desired. It > d, then by induction

TapTea = Tac1TepTe,d = Ta,c+1Te-1Te pTe—1,0 = Te—1Ta b Te—1,d
= chch72,dflTa,b = TC*l,d*lTa,hv
which completes the induction argumenta

For anyi < j, we denote bys; ; the subgroup ofS, which permutes only
i,i+1...,j (1<i<j<n).Considering the coset representativesSpf_1
andSy ,, respectively, we have

n n—1
((Sp) =t(S1,0-1) (Z Tnl,z) = (Z Tz,1> ((S2.n)- (3.2)
=0

=1
Fix a partitioni = (A1, A2, ..., Ax) of n. We introduce some notations. For
i=12, ..., k, we define

0,=0 and i) = ZM.
=1
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That is,{iA}fF:1 is the sequence of partial sums of the partitiofror example, if
Ar=(4,3,1)+8,thenwe have0=0,1, =4,2 =7,and 3 =8.
With this notation, we define

Xy = L(S(—1),+Li3)- (3.3)
Then we have the following statement.

Lemma 3.2.The following relations hold irs*:

(@ Fori=1,...,n—1withi#1[, ({=1,...,k—1), we have
x(T; —v)=0.

(b) Fori=1,...,k—1, we have

ri+1
X2 (Z Tix,(il)ﬁz) =0.

=1

Proof. By [10, Lemma 4.1]x; has a right factofl; + 1 for i # I,. Hence the
relation (2.1) impliese, (T; —v) =0 fori #1,.

Letpu=01,...,Ai—1, A + L Ai01 — L Ajg2, ..., Ak). It follows from (3.2)
that

2+l 2+l
XA;XA,-+1<Z Ta,u—l)m) = XX (Z Ta,u‘—l)m)
=1 =1
Hit1+1
= ( > T(i+1),L—z,iM)xm+1xm

=1

mi+1+l
= Z T(i+1))L_lvi[l. XuiXpiq-

=1
Thus we have

A+l Hiv1t+l
X ZTik,(i—l)AH = Z TGi+1),—Li, | X
=1

=1
Note that
i1+l Hiv1tl
( Z T(,~+1))L_l,,ﬁ)xM = Z (Tiﬂ’(iﬁ*l)u*l)*_xﬂ = th,”,
=1 =1 T

where eaclr is a row-standargk-tableau. Since. < u, by [10, Theorem 4.18]
and the definition of?, we conclude that

)\.[+1
XA(Z Tix,(i—l)AH) =0 O

=1
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Fors € Z>o and a sequenege= (a,)lj:1 = (a1, ay, ...,aj) of positive integers,
define

st+a=s+(ar,az,...,a;)=(s+a1,s+az,...,s +aj).

If a = (a1, az,...,a;) satisfies I a; < N + [ for some nonnegative integaf,
we define

(a)y =(a1,a2,...,a;)N =TN,a;TN+1.a; - TN+ j-1.a;-
Thus we haVQS +a)y = TN,S+a1TN+l,s+a2 to TN+j—l,s+aj-

Lemma3.3.Forp O<p<k—Dandj (1< j <ipq),let
a; :(a;): (ai,...,aﬁ\iJrl) @=0,1,....,p—-1
and
=(b)=(b1,...,bj,bj+1)
be sequences of positive integers such that
1<aj<ip+l,  1<b<pi+l, and b;>bjy1.
Then the relation

p—1 -
xx<]"[<a,»>,»k) (B) p, = v (]‘[ a,m) b')p, (3.4)

i=0
holds inS*, whered’ = (b1, by, ...,bj_1,bj+1,b; + 1).

Proof From the first relations in Lemma 3.2, we havgl,, +; = vx;. Since
JT7= 0 (ai)i,)(b1,...,bj_1)p, commutes withT,, ;, we have the following
relation inS;::

p—1
x)\<l_[(ai)u)(b1,b2, b i+ s

i=0
p—1

= UXA(H(“i)zj) (b1,b,....bj_1, pr+j,pr+Ji+1)p.
i=0

Thus the relations in (3.4) hold fér; = b1 = p; + j.
Assume that fop), + j > b; =b;,1, we have

p—1
XA(H(“i)iA)(bl,bz, cesbj_1,bj,bj)p,

i=0

p—1
= ka(ﬂ(“i)zj)@l, b, ....bj-1,bj,bj+1)p,

i=0



S.-J. Kang et al. / Journal of Algebra 252 (2002) 258-292 269

Multiplying the above relation byl,,_17,; from the right, the left-hand side
yields

p—1
m(ﬂ(wh)(bl, v bj_1,0j, b)) p, Ty 1T,

i=0

p—1
=n< (ai)q)(bl, cosbj1,05,b5+ 1) 5, T —1Th; p;-1

p—1
:'x)\.< (al>lk)<b17"'7b‘]_lvbj_1>p,L7

and the right-hand side yields

p—1
UX;, (l_[ (ai>ix> (b1,b2,...,bj—1,bj,bj +1)p, Tp,—1Tp,
i=0

p—1
= UX), (1_[ (a,'),‘)h)<b1, ey bj_]_, bj — 1, bj)m

i=0
p—1
= UX), (1_[ (a,'),‘)h)<b1, ey bj_]_, bj — 1, bj)m-

i=0

By induction, we obtain the relations in (3.4) for &l = b 1.
Now assume that fa¥; > b; 1, we have

p—1
xA(H(“i)u) (b1,b2,...,bj-1,bj,bjt1)p,

i=0

p—1
= vx; (]‘[ (ai)ik)(bl, ba,....bj_1,bji1,b; +1),,.
i=0

Multiplying the relation7}, ,—1 from the right, we obtain

p—1
xk(H(“i)u)(bla ba,....,bj—1,bj,bj11—1)p,

i=0
p—1
—ux;, (]‘[ (ai)ik)(bl, ba,...,bj—1,bj11—1,bj +1),,.
i=0

By induction onb; 1, the relations in (3.4) hold forall; > b;41. O
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For any natural numbet let
i
[(lo=1+v+v2+---+0v"L (i =[]l
j=1
and[0], =1,{0}, =1. Foreach (1<i<k—21 andj (1< j < Ai+1), we

define
Cj,,',;L:{(al,az,...,aj)Eng|j<a1<a2< ce<aj <)»,'-i-j}.
Lemma 3.4.Foreachi (1<i<k—1)andj (1< j <Ait+1), the relation
XA( Z (G =D +a>i~k> =0 (3.5)
acCj;)

holds inS?.

Proof. Atfirst, foreachi (1<i <k —1) andj (1< j < A;+1), we define
Ciin=Ciia\{G.j+1....2j - D},
C2=Ciia\{G.j+1....2j—2.a))|2j —1<a; <hi + j}.
C?)i)kz{(al,az,...,aj)GZiBg’j+l<a1<a2<o~<aj <ki+j}.

If j =1 forafixedi, thenthe relation (3.5) becomes the relation in Lemma 3.2.
Assume that foj — 1 we have the relation (3.5):

XA( Z ((i—l)k—i-a)ik):O.

acCj_1,

Note that

=D+ G —1j.....2j = 3)), = —XA< 3 (G- +a>,~x).

acCj_1,,
(3.6)
Set
A=[j =1 = Da+ (G —1.j,....2j =3, j = 1),
B=—v"tg((-Du+(G-1j,....2j—3,2j — 2));,
and

Cr=—v (-0 +G—-1j,....2 =3, j —1+1))

fori<<i<j—2.

in
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By Lemma 3.3, we have
j—2
(A +B+) Cz)
=1
=/~ —Du+ (G =1 j,....2j — 2))
v (i -1+ G -1,4,...,2j - 2)

i

in

j—2
—o Y W T (= D+ G =102 =),
=1
=0.
On the other hand, by Lemma 3.3 and the relation (3.6), we get

A

=l —Da+G—1.j,....2/ =3, j = 1))
=—[j—1 Y xu(i-Dit@ j-1D)

1
aeijLM

= —v/ 7Y —1], Z xk((l’ -+ -1 1+a)>l.k

1
aeijl’M

==l Y wf{i-Dit(-Lita),

2
acCi 1,

. ritj—1
kA VS PR Y (S W)

aj,1=2j72

iy

iy

+G-1j.....2j=3,aj-1+1), .
Applying the relation (3.6) ta, we obtain
B=—v"((i-1i+(G-1j,....2j—3,j - 2))
" Z (G — Dy + (@, 2) — 2)>u'

1
aeijLM

in

For 1< < j—2,Lemma 3.3 and the relation (3.6) yield
C=—v (-0 +G-1j,....,2j =3, j —1+1)
=o' i -Di+ (@ j—1+D)

1
acCi_q;,

— it Y g6 -Dut @ - 14D),

2
acCs_y;,

i

in
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Ait+j—1
+02 72 3 (= Dat (=12~ 34 1+ D), .
aj 1=2j-2

Therefore, by Lemma 3.3 and the relation (3.6), we obtain

j—2
0=<A+B+ZC1>
=1
=== ) wm{i-i+(G-L1l+ae),
aeCj Lig
Ait+j—1
- Y -+ G =L 2) =3 a1+ D),
aj_1=2j-2
+oTh Y n(-Da+e,2j-2),
aeCj Lia

+ol” 12 Yo wli-Dit@j-14D),

=1 aeCj_lyM

= /-1 Y wmli-Dit+(G-Ll+a),

aeCj Lia
ri+2
+oH Y YT wli - D+ (@),
1=2j— 2aeC,1 Lix
+v/” 12 Z A =D+ (a, l))
I=j aeCj Lix
Aitj
=v/ty Y wli-Dit @),
I= ] aeC] 1i,A
= v/l Y (i —Dai+a), .
(lECj,,'.)\

Since S is free overF[v, v=1], we get the desired relation (3.5) fgr which
completes our induction argument

Remark. As we mentioned in the beginning of this section, all the relations
have been derived from the defining relations (2.1) of Hecke algebra and those
in Lemma 3.2. In the next section, we will specializéo an invertibleg € IF, and
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consider the Specht module oeAWe will also construct a module by generators
and relations and show that it is isomorphic to the Specht modulefowsing the
relations derived in this section. Actually, if we define a module @&y the pair
consisting of the relations (2.1) and those in Lemma 3.2 identifyjingith 1, all

the relations in this section (other than the relations in Lemma 3.4) are valid for
any invertibleg € F. If ¢ is not a roof of unity, then the relations in Lemma 3.4
still remain valid. But ifg is a primitiveeth root of unity, then théeth induction
step(l > 1) in the proof of Lemma 3.4 does not work, as one can see in the proof,
since it involvedle], which is 0 for suchy. Thus whery is a primitiveeth root

of unity, we are led to add more relations to the set of defining relations of the
Specht modules ovét as we can see in the next section.

4. The Groébner—Shirshov pair for S;‘

In this section, we specialize the Specht modsieover F[v, v 1 to the
module S over FF for an invertibleq € F and define art, (¢)-moduleS, by

generators and relations. The defining relations.’sf:prwill be taken from the
natural relations derived in the previous section identifyipgvith 1. Thus there
exists a surjective homomorphism’&\# onton}. We will derive sufficiently many
relations inii} and show that the number of standard monomials with respect
to these relations is equal to the dimensionsgaf Hence we conclude that the
Ha (q)-module’S\qA is isomorphic to the Specht modufg and obtain a Grébner—
Shirshov pair fo@}. The standard monomials for this Grobner—Shirshov pair will
be indexed by the set abzytableaux.

Let X ={T1, T», ..., T,—1} be the set of generators as before. Fix a partition
A= (A1, A2,...,Ax) Of n. Letg be an invertible element df and denote by,
the set of relations in (2.1) with replaced by . The Hecke algebra defined by
R, over[F will be denoted by, (¢). Recall that there is an isomorphism of fields

IF[v, v_l]/(v —q)=F givenby v g,

where(v — ¢) is the maximal ideal oF [v, v—1] generated by — ¢. TheH,,(¢)-
modules; is defined to be

S(); = F ®F[v,v_1] Sl);

We caIISg the Specht moduleverH, (¢) corresponding to the partition From
the basis ofS* given in Proposition 2.3, we naturally obtain a basisggafand

call it the Murphy basisof the Specht modulﬁg. Recall that the elements of the
Murphy basis are parameterized bx the standatableaux.
We now define thé<,, (q)-moduIeSq" by generators and relations.
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Definition 4.1. (1) If ¢ € F* is not a root of unity, theﬁq" is theH,,(¢g)-module
defined by the pai(R,,, Rg), WhereRg is the set of elements:
Ti—q (#L,1=12. k-1,
A+l
YT i-nm A<i<k—1). (4.1)
=1
(2) If g is a primitiveeth root of unity, therfS’:]A is the’H,, (¢)-module defined
by the pair(R,, R}), whereR;, is the set of elements:

Ti—q (#hL,1=12...k-1),

)\.[+1
Z T -1+ (A<i<k-—1),
=1
> ((—Di+a), A<i<k-11>1). (4.2)
acCe i

From the construction, we see that all the relation§jiderived in the previous
section still hold inSqA. In particular, by Lemma 3.2 and Lemma 3.4, there exists
a surjectiveH, (g)-module homomorphism

12 :3:} — S, givenby 1 x;. (4.3)
We claim that the mag is actually an isomorphism. In other words, we claim
that the moduleS; defined by the paiR,, R}) is isomorphic to the Specht

moduleS*. The rest of this section will be devoted to proving this claim.

As was noticed in the remark at the end of the previous section, we can derive
in 'S\qA the same relations (identifying with 1) as in the previous section for any
invertibleq € F*. Note that even if; is a primitiveeth root of unity, the induction
argument in the proof of Lemma 3.4 works well from the defining relations (4.2)
of 3\;. Since it is important to our argument, we make it into a lemma.

Lemma 4.2.Letg be an invertible element dF.

(1) The relations
TopTea=Te-1,0-1Tap (@2c>=d>b)

hold inH,(¢).
(2 Forp(O<p<k—Dandj (1< j<xpy),let

ai=(a))=(al,....al, ) (=01...p-1
and
b=(b[)=(b1,...,bj,bj+1)
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be the sequences of positive integers such that
1<al <ix+1,  1<b<pi+Il, and b;>bj1.
Then the relation
p—1 p—1
m(]‘[(a,»,;)<b>m = qxx(]_[(ai)u) (b') s
i=1 i=1

holds inS}, whereb' = (b1, b2, ....bj_1,bj41.b; +1).
(8) Foreachi (1<i<k—1) andj (1< <Xi+1), the relation

Y (-1 +a), =0
aeCj.,-,)L
holds inS}.

In the following proposition, we determine a Grébner—Shirshov basis for
H, (g) with respect to each of the monomial orders introduced in Example 1.2.

Proposition 4.3.(a) The following relations form a Grébner—Shirshov basis for
H, (q) with respect to the monomial ordedgegiex:
T, —T;T; fori > j+1,
Ry, degrlex: T,'Z —(@—-DTi—¢q forl<i<n-—-1, (4.4)
Tiv1,jTit1 — TiTipr,; fori>j.
Hence the set R, deglex-Standard monomials is given by
Baeglex ={T1,j,T2,j, - Tn-1,j,_ |1 1< jk <k+ 1, k=1,2,...,n—1]}.

(b) The following relations form a Grébner—Shirshov basis r(¢) with
respect to the monomial ordefgegriex:

T,T; — T;T; fori>j+1,
Rydegriex: | T2—(q—DTi—q forl<i<n-1, (4.5)
TiTij—TijTjy1  fori>j.
Hence the set 0R,, degrlex-Standard monomials is given by

Bdeg—rlex = {le,lsz,Z‘ B Tjnflsnfl | k—1< jk <n—1,
k=1,2,....n—1).

Proof. By Lemma 4.2(1), all the relations iR, deglex and inR degriex hold

in H,(g). It can be easily checked th#ljeglex (respectivelyBgegriex) IS the
set of R deglex (respectivelyR, degriex)-Standard monomials. Observe that the
number of elements iBgegiex (and in Byegriex) is n!. Since it is exactly the
dimension ofH, (¢), it follows from Proposition 1.6 th&R ; degrlex aNdR;, degrlex
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are Grobner—Shirshov bases for the Hecke algehi@) with respect to<gegiex
and<degrlex, respectively. O

Now let us consider how to complete the @tto obtain a Grébner—Shirshov

pair. In general, even if we extend the Rg’[by adding the relationsin Lemma4.2,
(2) and (3), the pair of the s&, deglex IN the above lemma and the extended
set oka is not big enough to be a Grobner—Shirshov palrSQr Hence, we

need more relations |quA, which we will derive in the next lemma. We set
Ry = Ry.deglex- In the rest of this paper, we will only consider the monomial
0rder<deg-|ex

Lemmad.4Forp (A< p<k—Dandj (1< j<Apy1), letag,as,...,ap,2,b
andc¢ be the sequences of positive integers satisfying the following conditions

aiz(ai,aé,...,aiiﬂ) 1<a} <ip+1,

=(b1,b2,...,b5,), 1<bi<(p—1),+I,

c=(c1,c2,...,¢j), 1<cag<pr+li,

bj <bji1<---<b,, ci<cp<---<cj, and ¢;<bj+j—1

Then the relation

p—2
(]‘[(aim) (B)(p—1),(€) p,

i=0
p—2
+ (H(m)u)( Z {(p—2Du —i—a)m) (b1, ¢, j+b2)(p-1), =0
i=0 aeC]lpA
(4.6)

holds inS}*, whereby = (b1, bz, ... bj—1) andby = (bj. bj11. ..., by,).

Proof. From Lemma 4.2(3), we have the relation

Y ((p—1s+a), =0

acCjpa

for any nonzerog € F*. Note that]_[”_2 (a;)i, contains only7; with [
(p—Dx —1 and thatzaec A(p — i + a),, contains only7; with !
a)

(p—=Dy+j. Hence]’[” (a;);, commutes wnhZaeC ((p -1 +
and we obtain

p—2
(H(ai)u) > ((p =D +a), =0.

i=0 aeCj,,,;A

<
2

P
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By separating the leading term, we can write

p—2
(]‘[<ai>ix><<p —La+ G+ L2 =),

i=0
p—2

+ (sz‘)u)( Y ((p—1n +“>m) =0.
i=0 aeC%M

Multiplying it by (b1, ¢)(p—1), = (b1)(p—1), (€)(p—1),+j—1 from the right, we
obtain

p—2
(]‘[<ai>iA> (b1)(p-1),(€)

i=0

p—2
+ (H (ai)u)( o -Da+ a>m) (b1.¢)(p-1), =0. (4.7)

i=0 1
aeCH,’k

Sincecy <cp<---<cj,cij<bj+jandpy+j—-12(p—Ds+j—1+I1for
Jj <1< xp,itfollows from Lemma 4.2(1) that

(b1) (p—1), (€) pp T +D2) (p—1)542j—1 = (B) (p—1), (€} p; -
Hence multiplying (4.7) by(j + b2)(,—1),+2;—1 from the right, we get

p—2
(]‘[<ai>iA> (B)(p—1), (€) p;

i=0
p—2

+ (H (m)u) ( Z (p =D+ a>m) (b1, ¢, j+b2)p-1), =0,
i=0 aEC}.p.)\

as desired. O

Recall that a.-tableau is a map: [*] — {1, 2, ..., n} and that* is the unique
standardi-tableau such that (i, j + 1) = t*(i, j) + 1 for all nodes(, ;).

Definition 4.5. A A-tableau is said to beozy if it satisfies the following
conditions:

(i) G, j) <t*G, ),
(i) (G, j)<t(,j+ 1),
@iy G, )H+j<t@+1,)).
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Note that ifz is a cozyi-tableau, then we always havél, j) = j. For
example, the tableau in the left is cozy, while the one in the right is not:

1[2[3[4][5]6]7] 1 2[3[4]5][6][7]
246 8|10 346 |9]10
3[6]09 4179

48|12 710 11

Taking some of the relations from Lemmas 4.2(2) and 4.4, we define the set
R’ to be
q

(Hf’;&(amk) () p, — 61( f;01<ai>ik) (b, withb;j=bj,1,
(H?:Oz(aihk) (B)(p-1),(€) ps

p—2
+ (1_[ (m)a) < Y (p—Du+ a>m> (b1, ¢, j+b2)(p-1),

i=0 1
aec/»p)»

Witth :b]+] -1,
where we keep the notation in Lemmas 4.2(2) and 4.4. Note that the leading terms
of the relations irﬂg with respect to<deglex are

p—1
ijm)mm with b; = b1,

i=0

p—2
(l_[ (ai>i1) (b)(p-1),(c)p, Withc;=b; +j—1

i=0
Thus the set ofR,,, Rfj)-standard monomials with respect4Qegex iS

. ﬁ( .| = (af.dh.....dl, )
— a:): ) ) ‘ . i . . i+1 (-
S d) <d a g <alt
Let H (1) be the set of all cozy-tableaux and let (1) be the set of all standard
A-tableaux. We define a map G(1) — H(A) by

k—1
K(H(“i)u)(l‘d) =a'"1 a?:]‘,

i=1
Recall that the symmetric grouf§, acts naturally on the set of bijective
tableaux. We define amap G(1) — I (1) by

A
C(TslTsz cee Ts;) =1 T Tsp o Tyys

wheret, is the transpositiofs;, s; + 1) € S,.
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Proposition 4.6. Let x and ¢ be the maps defined above. Then the map
(respectively the mag) is a well-defined bijection betweefi(1) and H (1)
(respectivelyG (1) and I(1)). Hence we haveim Sj} =#I L) =#GW) =
#(H(1)).

Proof. Clearly,« is a well-defined bijection. Observe thatthe;_1---t; (i > j)
action on a tableau changes the boxes

I R e e P R
respectively.Consideraneleme}_r]f: Vi, € G(L). S|nce2<a1 1, +1,the

tableaug(TlM%) is standard.
Assume that the tableau

p—1
¢ (n(‘”)ik(a]}_)’ -~-7af>m)

i=1

is standard for somg > 1 and;j > 1. Note that

(l_[ wlags---aj af+1>pk)

p—1
— N (4P p . .
= (H(al)u<al, oo af >m)fpx+ﬂpx+]1 T

Slncea <a? it andaJJrl +j+1<ad? ,, wehave

J+L
—

ai),‘kaf,... p—}—l,j):af,

(p+1, ]+1)_aj+1,

p—1
p
a,‘),‘)h al PN

1
C(l_[( ( ]+l

i=1

p—1
{(H(a,‘),‘k(af,... j+1

i=1
é-<l_[< ( j+1

i=1
j+1

p—1
c(]_[<a,~>,~k(af,... (p+1j+D=aj,,

i=1
which implies that the tableau

p—1
§<H<ai>ik(a]{)”' ]+l D

i=1

)
)
)
)
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is standard. Hence, by induction the tableau

k—1
¢ (H(aﬁq)
i=1

is standard. Therefore, the mags well-defined.
Conversely, ift is a standard tableau, then by reversing the induction steps in
the above argument, we can obtain an elenﬂeﬁll(ai)iA of G(1) such that

k—1
C(H(amk) =t.

i=1

Therefore, the map is a bijection. O

Recall that there is a surjective homomorphi&m?j — S given by (4.3),
which implies dim’S\qA > dim ). However, by Proposition 1.6, we have

dimS;} <#(G() =dims].

Therefore, we conclude that th¢, (q)—module@;\ is isomorphic to the Specht
module Sg, the setG(1) is a linear basis of’qu, and the pair(Rq,Rg) is
a Grobner—Shirshov pair faf? .

In the following theorem, we summarize the main results proved in this section.

Theorem 4.7.Let) = (A1, A2, ..., Ax) be a partition ofn.

(2) The Specht modulg, is isomorphic to théi,,(q)-module's\q,A defined by the
pair (Ry, RQ). Hence we obtain a presentation of the Specht moﬂgjlby
generators and relations.

(b) The pair (R, R}) is a Grobner-Shirshov pair fofqA with respect to the
monomial order<geglex-

(c) The set of R, Rg)—standard monomials is given by

k=1

G = {]‘[(amk

i=1

@ = (. al, ) }

. P i i . i+1
a;<ip+j,a;<ajiq,a;+] Saj

Hence the set (1) is a linear basis of’S\qA.

Remark. It is easy to see that the monomial baGie.) of Si} is mapped onto the
Murphy basis oﬁqA under the isomorphisn# .
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5. Gram matrix of S‘}

It is well known that if g is not a root of unity, the Specht modules are
irreducible. Ifg is a root of unity, the irreducible modules are the simple quotients
of the Specht modules, and in general, their dimensions are not known explicitly.
In this section, we define a canonical bilinear form on the Specht mo‘@ule
whose matrix with respect to the monomial basie.) will be called theGram
matrix. As was shown in [10], the rank of the Gram matrix is equal to the
dimension of the irreducible moduleg. In this section, using the monomial basis
G (1) and the division algorithm given in Lemma 1.4, we give a new recursive
algorithm of computing the Gram matrix of the Specht modigeAt the end
of this section, we will discuss the application of our algorithm with several
interesting examples.

To begin with, we identify the Specht modusg with the #,, (q)-module@;‘
defined by the pai(R,, R;) and consider the Grobner—Shirshov pay, R?I).

Let A - n be a partition and define a bilinear map

Hn(q) X Ha(q) = S; by (u,v) > uv*x;.
Then the image of the map is actually in the fi@dand the map induces a sym-
metric bilinear form ons};

By:S; x Sy >FcCS).
It was shown in [10] thaB,, satisfies

B; (u,vh) = B (uh*,v) forallu,ve S;‘, heHy(q).

Definition 5.1. The Gram matrixof the Specht modulsg is the matrix/, of the
symmetric bilinear fornB,, with respect to the monomial basig).

We say that a partitio” = (A1, A2, ..., Ax) Of nise-regularif A; — A1 <e
(M+1=0) foralli =1,..., k. Otherwisep is callede-singular.

Proposition 5.2[4,6,10].For eache-regular partition A of n, the quotien'ng =
Sg/rad(BA) of the Specht module by the radical Bf is an irreducible module
overH,(¢q). They form a complete set of inequivalentirreducililg g ))-modules.
In particular, the rank of the Gram matrixj, of Sg is equal to the dimension of

the irreducible moduIeDg.

Remark. In [6], Graham and Lehrer introduced the notionceflular algebras
One can verify that the Hecke algelfa (¢) is a cellular algebra with the cellular
basis

{xs¢ | (s, 1) is a standard paix - n},
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where the elements,; is defined in Section 2. Also it can be easily checked
that the Specht modulﬁ% is thecell representatiorcorresponding ta. (see [6,
Theorem 3.4]).

Now we describe our algorithm of computing the Gram matrix of the Specht
module S} First, observe that using the Grébner—Shirshov p&if, R;,), we
can determineB; (u, 1) for all u € G()). Hence the first column of the Gram
matrix can be determined. Next, ketv € G(1) and assume tha, («, w) can be
computed for alke, w € G(A) with I(w) <I(v) — 1. Then, since every € G()
can be written a® = v'T; for somei (1<i <n -1 andv € G(1) with
I(V) =1(v) — 1, we have

B (u,v) = By (u,v'T;) = By (uT;, V).

By Theorem 1.11 and the division algorithm given in Lemma 1.4, evely
weG®), i=1,...,n—1) can be uniquely expressed as a linear combination
of the elements irG(L). Sincel(v") =I(v) — 1, by induction, we can compute
B;.(u,v) = B, (uT;,v'). Note that, sinceB; is symmetric, we have only to
computeB; (u, v) forall u > v.

Hence our algorithm of computing the Gram matfixcan be summarized as
follows:

(1) Using the Grébner—Shirshov pair, compBtgu, 1) for all u € G(1).

(2) Using the division algorithm, write:7; as a linear combination of the
elementsofG(A) forallu e G(A),i=1,...,n— 1.

(3) For anyu,v € G(A) with u > v, write v = v'T; for somev’ € G(1) andi
(1<i <n-—1),and computeB; (u, v) = B; (uT;, V).

In the rest of this section, we present several examples illustrating how to carry
out our algorithm.

Example 5.3.Let A = (2,2, 1) I 5 and consider the Specht modG& Then the
cozy tableaux of shapeand the corresponding standard monomials are given by

112 112 172 112 1] 2
34 24 3|4 2 (4 2| 4
|9 | = 4] 4] | 3]

1 T> Ty ToTy ToTa3
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Hence dimS;} =5andG (1) = {1, T2, T4, T2T4, ToT4.3}. By Theorem 4.7, the
Grobner—Shirshov paifR,,. Rg) is given as follows:

T?—(q-DTi—1 (1<i<4),
R = TpT1 — 11Ty, 1311 —T1T3, TaTo — 1214,
1 T41Ts — 13741,  Ta2Ta—T3Ta2, Ta3Ts— 13143,
13173 —T2T31, T32T3—ToT32, To112—T1T2)
and
R: — Th—q, Tz—q, To1+Te+1 Ts3+Ts+1,
9 | ToT3+To+1, ToTao+ ToTaz+ ToTs.

We now carry out our recursive algorithm.
(1) The values oB; (1, 1) (u € G())) are:
Bi(1,1) = x = (T1 + (T3 + 1) = (¢ + 1)?,
By(T2,1) = o(T1+ D(T3+1) = (T2 + T2)(T3+1) = —(¢ + 1),
By (T4,)) = Ty(T1 + D(T3+ 1) = (T1 + DTa(T3+ 1)
(@+D(Taz+Ts) =—(g+1),
By (1214, 1) = ToTa(T1 + D (T3 +1) =To(T1 + DTa(T3+1) =1,
By (T2T43,1) = ToTa3(Th +1)(T3+ 1) = To(T1 + D T4 3(T3 + 1)
(Ta+D)(T3+ 1) =T3=gq.

(2) WriteuT; u € G(A), i =1,...,4) as alinear combination of the elements
in G(A):
TIi=gq, T =T, T3=gq, Ty = Ty,

T =-T2—-1, DRI=(@q—-DT2+q.

ToT3=—-T>—1, 12Ty = To 13y,

T4T1 = qTa4, T4T2 = ToTx,

T4Tzs=—T4—1, TaTy=(q —DTs+gq,

ToTaTy = —ToT4 — Ta, ToTaTo = (g — DT2Ta + q 14,

ToTaT3 = ToT4 3, DoTaTy = (g — DT2Ts +qTo,

1274 3Ty = —T2Ta 3+ Ta+ 1, 12Ty 3172 =—ToTa3+ T2+ 1,
ToT43T3=(q — DToTsz+qToTs,  ToTs3Ts=—ToTaz+ Ta+1.

(3) Compute all the valueB; (u, v) (u, v € G(1)) inductively.

(@) Bi(u,T2) (u > T>):
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Bi(T2, T2) = Bi(T2,1) = (g — DBi(T2, 1) + ¢ Bi(1, 1) = [4],,
By (T4, T2) = By(T412,1) = By (1214,1) =1,
By (1214, T2) = B (121412, 1)
= (¢ — DBu(T2T4, ) + ¢ Bu(Ta, 1) = —(¢° + 1),
By (T2Ta 3, T2) = B (12T43T2,1)
= —By(T2T43.1) + B,(T2. 1) + B, (1. 1) = ¢°.
(b) By (u,Ta) (u>Ta):
By(Ta, Ta)=[4ly,  Bu(ToTa, Ta) = —(q°+ 1),
By.(T2Ta3. Ts) = g°.
(©) Bi(u, T2Ta) (u = T2Ta):
By (T2Ta, ToTs) = By (T2T7, T2)
= (q —DB\(12T4,T2) + q By (T2, T2) = (q2 + 1)2,
By (12143, ToT4) = By (1274314, T2)
= —By(T2T43, T2) + B;. (14, T2) + By.(1, T2)
= —q@+1D.
(d) Ba(u, T2Ta3) (u > T2T43):
By (12143, ToTa3) = B;. (1274313, T2T4)
= (q — DBy (12143, T2T4) + q B;.(T2T4, T214)
=q¢°+43+24.

Hence the Gram matrikj, is

@+D?* —(@+1 —@+1D 1 q
—(g+1) (4], 1 —(¢%+1) g2
n=|-@+b 1 4, —(¢°+1) q?
1 —(®+1) —(®+1) (2+1)° —q@+D)
q q? q? -q@+1 ¢°+q¢*+2
If ¢ is a primitive 3rd root of unity, then the Gram matrix is reduced to
g ¢* ¢* 1 ¢
> 1 1 q 4*
H=14¢* 1 1 q 4*|,
1 q q ¢ 1

and it is easy to see that its rank is 1. Hence ﬂiign: 1.
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Example 5.4.Considemn. = (n). ThenSg is one-dimensional with bas@ (i) =
{1} andR} (= R}) is given by(T; — ¢ | 1<i <n—1}. Thus

Bl D=x=)Y Ty= Y ¢'™ =i},

weSy wes,

(For the last equality, see, e.g., [7].)
If A = (1"), then the Specht moduléj/]\ is also one-dimensional with basis
G(h) ={l}andR} = R} ={Ti + 1| 1<i <n—1}. Sincex, = 1in S}, we have

B, (1,1)=x), =1

Example 5.5.Let» = (n — 1, 1). Then the dimension o} is n — 1 with basis
G ={Th-1,i 12<i <n}
and

n
Rnggz{ZTn_l,i, Ti—q (1<i<n—2).
i=1

(1) The first column of the Gram matrik, is

B.(1, 1) ={n -1,

Bi(Ty 1. D) =—¢"""n—-2}, 2<i<n-—1.
(2) InS*, we have

TiTy—1,i=qTh-1, 1<j<i-2),
Th-1i-1 (=i-D,
T,-1;T; = ’ ..
n=Litj (q—DT1i+qTh-1i41 (G=1),
Tj 1Ty 1i=qTh1, (+1<j<n-1).

(3) By induction, we have

qn—i{n _ 1}q _ qn—i—l(qn—i _ 1){}’1 _ z}q
(i=J,
By(Ty-1i,Th—1.i) = S
A (T Li>In 1,]) —qzn*lfjfl{n—Z}q
@<
Thus we have determined all the entries of the Gram mdirix

Example 5.6.Let 1 = (A1, A2). The monomial basi& (1) is given by

{(al,az,...,a;\z)kl 2i <a; <A1+, a; <ajyq for eachi},

and the dimension oSqA is

AM—A+1/n
rM+1 r2)’
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In Sg, we have

(az, ..., auy)nt(S1,2,)
_1 -2 4.
Y G b Z"=1a"t(51,x142)
X Z <b)»1—)\25 BRI b}q—l))ul

1<b; <i+1 for eachi
g Bl DY g o (e be0e D,
r2
Aro—Y"2 a;
= (~D*2g" =Y g — Aol (2

Given({ay, ..., ax,),, lets € [0, A2] be the least integer such thait < a,1 and
let # € [0, A2] be the least integer such that,1 = A1 + ¢t + 1, where we set
A1 =Ar1+ A2+ 1. Then

B;L((al, ceey Q)i 1)

={a1, ..., 05, ..., ary .., Q) aq (S22 )0 (Shq+1,05)
={ag,....qg, ..., )5t (S1a ) (Sny+1.00)
={a1, ..., ag)at(S1,a ) (@541 -+ o5 Ar)aqg st (Sngr1ny)

_ (_1)sq11S*Zj'=1aj (A1 — S}q {S}qqZ;':sH(MJrjfa_/){Az}q
1, _\, X
— (_1)Sqlll+2(t s)(t+s+1) lela/ {)\’1 _ s}q {S}q {)\Z}q-

Thus we completed the first step of our algorithm. The remaining steps can be
worked out by direct calculation.

6. Gram matrices of Temperley—Lieb algebras

In this section, we apply the Grobner—Shirshov basis theory to the Temperley—
Lieb algebras. By modifying the parameter, the Temperley—Lieb algebra can be
viewed as the quotient of Hecke algebra, and the kernel of this quotient map
acts trivially on the Specht modules. In this way the Specht modules over Hecke
algebras corresponding to the Young diagrams with at most two columns will
naturally become modules over Temperley—Lieb algebras, which will also be
called theSpecht modulesver Temperley—Lieb algebras. Using the Grobner—
Shirshov pairgqR,, Rg) for the Specht modules over Hecke algebras, we can
easily determine the Grobner-Shirshov pairs and the monomial bases for the
Specht modules over Temperley-Lieb algebras. Therefore, as in the case of Hecke
algebras, we obtain a recursive algorithm of computing the Gram matrices of
Specht modules over Temperley-Lieb algebras.
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Definition 6.1. Let » be an invertible element &. The Temperley—Lieb algebra
TL,(n) is the associative algebra oVBigenerated byX = {/1, 1>, ..., [,—1} with
defining relations

Lilj =1l fori > j+1,
Ly {12=1 fori<i<n-—1, (6.1)
Liljl; = nl; forj=i+1

For the generators, we use the same shorthand as we did for the generators
T;: we write l; ; = l;l;_1---1; for i > j and set; ;11 =1 (i > 0). We define
Uiy Liy - -lij)* =lili; -l and extendk to an anti-automorphism &fL, () by
linearity.

Now we can immediately determine a Grdbner—Shirshov basis and the
corresponding monomial basis for the Temperley—Lieb alg€byan).

Proposition 6.2.(a) The following relations form a Grébner-Shirshov basis for
the Temperley—Lieb algebra Tly) with respect to the monomial ordefgegex:

lilj —1;1; fori > j+1,
L: liz_li fori<i<n-—-1,
" Lijli = nli—2 jl; fori> j,

l,’lj,,‘ — T]lilj,i+2 fori < j.

(6.2)

(b) Let BT be the set of all monomials of the form

ll,jllz,jz T ln_lvjn—l’

wherel < jiy <k +1andji #k+ limpliesj; < j; forall I > k.
Then the seB,T'— forms a linear basis of the Temperley—Lieb algebra (h
consisting ofZ, -standard monomials. In particular,

n n

Proof. It can be easily checked that the relations in (6.2) hol@lin(n), and that
the setB]" is the set ofL,-standard monomials. In [5], it was shown that the set
B,I'— form a linear basis of the algebiid, (). Hence, by definition, the set of
relationsz,, is a Grobner—Shirshov basis fot, (n). As for the number of such
monomials, the readers may also refer to [51

Remark. One can see that our description of the standard monomials is the same
as in [5]. If we ignore the factal x+1, then each element dﬂ,T'- can be written
as

liy.jiliz.jo+li,.j, (O<p<n-—1),

where
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I<ii<ip<--<ip<n—1, I<jpi<jpp<--<jp<n—1,
11>J17 l2>]25 ey ip?jpy
and if p = 0 the monomial corresponds to 1.

Take a numbey # 0, —1 in F or in a quadratic extension d such that
n=q(g + 1)~2. In the latter case, we replace our base field with the quadratic
extension ofF and abuse the notation to denote it alsofyThe following
proposition asserts that the Temperley-Lieb algdiiran) is a quotient of the
Hecke algebréi, (¢).

Proposition 6.3[5]. There is a surjective algebra homomorphism
@ :Hy(g) — TLy(n) definedby &(T;) = (¢ + D, — 1.

If n > 3, thena = ker® is the two-sided ideal dft,,(¢) generated by
(Mi+D(T21+T2+1).

Moreover, the ideak contains the elements
(Ti + D(Ti41,i + Tiv1 + 1)

forl<i<n-—2.

In the rest of this section, we fix a partitian= (2¢, 1"=%) (k > 0) of n whose
diagram has at most two columns.

Lemma 6.4.Let a be the kernel of the surjective homomorphigmH, (¢) —
TL,(n). Then the ideah acts trivially on the Specht modu@.

Proof. The monomial basi& (1) of Sg consists of the monomials of the form

{ 2.0y Taay - Tok—2.a,_1 if n =2k,
T20Taap - Tokap Tok+Lap i1 T2k 42,0042 - Tn—1,a,_y_,  Otherwise
where

ai<ajp1 forl<i<n—k—2,

i+1<a;<2i+1 forl<i <k,

i+1<a;i<k+i+1 fork+1<i<n—-k-1

Letxys = (T1+1)(T2.1+ T2+ 1). It suffices to show thatx; = O forallu € G(1).
SinceT; with i > 4 commutes withc1, we have only to show that

x1=0, Tox1 =0, ToT3x1 =0, T2T43x1 =0.

All of these can be checked easily by straightforward calculatian.
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Therefore, by Lemma 6.4, the Specht modﬂ‘;eis given aTL,(n)-module
structure via the surjective homomorphigm
Let Z% be theTL, (n)-module defined by the paiL,, Lg), where

loj_1—1 for1<i <k,
L’,\,: loigi-1—n forl<i<k,
[ for2zk+1<j<n—1

Lemma 6.5.As a Tl,(n)-module, the Specht moduf% is isomorphic to the
TL.(n)-moduleZ;.

Proof. Recall that the Specht modus¢ is defined by the paitR*, R), and note
that the seRj} is mapped ontaLg under®. Thus the ma induces a surjective

TL(n)-module homomorphisr# from S/ onto Z;: as is shown in the following
commutative diagram:

Ho(q) —2>TL, ()

|

x @ A
Sq 4>Zﬂ.

By Lemma 6.4, we conclude thdt is an isomorphism. O

The TLn(r;)-moduIeZ,A’ will also be called theSpecht modulever TL, (1)
corresponding ta.

Leta = (a1, a2, ..., a;) be a sequence of positive integers satisfyingd; <
N+i(i=12,...,j ) for some positive intege¥ . We define

Ha)n =IN,ayN+1ap " IN+j—1a;-
Theorem 6.6.(a) Letﬁ’}, be the set of the following relations

() Wax,az,...,azp-1)10zpr1—Dforl<p<k—1,

(i) Way,az,...,a2p—3)1(l2p,2p—1—n) for 1< p <k,

(i) Ka1,ao,..., azk+p—2)1l2k+p forl<p<n—2k-1,

(iv) Uax,az,...,az2p-2)1(l2p bl2ps1—nl2p—1p) fOr 1< p <k —1,1<b < 2p,

wherel < a; <i + 1for eachi.

Then the pair(£,), E;}) is a Grobner-Shirshov pair for the moduﬂ% with
respect to the monomial ordetgeglex-

(b) LetGTL(1) be the set of monomials consisting of the monomials of the form

12,(1114,112 e le—Z,ak_l if n= 2k,
2,018,052k, 12k + Lag s 1 L2k +2,05 12~ In—1.a,_—,  OthETWISE
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where

ai <ajr1 forl<i<n—k—-2,

i+1<a;<2i+1 forl<i<k,

i+1<a;<k+i+1 fork+1<i<n—k-—1
Then the seG "-(1) forms a linear basis oZ% consisting of(£,, ﬁ;‘i)—standard
monomials.
Proof. The relations in (i)—(iii) are trivially derived frorrL;\r Note that the
relation

TopTopi1+T2p+1 (L<p<k)
isin Rfl, and that the image of the relation under the rndajs

laplopr1—m (A< p<k)

(up to nonzero scalar). If we multiply it bya1, az, ..., azp—2)1l2,—1, from the
right, then we have the relations in (iv). Thus all the relationgbhold in Z.

We can immediately check that the s&f“(1) is the set of(£,, £})-standard

monomials. If we replacg with 7;, then the se6TH()) yields the seG (1) (see
the proof of Lemma 6.4). In particular,

. . —2k+1/n
#(G™ () = dims? = dimz» = 222",
(GT00) =dims; =dimz, = =———{,

By Proposition 1.6, we conclude th@t,,, ﬁ;}) is a Grobner—Shirshov pair for the
modulez}. O
Define a bilinear map
TLi() x TLu() = Z; by (u,v) > uv*lilz- Iy 1.

As in the case of Hecke algebras, the map induces a symmetric bilinear form
onZz;

B{“:Z} x Z} >FcC Z}
satisfying

BIL(u, vx) = B;I:L(ux*, v) forall u,veZz’

n» X € TL, (n).

Actually, sinces) is isomorphic toZ}; via @ and®(T;) = (g + 1)l; — 1, we see
that

BIL(u, v)=(q+ l)_kBk(u/, V) foru,ve Zf", u', v e S;‘,
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whereu’ and v’ are the inverse images of and v, respectively, under the
isomorphisms;: — Z7. In particular, the symmetric bilinear form,- is well-
defined. The matrix't of the symmetric bilinear fornB- with respect to the
monomial basis; T-(1) is called theGram matrixof Z}..

As for the irreducible representation and the rank of the Gram matrix, we have
the following proposition similar to Proposition 5.2.

Proposition 6.7 [6]. For any partition » = (2%,1"~%) (k > 0) of n whose
diagram has at most two columns, the quotieEi} = Zg/rad(BIL) of the
Specht module by the radical @i" is an irreducible module over ).

Furthermore, they form a complete set of inequivalent irreduciblg ()=

modules. In particular, the rank of the Gram matniigTL of Zg is equal to the
dimension of the irreducible modu@.

Remark. From Proposition 6.3 and the cellular algebra structure of Hecke algebra
described in the remark of Proposition 5.2, we see that the Temperley-Lieb
algebraTL,(n) is also a cellular algebra, and that the Specht modlf;leover
TL,(n) is the cell representation corresponding.t(see [6]).

In the following proposition, we work out the first step of our algorithm of
computing the Gram matrix. The remaining steps can be carried out by direct
calculation.

Proposition 6.8.1f Iy = l2.4l4.a, - - ln—1.,_,_, IS IN GT-(3), then we have

0 ifaryj<2k+jforsomej (1<j<n—2k—-1),

TL _
B, e, 1) = { n* otherwise

where

oy Z [Zi_;i+2i|'

a; <2k

Proof. Sincea; < a» < -+ < ay_r—1, We can write the monomial, as
Ipy alpy2---1p, n after insertingl; ;41 in appropriate places. Then using the
relations inL}, we obtain

BN (g, 1) = lpyalby2- - Ipynlalz - lok—1

k n—2k
(Hlbgi_l,Zi—llbgi,Zi—l) T ooy 26t
j=1

i=1

0 ifb;>2k+1andb; >iforsomei (1<i<n),
n* otherwise
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_JO0  ifaryj <2+ jforsomej (1< j<n—2k—1),
n™ otherwise

where
X rbi—i+1 2i —a; +2
1 L
e SN
i=1 a; <2k
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