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0. Introduction

The purpose of this paper is to study the structure of Specht modules
over Hecke algebras of typeA using theGröbner–Shirshov basis theoryfor
representations of associative algebras. The Gröbner basis theory has originated
from Buchberger’s algorithm of solving the reduction problem for commutative
algebras [3]. In [1], it was generalized to associative algebras through the
Diamond Lemma, and during the past three decades, a wide variety of interesting
and significant developments has been made both in pure and applied algebra in
connection with Gröbner basis theory.

On the other hand, in [11], Shirshov developed a parallel theory for Lie
algebras by proving theComposition Lemma,and in [2], Bokut showed that
Shirshov’s method works for associative algebras as well. For this reason,
Shirshov’s theory for Lie algebras and their universal enveloping algebras is called
theGröbner–Shirshov basis theory.

The next natural step is to develop the Gröbner–Shirshov basis theory for
representations. For commutative algebras, there is no difference between the
Gröbner basis theory for algebras and the one for their representations because
the two-sided ideals and the one-sided ideals coincide. But for general associative
algebras, we need a generalized version of Shirshov’s Composition Lemma that
combines both two-sided ideals and one-sided ideals.

In [8], Kang and Lee developed the Gröbner–Shirshov basis theory for the
representations of associative algebras by introducing the notion ofGröbner–
Shirshov pair. More precisely, letA be a free associative algebra and let(S,T )

be a pair of subsets of monic elements ofA. Let J be the two-sided ideal ofA
generated byS andA=A/J be the quotient algebra. We denote byI the right
ideal ofA generated by (the image of)T . Then the rightA-moduleM = A/I is
said to bedefined by the pair(S,T ). The pair(S,T ) is called a Gröbner–Shirshov
pair forM if it is closed under composition. In this case, the set of(S,T )-standard
monomialsforms a linear basis ofM.

In this paper, using the Gröbner–Shirshov basis theory, we construct the Specht
modules over Hecke algebras in terms of generators and relations, and determine
the Gröbner–Shirshov pairs and monomial bases for the Specht modules. The
Specht modules are canonical indecomposable modules over Hecke algebras and
are labeled by partitions. Our approach can be explained as follows.

Fix a positive integern, let λ be a partition ofn, and letSλq be the Specht
module over the Hecke algebraHn(q) corresponding toλ. We denote bytλ the
unique standard tableau of shapeλ such thattλ(i, j + 1) = tλ(i, j) + 1 for all
nodes(i, j), and define

xλ =
∑
w∈Wλ

Tw,
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whereWλ is the row-stabilizer oftλ. We first construct anHn(q)-module Ŝ λq
defined by the pair(Rq,Rλq ), whereRq is the set of defining relations for the

Hecke algebraHn(q) andRλq is the set of annihilating relations ofxλ. Then
we show that there is a surjective homomorphismΨ : Ŝ λq → Sλq . Taking the
composition of relations inRq andRλq and their extensions, we derive sufficiently

many relations for̂S λq to obtain a pair(Rq,Rλq), and determine the setG(λ) of
(Rq,Rλq)-standard monomials. Now we show that the setG(λ) is in one-to-one
correspondence with the set ofcozy tableauxof shapeλ. Since the number of
cozy tableaux of shapeλ is the same as the dimension of the Specht moduleSλq ,

we conclude that theHn(q)-moduleŜ λq is isomorphic to the Specht moduleSλq ,
the pair(Rq ,Rλq) is the Gröbner–Shirshov pair for̂S λq , and the setG(λ) forms a

linear basis of̂S λq . Actually, the monomial basisG(λ) is mapped onto theMurphy

basisof Sλq under the isomorphismΨ (cf. [10]).
The Gröbner–Shirshov basis theory can be applied to find a recursive algorithm

of computing the Gram matrices of the Specht modules. TheGram matrixΓλ
of the Specht moduleSλq is the matrix of the canonical bilinear formBλ :Sλq ×
Sλq → F induced by the bilinear map

Hn(q)×Hn(q)→ Sλq defined by (u, v) �→ uv∗xλ.

If q is not a root of unity, the Specht modules are irreducible and the Gram
matrices are nonsingular. Ifq is aneth root of unity, then the Specht modules are
no longer irreducible and the irreducible modules arise as the simple quotients
of the Specht modules corresponding to thee-regular partitions. However, in
general, the dimensions of irreducible modules are not known explicitly. Since the
rank of the Gram matrixΓλ is equal to the dimension of the irreducible moduleDλq
corresponding to ane-regular partitionλ, it is an important problem to determine
the entries and the rank of the Gram matrixΓλ.

We briefly explain our algorithm of computing the Gram matrices. Using the
Gröbner–Shirshov pair(Rq,Rλq), we can computeBλ(u,1) for all u ∈G(λ). Let
u,v ∈G(λ) and assume thatBλ(u,w) can be computed for allu,w ∈G(λ) with
l(w) < l(v). Observe that everyv ∈ G(λ) can be written asv = v′Ti for some
v′ ∈G(λ) with l(v′)= l(v)− 1. Then we have

Bλ(u, v)= Bλ(u, v′Ti)= Bλ(uTi, v′).
By thedivision algorithmgiven in Lemma 1.4,uTi can be expressed as a linear
combination of the elements inG(λ). Hence, by induction, we can compute
Bλ(u, v)= Bλ(uTi, v′) for all u,v ∈G(λ).

At the end of this paper, we discuss the application of our algorithm to
several interesting examples. Furthermore, viewing the Temperley–Lieb algebras
as the quotients of Hecke algebras, we can determine the Gröbner–Shirshov pairs
and the monomial bases for the Specht modules over Temperley–Lieb algebras.
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Therefore, as in the case of Hecke algebras, the division algorithm in Lemma 1.4
gives a recursive algorithm of computing the Gram matrices of Specht modules
over Temperley–Lieb algebras.

1. Gröbner–Shirshov pair

First, we briefly recall the Gröbner–Shirshov basis theory for the representa-
tions of associative algebras which was developed in [8,9]. In this paper, we will
deal with right modules.

LetX be a set and letX∗ be the free monoid of associative monomials onX.
We denote the empty monomial by 1 and thelengthof a monomialu by l(u).
Thus we havel(1)= 0.

Definition 1.1. A well-ordering≺ on X∗ is called amonomial orderif x ≺ y
impliesaxb≺ ayb for all a, b ∈X∗.

Example 1.2.LetX = {x1, x2, . . .} be the set of alphabets and let

u= xi1xi2 · · ·xik , v = xj1xj2 · · ·xjl ∈X∗.

(a) We defineu≺deg-lex v if and only if k < l or k = l andir < jr for the firstr
such thatir �= jr ; it is a monomial order onX∗ called thedegree lexicographic
order.

(b) We defineu ≺deg-rlex v if and only if k < l or k = l and ir > jr for the last
r such thatir �= jr ; it is a monomial order onX∗ called thedegree reverse
lexicographic order.

Fix a monomial order≺ on X∗ and letAX be the free associative algebra
generated byX over a fieldF. Given a nonzero elementp ∈ AX , we denote
by p̄ the maximal monomial appearing inp under the ordering≺. Thusp =
αp̄ +∑

βiwi with α,βi ∈ F, wi ∈X∗, α �= 0 andwi ≺ p̄. If α = 1, p is said to
bemonic.

Let (S,T ) be a pair of subsets of monic elements ofAX , letJ be the two-sided
ideal ofAX generated byS, and letI be the right ideal of the algebraA=AX/J
generated by (the image of)T . Then we say that the algebraA=AX/J is defined
by S and that the rightA-moduleM = A/I is defined by the pair(S,T ). The
images ofp ∈AX in A and inM under the canonical quotient maps will also be
denoted byp.

Definition 1.3.Given a pair(S,T ) of subsets of monic elements ofAX , a mono-
mial u ∈ X∗ is said to be(S,T )-standardif u �= as̄b andu �= t̄c for any s ∈ S,
t ∈ T anda, b, c ∈X∗. Otherwise, the monomialu is said to be(S,T )-reducible.
If T = ∅, we will simply say thatu is S-standardor S-reducible.
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Lemma 1.4[8,9]. Everyp ∈AX can be expressed as

p =
∑

αiaisibi +
∑

βj tj cj +
∑

γkuk, (1.1)

whereαi,βj , γk ∈ F, ai, bi, cj , uk ∈ X∗, si ∈ S, tj ∈ T , aisibi � p̄, tj cj � p̄,
uk � p̄ anduk are (S,T )-standard.

Proof. We may assumep ∈X∗. If p is (S,T )-standard, then there is nothing to
prove. Ifp = as̄b, s ∈ S, thenp = asb +∑

ηivi with vi ≺ p. If p = t̄c, t ∈ T ,
thenp = tc +∑

η′iv′i with v′i ≺ p. We now apply the induction to complete the
proof. ✷
Remark. The proof of the above lemma actually gives an algorithm of writing an
elementp of AX in the form (1.1). It may be considered as adivision algorithm.

The term
∑
γkuk in the expression (1.1) is called anormal formof p with

respect to the pair(S,T ) (and with respect to the monomial order≺). In general,
a normal form is not unique.

Example 1.5.LetX = {x1, x2, x3} and choose the monomial order≺deg-lex. If we
set

S = {
x1x

2
2 − x3, x1x3+ x3

}
and T = {

x2
3 + 1

}
,

then the elementx2
1x

2
2x3x1 becomes

x2
1x

2
2x3x1 = x1

(
x1x

2
2 − x3

)
x3x1+ x1x

2
3x1

= x1
(
x1x

2
2 − x3

)
x3x1+ (x1x3+ x3)x3x1− x2

3x1

= x1
(
x1x

2
2 − x3

)
x3x1+ (x1x3+ x3)x3x1−

(
x2

3 + 1
)
x1+ x1.

Thus a normal form ofx2
1x

2
2x3x1 is x1. ✷

As an immediate corollary of Lemma 1.4, we obtain the following proposition.

Proposition 1.6 [8,9]. The set of(S,T )-standard monomials spans the right
A-moduleM =A/I defined by the pair(S,T ).

Definition 1.7. A pair (S,T ) of subsets of monic elements ofAX is aGröbner–
Shirshov pairif the set of(S,T )-standard monomials forms a linear basis of the
right A-moduleM = A/I defined by the pair(S,T ). In this case, we say that
(S,T ) is aGröbner–Shirshov pairfor the moduleM defined by(S,T ). If a pair
(S,∅) is a Gröbner–Shirshov pair, then we also say thatS is aGröbner–Shirshov
basisfor the algebraA=AX/J defined byS.
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Let p andq be monic elements ofAX with leading termsp̄ andq̄. We define
thecompositionof p andq as follows.

Definition 1.8. (a) If there exista and b in X∗ such thatp̄a = bq̄ = w with
l(p̄) > l(b), then thecomposition of intersectionis defined to be(p, q)w =
pa − bq . Furthermore, ifb= 1, the composition(p, q)w is calledleft-justified.

(b) If there exista and b in X∗ such thatb �= 1, p = aq̄b = w, then the
composition of inclusionis defined to be(p, q)w = p− aqb.

Forp,q ∈AX andw ∈X∗, we define acongruence relationonAX as follows:
p ≡ q mod(S,T ;w) if and only if p − q = ∑

αiaisibi +∑
βj tj cj , where

αi,βj ∈ F, ai, bi, cj ∈X∗, si ∈ S, tj ∈ T , aisibi ≺w, andtj cj ≺w. WhenT = ∅,
we simply writep ≡ q mod(S;w).
Definition 1.9. A pair (S,T ) of subsets of monic elements inAX is said to be
closed under compositionif

(i) (p, q)w ≡ 0 mod(S;w) for all p,q ∈ S,w ∈X∗, whenever the composition
(p, q)w is defined;

(ii) (p, q)w ≡ 0 mod(S,T ;w) for all p,q ∈ T , w ∈ X∗, whenever the left-
justified composition(p, q)w is defined;

(iii) (p, q)w ≡ 0 mod(S,T ;w) for all p ∈ T , q ∈ S, w ∈ X∗, whenever the
composition(p, q)w is defined.

If T = ∅, we will simply say thatS is closed under composition.

In the following lemma, we recall the main result of [8], which is a generaliza-
tion of Shirshov’s Composition Lemma (for Lie algebras and associative algebras)
to the representations of associative algebras.

Lemma 1.10[8]. Let (S,T ) be a pair of subsets of monic elements in the free
associative algebraAX generated byX, letA=AX/J be the associative algebra
defined byS, and letM =A/I be the rightA-module defined by(S,T ). If (S,T )
is closed under composition and the image ofp ∈ AX is trivial in M, then the
word p̄ is (S,T )-reducible.

As an immediate consequence, we obtain the following theorem.

Theorem 1.11[9]. Let (S,T ) be a pair of subsets of monic elements inAX . Then
the following conditions are equivalent:

(a) (S,T ) is a Gröbner–Shirshov pair.
(b) (S,T ) is closed under composition.
(c) For eachp ∈AX , the normal form ofp is unique.
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2. Specht modules

In this section, we recall Murphy’s construction [10] of Specht modules over
Hecke algebras of typeA. One of the nicest features of Murphy’s construction is
that it works over any integral domain. We first study our object over the ring
F[v, v−1] with v an indeterminate, and then specializev to a nonzero scalar
q ∈ F

×.
Let Sn be the symmetric group onn letters and letτi = (i, i + 1) be the

transposition ofi andi + 1. Then theHecke algebraHn(v) of typeA is defined
to be the associative algebra overF[v, v−1] generated byX = {T1, T2, . . . , Tn−1}
with defining relations

Rv :

{
TiTj = TjTi for i > j + 1,
T 2
i = (v − l)Ti + v for 1� i � n− 1,
Ti+1TiTi+1= TiTi+1Ti for 1� i � n− 2.

(2.1)

We write Ti,j = TiTi−1 · · ·Tj for i � j and T j,i = TjTj+1 · · ·Ti for j � i

(henceTi,i = Ti andT i,i = Ti ). We also setTi,i+1 = 1 (i � 0) andT i,i−1 = 1
(i � 1). We define forT = Ti1Ti2 · · ·Tik ∈Hn(v), T ∗ = Tik Tik−1 · · ·Ti1 and extend
∗ to an anti-automorphism ofHn(v) by linearity. Note thatT ∗i,j = T j,i . For
a reduced expressionw = τi1τi2 · · · τik ∈ Sn, we defineTw ∈Hn(v) to be

Tw = Ti1Ti2 · · ·Tik .
ThenTw is well-defined andT ∗w = Tw−1. For any subsetW ⊆ Sn, we define

ι(W)=
∑
w∈W

Tw.

A compositionλ of n, denoted byλ |= n, is a sequenceλ= (λ1, λ2, . . . , λk) of
nonnegative integers whose sum isn. By convention we setλ0 = 0. A partition
λ of n, denoted byλ � n, is a composition such thatλ = (λ1 � λ2 � · · · � λk).
For a composition ofn, thediagram[λ] is the set ofnodes{(i, j) | 1 � j � λi ,
i = 1,2, . . . , n}.

Definition 2.1.Suppose thatλ is a composition ofn.

(a) A λ-tableauis a mapt : [λ]→ (1,2, . . . , n). If a λ-tableaut is a bijection,t is
said to bebijective.

(b) A tableaut is row-standardif it is bijective andt (i, j) < t(i, j + 1) for all i
andj .

(c) A tableaut is standardif λ is a partition,t is row-standard andt (i, j) <
t(i + 1, j) for all i andj .

The diagram corresponding to a tableaut will be denoted by[t]. If m � n

andt is a row-standard tableau withn nodes, then the restriction oft to the image
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set{1,2, . . . ,m} is a row-standard tableau denoted byt ↓m. The corresponding
diagram will be denoted by[t ↓m].

Let tλ be the unique standardλ-tableau such thattλ(i, j +1)= tλ(i, j)+1 for
all nodes(i, j). For example,t(5,3,2,1) is the following tableau:

1 2 3 4 5
6 7 8
9 10
11

The symmetric groupSn acts naturally from the right on the set of all bijective
λ-tableaux. Ift is row-standard, we denote byd(t) the element ofSn for which
t = tλd(t). We denote byWλ the group of row stabilizers oftλ.

For compositionsλ andµ of n, we writeλ�µ if
∑m
i=1λi �

∑m
i=1µi for each

m. Let s, t be row-standardλ- andµ-tableaux, respectively. We writes � t if for
eachm� n, [s ↓m]� [t ↓m]. Letλ be a composition ofn. By aλ-pair we mean
a pair(s, t) of row-standardλ-tableaux. Aλ-pair is calledstandardif both s and
t are standard.

For a compositionλ of n and for anyλ-pair (s, t), we define

xλ =
∑
w∈Wλ

Tw and xst = T ∗d(s)xλTd(t). (2.2)

Hencextλtλ = xλ. From now on, whenever the subscript istλ, we will abbreviate
it to λ. For example, we will writextλtλ = xλλ = xλ andxtλs = xλs .

For a partitionλ � n, letNλ (respectivelyNλ) be theF[v, v−1]-submodule of
Hn(v) spanned byxrs , where(r, s) runs over all standardµ-pair for a partition
µ � n with µ� λ (respectivelyµ✄ λ). LetMλ = xλHn(v) be the cyclicHn(v)-
module generated byxλ and setMλ =Mλ ∩Nλ.

Definition 2.2. The Hn(v)-moduleSλv = Mλ/Mλ is called theSpecht module
overHn(v) corresponding to the partitionλ.

Proposition 2.3 [10]. The Specht moduleSλv is a freeF[v, v−1]-module with
a basis consisting of the vectorsxλs +Mλ, where s runs over all standardλ-tab-
leaux.

The basis ofSλv in the above proposition is called theMurphy basisof the
Specht moduleSλv .
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3. Some natural relations inSλ
v

In this section, we will derive some natural relations inSλv , which will serve
as the defining relations and will be extended to form a Gröbner–Shirshov pair
in the next section. One can observe that the basic relations are the relations in
Lemma 3.2 along with the defining relations (2.1) for the Hecke algebraHn(v).
All the other relations will be derived from these basic relations. This indicates
what would be the set of defining relations for the Specht modules, and leads us
to the abstract definition of the Specht modules by generators and relations in the
next section.

Lemma 3.1.The relations

Ta,bTc,d = Tc−1,d−1Ta,b (a � c� d � b) (3.1)

hold inHn(v).

Proof. If b = a − 1, then (3.1) becomes one of the relations in (2.1), so assume
thatb � a − 2. Suppose further thata = c = d . SinceTa commutes withTk for
b� k � a − 2, we have

Ta,bTa = Ta,a−1Ta−2,bTa = Ta,a−1TaTa−2,b = Ta−1Ta,a−1Ta−2,b

= Ta−1Ta,b,

which is the desired relation.
If a � d � b, we use induction onc. If c= d then

Ta,bTc = Ta,c+1Tc,bTc = Ta,c+1Tc−1Tc,b = Tc−1Ta,b,

as desired. Ifc > d , then by induction

Ta,bTc,d = Ta,c+1Tc,bTc,d = Ta,c+1Tc−1Tc,bTc−1,d = Tc−1Ta,bTc−1,d

= Tc−1Tc−2,d−1Ta,b = Tc−1,d−1Ta,b,

which completes the induction argument.✷
For anyi � j , we denote bySi,j the subgroup ofSn which permutes only

i, i + 1, . . . , j (1 � i � j � n). Considering the coset representatives ofS1,n−1
andS2,n, respectively, we have

ι(Sn)= ι(S1,n−1)

(
n∑
l=1

Tn−1,l

)
=
(
n−1∑
l=0

Tl,1

)
ι(S2,n). (3.2)

Fix a partitionλ = (λ1, λ2, . . . , λk) of n. We introduce some notations. For
i = 1,2, . . . , k, we define

0λ = 0 and iλ =
i∑
l=1

λl.
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That is,{iλ}ki=1 is the sequence of partial sums of the partitionλ. For example, if
λ= (4,3,1)� 8, then we have 0λ = 0, 1λ = 4, 2λ = 7, and 3λ = 8.

With this notation, we define

xλi = ι(S(i−1)λ+1,iλ). (3.3)

Then we have the following statement.

Lemma 3.2.The following relations hold inSλv :

(a) For i = 1, . . . , n− 1 with i �= lλ (l = 1, . . . , k − 1), we have

xλ(Ti − v)= 0.

(b) For i = 1, . . . , k − 1, we have

xλ

(
λi+1∑
l=1

Tiλ,(i−1)λ+l

)
= 0.

Proof. By [10, Lemma 4.1],xλ has a right factorTi + 1 for i �= lλ. Hence the
relation (2.1) impliesxλ(Ti − v)= 0 for i �= lλ.

Let µ = (λ1, . . . , λi−1, λi + 1, λi+1 − 1, λi+2, . . . , λk). It follows from (3.2)
that

xλixλi+1

(
λi+1∑
l=1

Tiλ,(i−1)λ+l

)
= xλi+1xλi

(
λi+1∑
l=1

Tiλ,(i−1)λ+l

)

=
(
µi+1+1∑
l=1

T(i+1)µ−l,iµ

)
xµi+1xµi

=
(
µi+1+1∑
l=1

T(i+1)µ−l,iµ

)
xµi xµi+1.

Thus we have

xλ

(
λi+1∑
l=1

Tiλ,(i−1)λ+l

)
=
(
µi+1+1∑
l=1

T(i+1)µ−l,iµ

)
xµ.

Note that(
µi+1+1∑
l=1

T(i+1)µ−l,iµ

)
xµ =

µi+1+1∑
l=1

(
T iµ,(i+1)µ−l)∗xµ =∑

τ

xτ,µ,

where eachτ is a row-standardµ-tableau. Sinceλ✁ µ, by [10, Theorem 4.18]
and the definition ofSλv , we conclude that

xλ

(
λi+1∑
l=1

Tiλ,(i−1)λ+l

)
= 0. ✷



268 S.-J. Kang et al. / Journal of Algebra 252 (2002) 258–292

Fors ∈ Z�0 and a sequencea = (al)jl=1= (a1, a2, . . . , aj ) of positive integers,
define

s + a = s + (a1, a2, . . . , aj )= (s + a1, s + a2, . . . , s + aj ).
If a = (a1, a2, . . . , aj ) satisfies 1� al �N + l for some nonnegative integerN ,
we define

〈a〉N = 〈a1, a2, . . . , aj 〉N = TN,a1TN+1,a2 · · ·TN+j−1,aj .

Thus we have〈s + a〉N = TN,s+a1TN+1,s+a2 · · ·TN+j−1,s+aj .

Lemma 3.3.For p (0 � p � k − 1) andj (1 � j < λp+1), let

ai = (ail )=
(
ai1, . . . , a

i
λi+1

)
(i = 0,1, . . . , p− 1)

and

b= (bl)= (b1, . . . , bj , bj+1)

be sequences of positive integers such that

1 � ail � iλ + l, 1 � bl � pλ + l, and bj � bj+1.

Then the relation

xλ

(
p−1∏
i=0

〈ai〉iλ
)
〈b〉pλ = vxλ

(
p−1∏
i=0

〈ai〉iλ
)
〈b′〉pλ (3.4)

holds inSλv , whereb′ = (b1, b2, . . . , bj−1, bj+1, bj + 1).

Proof. From the first relations in Lemma 3.2, we havexλTpλ+j = vxλ. Since

(
∏p−1
i=0 〈ai〉iλ )〈b1, . . . , bj−1〉pλ commutes withTpλ+j , we have the following

relation inSλv :

xλ

(
p−1∏
i=0

〈ai〉iλ
)
〈b1, b2, . . . , bj−1,pλ + j,pλ + j 〉pλ

= vxλ
(
p−1∏
i=0

〈ai〉iλ
)
〈b1, b2, . . . , bj−1,pλ + j,pλ + j + 1〉pλ.

Thus the relations in (3.4) hold forbj = bj+1= pλ + j .
Assume that forpλ + j > bj = bj+1, we have

xλ

(
p−1∏
i=0

〈ai〉iλ
)
〈b1, b2, . . . , bj−1, bj , bj 〉pλ

= vxλ
(
p−1∏
i=0

〈ai〉iλ
)
〈b1, b2, . . . , bj−1, bj , bj + 1〉pλ.
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Multiplying the above relation byTbj−1Tbj from the right, the left-hand side
yields

xλ

(
p−1∏
i=0

〈ai〉iλ
)
〈b1, . . . , bj−1, bj , bj 〉pλTbj−1Tbj

= xλ
(
p−1∏
i=0

〈ai〉iλ
)
〈b1, . . . , bj−1, bj , bj + 1〉pλTbj−1Tbj ,bj−1

= xλ
(
p−1∏
i=0

〈ai〉iλ
)
〈b1, . . . , bj − 1, bj − 1〉pλ,

and the right-hand side yields

vxλ

(
p−1∏
i=0

〈ai〉iλ
)
〈b1, b2, . . . , bj−1, bj , bj + 1〉pλTbj−1Tbj

= vxλ
(
p−1∏
i=0

〈ai〉iλ
)
〈b1, . . . , bj−1, bj − 1, bj 〉pλ

= vxλ
(
p−1∏
i=0

〈ai〉iλ
)
〈b1, . . . , bj−1, bj − 1, bj 〉pλ .

By induction, we obtain the relations in (3.4) for allbj = bj+1.
Now assume that forbj � bj+1, we have

xλ

(
p−1∏
i=0

〈ai〉iλ
)
〈b1, b2, . . . , bj−1, bj , bj+1〉pλ

= vxλ
(
p−1∏
i=0

〈ai〉iλ
)
〈b1, b2, . . . , bj−1, bj+1, bj + 1〉pλ.

Multiplying the relationTbj+1−1 from the right, we obtain

xλ

(
p−1∏
i=0

〈ai〉iλ
)
〈b1, b2, . . . , bj−1, bj , bj+1− 1〉pλ

= vxλ
(
p−1∏
i=0

〈ai〉iλ
)
〈b1, b2, . . . , bj−1, bj+1− 1, bj + 1〉pλ .

By induction onbj+1, the relations in (3.4) hold for allbj � bj+1. ✷
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For any natural numberi, let

[i]v = 1+ v + v2+ · · · + vi−1, {i}v =
i∏
j=1

[j ]v,

and [0]v = 1, {0}v = 1. For eachi (1 � i � k − 1) and j (1 � j � λi+1), we
define

Cj,i,λ =
{
(a1, a2, . . . , aj ) ∈ Z

⊕n
>0

∣∣ j � a1< a2< · · ·< aj � λi + j
}
.

Lemma 3.4.For eachi (1 � i � k − 1) andj (1 � j � λi+1), the relation

xλ

( ∑
a∈Cj,i,λ

〈(i − 1)λ + a〉iλ
)
= 0 (3.5)

holds inSλv .

Proof. At first, for eachi (1 � i � k − 1) andj (1 � j � λi+1), we define

C1
j,i,λ = Cj,i,λ \

{
(j, j + 1, . . . ,2j − 1)

}
,

C2
j,i,λ = Cj,i,λ \

{
(j, j + 1, . . . ,2j − 2, aj )

∣∣ 2j − 1 � aj � λi + j
}
,

C3
j,i,λ =

{
(a1, a2, . . . , aj ) ∈ Z

⊕n
>0

∣∣ j + 1� a1< a2< · · ·< aj � λi + j
}
.

If j = 1 for a fixedi, then the relation (3.5) becomes the relation in Lemma 3.2.
Assume that forj − 1 we have the relation (3.5):

xλ

( ∑
a∈Cj−1,i,λ

〈(i − 1)λ + a〉iλ
)
= 0.

Note that

xλ
〈
(i − 1)λ + (j − 1, j, . . . ,2j − 3)

〉
iλ
=−xλ

( ∑
a∈Cj−1,i,λ

〈(i − 1)λ + a〉iλ
)
.

(3.6)

Set

A= [j − 1]vxλ
〈
(i − 1)λ + (j − 1, j, . . . ,2j − 3, j − 1)

〉
iλ
,

B =−vj−1xλ
〈
(i − 1)λ + (j − 1, j, . . . ,2j − 3,2j − 2)

〉
iλ
,

and

Cl =−vj−1xλ
〈
(i − 1)λ + (j − 1, j, . . . ,2j − 3, j − 1+ l)〉

iλ

for 1 � l � j − 2.
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By Lemma 3.3, we have(
A+B +

j−2∑
l=1

Cl

)
= vj−1[j − 1]v xλ

〈
(i − 1)λ + (j − 1, j, . . . ,2j − 2)

〉
iλ

− vj−1xλ
〈
(i − 1)λ + (j − 1, j, . . . ,2j − 2)

〉
iλ

− vj−1
j−2∑
l=1

vj−1−lxλ
〈
(i − 1)λ + (j − 1, j, . . . ,2j − 2)

〉
iλ

= 0.

On the other hand, by Lemma 3.3 and the relation (3.6), we get

A = [j − 1]v xλ
〈
(i − 1)λ + (j − 1, j, . . . ,2j − 3, j − 1)

〉
iλ

= −[j − 1]v
∑

a∈C1
j−1,i,λ

xλ
〈
(i − 1)λ + (a, j − 1)

〉
iλ

= −vj−1[j − 1]v
∑

a∈C1
j−1,i,λ

xλ
〈
(i − 1)λ + (j − 1,1+ a)

〉
iλ

= −vj−1[j − 1]v
∑

a∈C2
j−1,i,λ

xλ
〈
(i − 1)λ + (j − 1,1+ a)

〉
iλ

− vj−1[j − 1]v
λi+j−1∑

aj−1=2j−2

xλ
〈
(i − 1)λ

+ (j − 1, j, . . . ,2j − 3, aj−1+ 1)
〉
iλ
.

Applying the relation (3.6) toB, we obtain

B = −vj−1xλ
〈
(i − 1)λ + (j − 1, j, . . . ,2j − 3, j − 2)

〉
iλ

= vj−1
∑

a∈C1
j−1,i,λ

xλ
〈
(i − 1)λ + (a,2j − 2)

〉
iλ
.

For 1� l � j − 2, Lemma 3.3 and the relation (3.6) yield

Cl = −vj−1xλ
〈
(i − 1)λ + (j − 1, j, . . . ,2j − 3, j − 1+ l)〉

iλ

= vj−1
∑

a∈C1
j−1,i,λ

xλ
〈
(i − 1)λ + (a, j − 1+ l)〉

iλ

= vj−1
∑

a∈C2
j−1,i,λ

xλ
〈
(i − 1)λ + (a, j − 1+ l)〉

iλ
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+ v2j−2−l
λi+j−1∑

aj−1=2j−2

xλ
〈
(i − 1)λ + (j − 1, j, . . . ,2j − 3, aj−1+ 1)

〉
iλ
.

Therefore, by Lemma 3.3 and the relation (3.6), we obtain

0 =
(
A+B +

j−2∑
l=1

Cl

)
= −vj−1[j − 1]v

∑
a∈C2

j−1,i,λ

xλ
〈
(i − 1)λ + (j − 1,1+ a)

〉
iλ

− vj−1
λi+j−1∑

aj−1=2j−2

xλ
〈
(i − 1)λ + (j − 1, j, . . . ,2j − 3, aj−1+ 1)

〉
iλ

+ vj−1
∑

a∈C1
j−1,i,λ

xλ
〈
(i − 1)λ + (a,2j − 2)

〉
iλ

+ vj−1
j−2∑
l=1

∑
a∈C2

j−1,i,λ

xλ
〈
(i − 1)λ + (a, j − 1+ l)〉

iλ

= −vj−1[j − 1]v
∑

a∈C2
j−1,i,λ

xλ
〈
(i − 1)λ + (j − 1,1+ a)

〉
iλ

+ vj−1
λi+2∑
l=2j−2

∑
a∈C1

j−1,i,λ

xλ
〈
(i − 1)λ + (a, l)

〉
iλ

+ vj−1
2j−3∑
l=j

∑
a∈C2

j−1,i,λ

xλ
〈
(i − 1)λ + (a, l)

〉
iλ

= vj−1
λi+j∑
l=j

∑
a∈C3

j−1,i,λ

xλ
〈
(i − 1)λ + (a, l)

〉
iλ

= vj−1[j ]v
∑

a∈Cj,i,λ
xλ
〈
(i − 1)λ + a

〉
iλ
.

SinceSλv is free overF[v, v−1], we get the desired relation (3.5) forj , which
completes our induction argument.✷
Remark. As we mentioned in the beginning of this section, all the relations
have been derived from the defining relations (2.1) of Hecke algebra and those
in Lemma 3.2. In the next section, we will specializev to an invertibleq ∈ F, and
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consider the Specht module overF. We will also construct a module by generators
and relations and show that it is isomorphic to the Specht module overF using the
relations derived in this section. Actually, if we define a module overF by the pair
consisting of the relations (2.1) and those in Lemma 3.2 identifyingxλ with 1, all
the relations in this section (other than the relations in Lemma 3.4) are valid for
any invertibleq ∈ F. If q is not a roof of unity, then the relations in Lemma 3.4
still remain valid. But ifq is a primitiveeth root of unity, then theleth induction
step(l � 1) in the proof of Lemma 3.4 does not work, as one can see in the proof,
since it involves[le]v which is 0 for suchq . Thus whenq is a primitiveeth root
of unity, we are led to add more relations to the set of defining relations of the
Specht modules overF as we can see in the next section.

4. The Gröbner–Shirshov pair for Sλ
q

In this section, we specialize the Specht moduleSλv over F[v, v−1] to the
moduleSλq over F for an invertibleq ∈ F and define anHn(q)-moduleŜ λq by

generators and relations. The defining relations forŜ λq will be taken from the
natural relations derived in the previous section identifyingxλ with 1. Thus there
exists a surjective homomorphism ofŜ λq ontoSλq . We will derive sufficiently many
relations inŜ λq and show that the number of standard monomials with respect
to these relations is equal to the dimension ofSλq . Hence we conclude that the

Hn(q)-moduleŜ λq is isomorphic to the Specht moduleSλq and obtain a Gröbner–
Shirshov pair for̂S λq . The standard monomials for this Gröbner–Shirshov pair will
be indexed by the set ofcozytableaux.

Let X = {T1, T2, . . . , Tn−1} be the set of generators as before. Fix a partition
λ = (λ1, λ2, . . . , λk) of n. Let q be an invertible element ofF and denote byRq
the set of relations in (2.1) withv replaced byq . The Hecke algebra defined by
Rq overF will be denoted byHn(q). Recall that there is an isomorphism of fields

F
[
v, v−1]/(v − q)∼= F given by v �→ q,

where(v− q) is the maximal ideal ofF[v, v−1] generated byv− q . TheHn(q)-
moduleSλq is defined to be

Sλq = F⊗
F[v,v−1] Sλv .

We callSλq theSpecht moduleoverHn(q) corresponding to the partitionλ. From

the basis ofSλv given in Proposition 2.3, we naturally obtain a basis ofSλq and
call it theMurphy basisof the Specht moduleSλq . Recall that the elements of the
Murphy basis are parameterized by the standardλ-tableaux.

We now define theHn(q)-moduleŜ λq by generators and relations.
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Definition 4.1. (1) If q ∈ F
× is not a root of unity, then̂S λq is theHn(q)-module

defined by the pair(Rq,Rλq), whereRλq is the set of elements:

Ti − q (i �= lλ, l = 1,2, . . . , k − 1),
λi+1∑
l=1

Tiλ,(i−1)λ+l (1 � i � k − 1). (4.1)

(2) If q is a primitiveeth root of unity, then̂S λq is theHn(q)-module defined

by the pair(Rq ,Rλq), whereRλq is the set of elements:

Ti − q (i �= lλ, l = 1,2, . . . , k − 1),
λi+1∑
l=1

Tiλ,(i−1)λ+l (1 � i � k − 1),

∑
a∈Cle,i,λ

〈
(i − 1)λ + a

〉
iλ

(1 � i � k − 1, l � 1). (4.2)

From the construction, we see that all the relations inSλv derived in the previous
section still hold inSλq . In particular, by Lemma 3.2 and Lemma 3.4, there exists
a surjectiveHn(q)-module homomorphism

Ψ : Ŝ λq → Sλq given by 1�→ xλ. (4.3)

We claim that the mapΨ is actually an isomorphism. In other words, we claim
that the modulêS λq defined by the pair(Rq,Rλq) is isomorphic to the Specht

moduleSλq . The rest of this section will be devoted to proving this claim.
As was noticed in the remark at the end of the previous section, we can derive

in Ŝ λq the same relations (identifyingxλ with 1) as in the previous section for any
invertibleq ∈ F

×. Note that even ifq is a primitiveeth root of unity, the induction
argument in the proof of Lemma 3.4 works well from the defining relations (4.2)
of Ŝ λq . Since it is important to our argument, we make it into a lemma.

Lemma 4.2.Let q be an invertible element ofF.

(1) The relations

Ta,bTc,d = Tc−1,d−1Ta,b (a � c� d > b)
hold inHn(q).

(2) For p (0 � p � k − 1) andj (1 � j < λp+1), let

ai =
(
ail
)= (

ai1, . . . , a
i
λi+1

)
(i = 0,1, . . . , p− 1)

and

b= (bl)= (b1, . . . , bj , bj+1)
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be the sequences of positive integers such that

1 � ail � iλ + l, 1 � bl � pλ + l, and bj � bj+1.

Then the relation

xλ

(
p−1∏
i=1

〈ai〉iλ
)
〈b〉pλ = qxλ

(
p−1∏
i=1

〈ai〉iλ
)
〈b′〉pλ

holds inŜ λq , whereb′ = (b1, b2, . . . , bj−1, bj+1, bj + 1).
(3) For eachi (1 � i � k − 1) andj (1 � j � λi+1), the relation∑

a∈Cj,i,λ

〈
(i − 1)λ + a

〉
iλ
= 0

holds inŜ λq .

In the following proposition, we determine a Gröbner–Shirshov basis for
Hn(q) with respect to each of the monomial orders introduced in Example 1.2.

Proposition 4.3.(a) The following relations form a Gröbner–Shirshov basis for
Hn(q) with respect to the monomial order≺deg-iex:

Rq,deg-lex:


TiTj − TjTi for i > j + 1,
T 2
i − (q − 1)Ti − q for 1� i � n− 1,
Ti+1,j Ti+1− TiTi+1,j for i � j.

(4.4)

Hence the set ofRq,deg-lex-standard monomials is given by

Bdeg-lex= {T1,j1T2,j2 · · ·Tn−1,jn−1 | 1 � jk � k + 1, k = 1,2, . . . , n− 1}.
(b) The following relations form a Gröbner–Shirshov basis forHn(q) with

respect to the monomial order≺deg-rlex:

Rq,deg-rlex:


TiTj − TjTi for i > j + 1,
T 2
i − (q − 1)Ti − q for 1 � i � n− 1,
TjTi,j − Ti,j Tj+1 for i > j.

(4.5)

Hence the set ofRq,deg-rlex-standard monomials is given by

Bdeg-rlex= {Tj1,1Tj2,2 · · ·Tjn−1,n−1 | k − 1 � jk � n− 1,

k = 1,2, . . . , n− 1}.

Proof. By Lemma 4.2(1), all the relations inRq,deg-lex and inRq,deg-rlex hold
in Hn(q). It can be easily checked thatBdeg-lex (respectivelyBdeg-rlex) is the
set ofRq,deg-lex (respectivelyRq,deg-rlex)-standard monomials. Observe that the
number of elements inBdeg-lex (and inBdeg-rlex) is n!. Since it is exactly the
dimension ofHn(q), it follows from Proposition 1.6 thatRq,deg-lex andRq,deg-rlex
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are Gröbner–Shirshov bases for the Hecke algebraHn(q) with respect to≺deg-lex
and≺deg-rlex, respectively. ✷

Now let us consider how to complete the setRλq to obtain a Gröbner–Shirshov
pair. In general, even if we extend the setRλq by adding the relations in Lemma 4.2,
(2) and (3), the pair of the setRq,deg-lex in the above lemma and the extended
set ofRλq is not big enough to be a Gröbner–Shirshov pair forŜ λq . Hence, we

need more relations in̂S λq , which we will derive in the next lemma. We set
Rq = Rq,deg-lex. In the rest of this paper, we will only consider the monomial
order≺deg-lex.

Lemma 4.4.For p (1� p � k−1) andj (1 � j � λp+1), leta0,a1, . . . ,ap−2,b

andc be the sequences of positive integers satisfying the following conditions:

ai =
(
ai1, a

i
2, . . . , a

i
λi+1

)
, 1 � ail � iλ + l,

b= (b1, b2, . . . , bλp), 1 � bl � (p− 1)λ + l,
c= (c1, c2, . . . , cj ), 1 � cl � pλ + l,
bj < bj+1< · · ·< bλp, c1< c2< · · ·< cj , and cj � bj + j − 1.

Then the relation(
p−2∏
i=0

〈ai〉iλ
)
〈b〉(p−1)λ〈c〉pλ

+
(
p−2∏
i=0

〈ai〉iλ
)( ∑

a∈C1
j,p,λ

〈
(p− 1)λ + a

〉
pλ

)
〈b1, c, j + b2〉(p−1)λ = 0

(4.6)

holds inŜ λq , whereb1= (b1, b2, . . . , bj−1) andb2= (bj , bj+1, . . . , bλp).

Proof. From Lemma 4.2(3), we have the relation∑
a∈Cj,p,λ

〈
(p− 1)λ + a

〉
pλ
= 0

for any nonzeroq ∈ F
×. Note that

∏p−2
i=0 〈ai〉iλ contains onlyTl with l �

(p− 1)λ − 1 and that
∑

a∈Cj,p,λ 〈(p − 1)λ + a〉pλ contains onlyTl with l �
(p − 1)λ + j . Hence

∏p−2
i=0 〈ai〉iλ commutes with

∑
a∈Cj,p,λ〈(p − 1)λ + a〉pλ ,

and we obtain(
p−2∏
i=0

〈ai〉iλ
) ∑

a∈Cj,p,λ

〈
(p− 1)λ + a

〉
pλ
= 0.
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By separating the leading term, we can write(
p−2∏
i=0

〈ai〉iλ
)〈
(p− 1)λ + (j, j + 1, . . . ,2j − 1)

〉
pλ

+
(
p−2∏
i=0

〈ai〉iλ
)( ∑

a∈C1
j,p,λ

〈
(p− 1)λ + a

〉
pλ

)
= 0.

Multiplying it by 〈b1, c〉(p−1)λ = 〈b1〉(p−1)λ〈c〉(p−1)λ+j−1 from the right, we
obtain(

p−2∏
i=0

〈ai〉iλ
)
〈b1〉(p−1)λ〈c〉pλ

+
(
p−2∏
i=0

〈ai〉iλ
)( ∑

a∈C1
j,p,λ

〈
(p− 1)λ + a

〉
pλ

)
〈b1, c〉(p−1)λ = 0. (4.7)

Sincec1< c2< · · ·< cj , cj < bj + j andpλ + j − 1 � (p− 1)λ+ j − 1+ l for
j � l < λp , it follows from Lemma 4.2(1) that

〈b1〉(p−1)λ〈c〉pλ〈j + b2〉(p−1)λ+2j−1= 〈b〉(p−1)λ〈c〉pλ .
Hence multiplying (4.7) by〈j + b2〉(p−1)λ+2j−1 from the right, we get(

p−2∏
i=0

〈ai〉iλ
)
〈b〉(p−1)λ〈c〉pλ

+
(
p−2∏
i=0

〈ai〉iλ
)( ∑

a∈C1
j,p,λ

〈
(p− 1)λ + a

〉
pλ

)
〈b1, c, j + b2〉(p−1)λ = 0,

as desired. ✷
Recall that aλ-tableau is a mapt : [λ]→ {1,2, . . . , n} and thattλ is the unique

standardλ-tableau such thattλ(i, j + 1)= tλ(i, j)+ 1 for all nodes(i, j).

Definition 4.5. A λ-tableau is said to becozy if it satisfies the following
conditions:

(i) t (i, j)� tλ(i, j),
(ii) t (i, j) < t(i, j + 1),
(iii) t (i, j)+ j � t (i + 1, j).
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Note that if t is a cozyλ-tableau, then we always havet (1, j) = j . For
example, the tableau in the left is cozy, while the one in the right is not:

1 2 3 4 5 6 7
2 4 6 8 10
3 6 9
4 8 12

1 2 3 4 5 6 7
3 4 6 9 10
4 7 9
7 10 11

Taking some of the relations from Lemmas 4.2(2) and 4.4, we define the set
Rλq to be

Rλq :



(∏p−1
i=0 〈ai〉iλ

)
〈b〉pλ − q

(∏p−1
i=0 〈ai〉iλ

)
〈b′〉pλ with bj = bj+1,(∏p−2

i=0 〈ai〉iλ
)
〈b〉(p−1)λ〈c〉pλ

+
(
p−2∏
i=0

〈ai〉iλ
)( ∑

a∈C1
j,p,λ

〈
(p− 1)λ + a

〉
pλ

)
〈b1, c, j + b2〉(p−1)λ

with cj = bj + j − 1,

where we keep the notation in Lemmas 4.2(2) and 4.4. Note that the leading terms
of the relations inRλq with respect to≺deg-lex are(

p−1∏
i=0

〈ai〉iλ
)
〈b〉pλ with bj = bj+1,

(
p−2∏
i=0

〈ai〉iλ
)
〈b〉(p−1)λ〈c〉pλ with cj = bj + j − 1.

Thus the set of(Rq,Rλq)-standard monomials with respect to≺deg-lex is

G(λ)=
{
k−1∏
i=1

〈ai〉iλ
∣∣∣∣∣ ai =

(
ai1, a

i
2, . . . , a

i
λi+1

)
aij � iλ + j, aij < aij+1, a

i
j + j � ai+1

j

}
.

LetH(λ) be the set of all cozyλ-tableaux and letI (λ) be the set of all standard
λ-tableaux. We define a mapκ :G(λ)→H(λ) by

κ

(
k−1∏
i=1

〈ai〉iλ
)
(t, s)= at−1

s , a0
j = j.

Recall that the symmetric groupSn acts naturally on the set of bijectiveλ-
tableaux. We define a mapζ :G(λ)→ I (λ) by

ζ(Ts1Ts2 · · ·Tsl )= tλτs1τs2 · · · τsl ,
whereτst is the transposition(st , st + 1) ∈ Sn.
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Proposition 4.6. Let κ and ζ be the maps defined above. Then the mapκ

(respectively the mapζ ) is a well-defined bijection betweenG(λ) and H(λ)
(respectivelyG(λ) and I (λ)). Hence we havedimSλq = #(I (λ)) = #(G(λ)) =
#(H(λ)).

Proof. Clearly,κ is a well-defined bijection. Observe that theτiτi−1 · · · τj (i � j)
action on a tableau changes the boxes

j j + 1 · · · i i + 1 into j + 1 j + 2 · · · i + 1 j ,

respectively. Consider an element
∏k−1
i=1 〈ai〉iλ ∈G(λ). Since 2� a1

1 � 1λ+1, the
tableauζ(T1λ,a1

1
) is standard.

Assume that the tableau

ζ

(
p−1∏
i=1

〈ai〉iλ
〈
a
p

1 , . . . , a
p
j

〉
pλ

)
is standard for somep � 1 andj � 1. Note that

ζ

(
p−1∏
i=1

〈ai〉iλ
〈
a
p
1 , . . . , a

p
j , a

p
j+1

〉
pλ

)

= ζ
(
p−1∏
i=1

〈ai〉iλ
〈
a
p

1 , . . . , a
p
j

〉
pλ

)
τpλ+j τpλ+j−1 · · ·τap

j+1
.

Sinceapj < a
p

j+1 andap−1
j+1 + j + 1 � apj+1, we have

ζ

(
p−1∏
i=1

〈ai〉iλ
〈
a
p
1 , . . . , a

p
j , a

p
j+1

〉
pλ

)
(p+ 1, j)= apj ,

ζ

(
p−1∏
i=1

〈ai〉iλ
〈
a
p

1 , . . . , a
p
j , a

p

j+1

〉
pλ

)
(p+ 1, j + 1)= apj+1,

ζ

(
p−1∏
i=1

〈ai〉iλ
〈
a
p

1 , . . . , a
p
j , a

p

j+1

〉
pλ

)
(p, j + 1)� ap−1

j+1 + j,

ζ

(
p−1∏
i=1

〈ai〉iλ
〈
a
p

1 , . . . , a
p
j , a

p

j+1

〉
pλ

)
(p+ 1, j + 1)= apj+1,

which implies that the tableau

ζ

(
p−1∏
i=1

〈ai〉iλ
〈
a
p

1 , . . . , a
p
j , a

p

j+1

〉
pλ

)



280 S.-J. Kang et al. / Journal of Algebra 252 (2002) 258–292

is standard. Hence, by induction the tableau

ζ

(
k−1∏
i=1

〈ai〉iλ
)

is standard. Therefore, the mapζ is well-defined.
Conversely, ift is a standard tableau, then by reversing the induction steps in

the above argument, we can obtain an element
∏k−1
i=1〈ai〉iλ of G(λ) such that

ζ

(
k−1∏
i=1

〈ai〉iλ
)
= t .

Therefore, the mapζ is a bijection. ✷
Recall that there is a surjective homomorphismΨ : Ŝ λq → Sλq given by (4.3),

which implies dim̂S λq � dimSλq . However, by Proposition 1.6, we have

dim Ŝ λq � #
(
G(λ)

)= dimSλq .

Therefore, we conclude that theHn(q)-moduleŜ λq is isomorphic to the Specht
module Sλq , the setG(λ) is a linear basis of̂S λq , and the pair(Rq,Rλq) is

a Gröbner–Shirshov pair for̂S λq .
In the following theorem, we summarize the main results proved in this section.

Theorem 4.7.Letλ= (λ1, λ2, . . . , λk) be a partition ofn.

(a) The Specht moduleSλq is isomorphic to theHn(q)-modulêS λq defined by the

pair (Rq,Rλq ). Hence we obtain a presentation of the Specht moduleSλq by
generators and relations.

(b) The pair (Rq,Rλq) is a Gröbner–Shirshov pair for̂S λq with respect to the
monomial order≺deg-lex.

(c) The set of(Rq ,Rλq)-standard monomials is given by

G(λ)=
{
k−1∏
i=1

〈ai〉iλ
∣∣∣∣∣ ai =

(
ai1, a

i
2, . . . , a

i
λi+1

)
aij � iλ + j, aij < aij+1, a

i
j + j � ai+1

j

}
.

Hence the setG(λ) is a linear basis of̂S λq .

Remark. It is easy to see that the monomial basisG(λ) of Ŝ λq is mapped onto the

Murphy basis ofSλq under the isomorphismΨ .
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5. Gram matrix of Sλ
q

It is well known that if q is not a root of unity, the Specht modules are
irreducible. Ifq is a root of unity, the irreducible modules are the simple quotients
of the Specht modules, and in general, their dimensions are not known explicitly.
In this section, we define a canonical bilinear form on the Specht moduleSλq ,
whose matrix with respect to the monomial basisG(λ) will be called theGram
matrix. As was shown in [10], the rank of the Gram matrix is equal to the
dimension of the irreducible moduleDλq . In this section, using the monomial basis
G(λ) and the division algorithm given in Lemma 1.4, we give a new recursive
algorithm of computing the Gram matrix of the Specht moduleSλq . At the end
of this section, we will discuss the application of our algorithm with several
interesting examples.

To begin with, we identify the Specht moduleSλq with theHn(q)-moduleŜ λq
defined by the pair(Rq,Rλq ) and consider the Gröbner–Shirshov pair(Rq,Rλq).

Let λ � n be a partition and define a bilinear map

Hn(q)×Hn(q)→ Sλq by (u, v) �→ uv∗xλ.

Then the image of the map is actually in the fieldF, and the map induces a sym-
metric bilinear form onSλq

Bλ :Sλq × Sλq → F⊂ Sλq .
It was shown in [10] thatBλ satisfies

Bλ(u, vh)= Bλ(uh∗, v) for all u,v ∈ Sλq , h ∈Hn(q).

Definition 5.1.TheGram matrixof the Specht moduleSλq is the matrixΓλ of the
symmetric bilinear formBλ with respect to the monomial basisG(λ).

We say that a partitionλ= (λ1, λ2, . . . , λk) of n is e-regular if λi − λj+1 < e

(λk+1= 0) for all i = 1, . . . , k. Otherwise,λ is callede-singular.

Proposition 5.2[4,6,10].For eache-regular partitionλ of n, the quotientDλq =
Sλq / rad(Bλ) of the Specht module by the radical ofBλ is an irreducible module
overHn(q). They form a complete set of inequivalent irreducibleHn(q)-modules.
In particular, the rank of the Gram matrixΓλ of Sλq is equal to the dimension of

the irreducible moduleDλq .

Remark. In [6], Graham and Lehrer introduced the notion ofcellular algebras.
One can verify that the Hecke algebraHn(q) is a cellular algebra with the cellular
basis{

xst
∣∣ (s, t) is a standard pairλ � n},
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where the elementsxst is defined in Section 2. Also it can be easily checked
that the Specht moduleSλq is thecell representationcorresponding toλ (see [6,
Theorem 3.4]).

Now we describe our algorithm of computing the Gram matrix of the Specht
moduleSλq . First, observe that using the Gröbner–Shirshov pair(Rq,Rλq), we
can determineBλ(u,1) for all u ∈ G(λ). Hence the first column of the Gram
matrix can be determined. Next, letu,v ∈G(λ) and assume thatBλ(u,w) can be
computed for allu,w ∈G(λ) with l(w) � l(v)− 1. Then, since everyv ∈G(λ)
can be written asv = v′Ti for some i (1 � i � n − 1) and v′ ∈ G(λ) with
l(v′)= l(v)− 1, we have

Bλ(u, v)= Bλ(u, v′Ti)= Bλ(uTi, v′).

By Theorem 1.11 and the division algorithm given in Lemma 1.4, everyuTi
(u ∈G(λ), i = 1, . . . , n− 1) can be uniquely expressed as a linear combination
of the elements inG(λ). Sincel(v′) = l(v) − 1, by induction, we can compute
Bλ(u, v) = Bλ(uTi, v′). Note that, sinceBλ is symmetric, we have only to
computeBλ(u, v) for all u# v.

Hence our algorithm of computing the Gram matrixΓλ can be summarized as
follows:

(1) Using the Gröbner–Shirshov pair, computeBλ(u,1) for all u ∈G(λ).
(2) Using the division algorithm, writeuTi as a linear combination of the

elements ofG(λ) for all u ∈G(λ), i = 1, . . . , n− 1.
(3) For anyu,v ∈ G(λ) with u # v, write v = v′Ti for somev′ ∈ G(λ) and i

(1 � i � n− 1), and computeBλ(u, v)= Bλ(uTi, v′).

In the rest of this section, we present several examples illustrating how to carry
out our algorithm.

Example 5.3.Let λ= (2,2,1)� 5 and consider the Specht moduleSλq . Then the
cozy tableaux of shapeλ and the corresponding standard monomials are given by

1 2
3 4
5

1

1 2
2 4
5

T2

1 2
3 4
4

T4

1 2
2 4
4

T2T4

1 2
2 4
3

T2T4,3
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Hence dimSλq = 5 andG(λ)= {1, T2, T4, T2T4, T2T4,3}. By Theorem 4.7, the
Gröbner–Shirshov pair(Rq ,Rλq) is given as follows:

Rq =


T 2
i − (q − 1)Ti − 1 (1� i � 4),
T4T1− T1T4, T3T1− T1T3, T4T2− T2T4,

T4,1T4− T3T4,1, T4,2T4− T3T4,2, T4,3T4− T3T4,3,

T3,1T3− T2T3,1, T3,2T3− T2T3,2, T2,1T2− T1T2,1

and

Rλq =
{
T1− q, T3− q, T2,1+ T2+ 1, T4,3+ T4+ 1,
T2T3+ T2+ 1, T2T4,2+ T2T4,3+ T2T3.

We now carry out our recursive algorithm.
(1) The values ofBλ(u,1) (u ∈G(λ)) are:

Bλ(1,1) = xλ = (T1+ 1)(T3+ 1)= (q + 1)2,

Bλ(T2,1) = T2(T1+ 1)(T3+ 1)= (T2,1+ T2)(T3+ 1)=−(q + 1),

Bλ(T4,1) = T4(T1+ 1)(T3+ 1)= (T1+ 1)T4(T3+ 1)

= (q + 1)(T4,3+ T4)=−(q + 1),

Bλ(T2T4,1) = T2T4(T1+ 1)(T3+ 1)= T2(T1+ 1)T4(T3+ 1)= 1,

Bλ(T2T4,3,1) = T2T4,3(T1+ 1)(T3+ 1)= T2(T1+ 1)T4,3(T3+ 1)

= (T4+ 1)(T3+ 1)= T3= q.
(2) WriteuTi (u ∈G(λ), i = 1, . . . ,4) as a linear combination of the elements

in G(λ):

T1= q, T2= T2, T3= q, T4= T4,

T2T1=−T2− 1, T2T2= (q − 1)T2+ q,
T2T3=−T2− 1, T2T4= T2T4,

T4T1= qT4, T4T2= T2T4,

T4T3=−T4− 1, T4T4= (q − 1)T4+ q,
T2T4T1=−T2T4− T4, T2T4T2= (q − 1)T2T4+ qT4,

T2T4T3= T2T4,3, T2T4T4= (q − 1)T2T4+ qT2,

T2T4,3T1=−T2T4,3+ T4+ 1, T2T4,3T2=−T2T4,3+ T2+ 1,

T2T4,3T3= (q − 1)T2T4,3+ qT2T4, T2T4,3T4=−T2T4,3+ T4+ 1.

(3) Compute all the valuesBλ(u, v) (u, v ∈G(λ)) inductively.

(a) Bλ(u,T2) (u# T2):
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Bλ(T2, T2) = Bλ
(
T2,1

)= (q − 1)Bλ(T2,1)+ qBλ(1,1)= [4]q,
Bλ(T4, T2) = Bλ(T4T2,1)= Bλ(T2T4,1)= 1,

Bλ(T2T4, T2) = Bλ(T2T4T2,1)

= (q − 1)Bλ(T2T4,1)+ qBλ(T4,1)=−
(
q2+ 1

)
,

Bλ(T2T4,3, T2) = Bλ(T2T4,3T2,1)

= −Bλ(T2T4,3,1)+Bλ(T2,1)+Bλ(1,1)= q2.

(b) Bλ(u,T4) (u# T4):

Bλ(T4, T4)= [4]q, Bλ(T2T4, T4)=−
(
q2+ 1

)
,

Bλ(T2T4,3, T4)= q2.

(c) Bλ(u,T2T4) (u# T2T4):

Bλ(T2T4, T2T4) = Bλ
(
T2T

2
4 , T2

)
= (q − 1)Bλ(T2T4, T2)+ qBλ(T2, T2)=

(
q2+ 1

)2
,

Bλ(T2T4,3, T2T4) = Bλ(T2T4,3T4, T2)

= −Bλ(T2T4,3, T2)+Bλ(T4, T2)+Bλ(1, T2)

= −q(q + 1).

(d) Bλ(u,T2T4,3) (u# T2T4,3):

Bλ(T2T4,3, T2T4,3) = Bλ(T2T4,3T3, T2T4)

= (q − 1)Bλ(T2T4,3, T2T4)+ qBλ(T2T4, T2T4)

= q5+ q3+ 2q.

Hence the Gram matrixΓλ is

Γλ =


(q + 1)2 −(q + 1) −(q + 1) 1 q

−(q + 1) [4]q 1 −(q2+ 1
)

q2

−(q + 1) 1 [4]q −(q2+ 1
)

q2

1 −(q2+ 1
) −(q2+ 1

) (
q2+ 1

)2 −q(q + 1)
q q2 q2 −q(q + 1) q5+ q3+ 2q

 .
If q is a primitive 3rd root of unity, then the Gram matrix is reduced to

Γλ =


q q2 q2 1 q

q2 1 1 q q2

q2 1 1 q q2

1 q q q2 1
q q2 q2 1 q

 ,
and it is easy to see that its rank is 1. Hence dimDλq = 1.
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Example 5.4.Considerλ= (n). ThenSλq is one-dimensional with basisG(λ)=
{1} andRλq (=Rλq) is given by{Ti − q | 1 � i � n− 1}. Thus

Bλ(1,1)= xλ =
∑
w∈Sn

Tw =
∑
w∈Sn

ql(w) = {i}q.

(For the last equality, see, e.g., [7].)
If λ = (1n), then the Specht moduleSλq is also one-dimensional with basis

G(λ)= {1} andRλq =Rλq = {Ti +1 | 1� i � n−1}. Sincexλ = 1 in Sλq , we have

Bλ(1,1)= xλ = 1.

Example 5.5.Let λ= (n− 1,1). Then the dimension ofSλq is n− 1 with basis

G(λ)= {Tn−1,i | 2 � i � n}
and

Rλq =Rλq =
{

n∑
i=1

Tn−1,i , Ti − q (1� i � n− 2)

}
.

(1) The first column of the Gram matrixΓλ is

Bλ(1,1)= {n− 1}q,
Bλ(Tn−1,i ,1)=−qn−i−1{n− 2}q (2 � i � n− 1).

(2) In Sλq , we have

Tn−1,iTj =


TjTn−1,i = qTn−1,i (1 � j � i − 2),
Tn−1,i−1 (j = i − 1),
(q − 1)Tn−1,i + qTn−1,i+1 (j = i),
Tj−1Tn−1,i = qTn−1,i (i + 1� j � n− 1).

(3) By induction, we have

Bλ(Tn−1,i , Tn−1,j )=


qn−i{n− 1}q − qn−i−1(qn−i − 1){n− 2}q
(i = j),

−q2n−i−j−1{n− 2}q
(i < j).

Thus we have determined all the entries of the Gram matrixΓλ.

Example 5.6.Let λ= (λ1, λ2). The monomial basisG(λ) is given by{〈a1, a2, . . . , aλ2〉λ1

∣∣ 2i � ai � λ1+ i, ai < ai+1 for eachi
}
,

and the dimension ofSλq is

λ1− λ2+ 1

λ1+ 1

(
n

λ2

)
.
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In Sλq , we have

〈a1, . . . , aλ2〉λ1ι(S1,λ1)

= qλ1λ2− 1
2λ2(λ2−1)−∑λ2

j=1 aj ι(S1,λ1−λ2)

×
∑

1�bi�i+1 for eachi

〈bλ1−λ2, . . . , bλ1−1〉λ1

= qλ1λ2− 1
2λ2(λ2−1)−∑λ2

j=1 aj {λ1− λ2}q(−1)λ2q
1
2λ2(λ2−1){λ2}q

= (−1)λ2q
λ1λ2−

∑λ2
j=1 aj {λ1− λ2}q{λ2}q.

Given〈a1, . . . , aλ2〉λ1, let s ∈ [0, λ2] be the least integer such thatλ1 < as+1 and
let t ∈ [0, λ2] be the least integer such thatat+1 = λ1 + t + 1, where we set
aλ2+1= λ1+ λ2+ 1. Then

Bλ
(〈a1, . . . , aλ2〉λ1,1

)
= 〈a1, . . . , as, . . . , at , . . . , aλ2〉λ1ι(S1,λ1)ι(Sλ1+1,λ2)

= 〈a1, . . . , as, . . . , at 〉λ1ι(S1,λ1)ι(Sλ1+1,λ2)

= 〈a1, . . . , as〉λ1ι(S1,λ1)〈as+1, . . . , at 〉λ1+s ι(Sλ1+1,λ2)

= (−1)sqλ1s−
∑s
j=1 aj {λ1− s}q{s}qq

∑t
j=s+1(λ1+j−aj ){λ2}q

= (−1)sqλ1t+ 1
2 (t−s)(t+s+1)−∑t

j=1 aj {λ1− s}q{s}q{λ2}q .
Thus we completed the first step of our algorithm. The remaining steps can be
worked out by direct calculation.

6. Gram matrices of Temperley–Lieb algebras

In this section, we apply the Gröbner–Shirshov basis theory to the Temperley–
Lieb algebras. By modifying the parameter, the Temperley–Lieb algebra can be
viewed as the quotient of Hecke algebra, and the kernel of this quotient map
acts trivially on the Specht modules. In this way the Specht modules over Hecke
algebras corresponding to the Young diagrams with at most two columns will
naturally become modules over Temperley–Lieb algebras, which will also be
called theSpecht modulesover Temperley–Lieb algebras. Using the Gröbner–
Shirshov pairs(Rq,Rλq) for the Specht modules over Hecke algebras, we can
easily determine the Gröbner–Shirshov pairs and the monomial bases for the
Specht modules over Temperley–Lieb algebras. Therefore, as in the case of Hecke
algebras, we obtain a recursive algorithm of computing the Gram matrices of
Specht modules over Temperley–Lieb algebras.
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Definition 6.1. Let η be an invertible element ofF. TheTemperley–Lieb algebra
TLn(η) is the associative algebra overF generated byX = {l1, l2, . . . , ln−1} with
defining relations

Lη:


li lj = lj li for i > j + 1,
l2i = li for 1 � i � n− 1,
li lj li = ηli for j = i ± 1.

(6.1)

For the generatorsli , we use the same shorthand as we did for the generators
Ti : we write li,j = li li−1 · · · lj for i � j and setli,i+1 = 1 (i � 0). We define
(li1li2 · · · lij )∗ = lij lij−1 · · · l1 and extend∗ to an anti-automorphism ofTLn(η) by
linearity.

Now we can immediately determine a Gröbner–Shirshov basis and the
corresponding monomial basis for the Temperley–Lieb algebraTLn(η).

Proposition 6.2.(a) The following relations form a Gröbner–Shirshov basis for
the Temperley–Lieb algebra TLn(η) with respect to the monomial order≺deg-lex:

Lη:


li lj − lj li for i > j + 1,
l2i − li for 1� i � n− 1,
li,j li − ηli−2,j li for i > j,
li lj,i − ηli lj,i+2 for i < j.

(6.2)

(b) LetBTL
n be the set of all monomials of the form

l1,j1l2,j2 · · · ln−1,jn−1,

where1 � jk � k + 1 andjk �= k + 1 impliesjk < jl for all l > k.
Then the setBTL

n forms a linear basis of the Temperley–Lieb algebra TLn(η)

consisting ofLη-standard monomials. In particular,

dimTLn(η)= #
(
BTL
n

)= 1

n+ 1

(
2n

n

)
.

Proof. It can be easily checked that the relations in (6.2) hold inTLn(η), and that
the setBTL

n is the set ofLη-standard monomials. In [5], it was shown that the set
BTL
n form a linear basis of the algebraTLn(η). Hence, by definition, the set of

relationsLη is a Gröbner–Shirshov basis forTLn(η). As for the number of such
monomials, the readers may also refer to [5].✷
Remark. One can see that our description of the standard monomials is the same
as in [5]. If we ignore the factorlk,k+1, then each element ofBTL

n can be written
as

li1,j1li2,j2 · · · lip,jp (0 � p� n− 1),

where
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1 � i1< i2< · · ·< ip � n− 1, 1 � j1< j2< · · ·< jp � n− 1,

i1 � j1, i2 � j2, . . . , ip � jp,
and ifp = 0 the monomial corresponds to 1.

Take a numberq �= 0,−1 in F or in a quadratic extension ofF such that
η = q(q + 1)−2. In the latter case, we replace our base field with the quadratic
extension ofF and abuse the notation to denote it also byF. The following
proposition asserts that the Temperley–Lieb algebraTLn(η) is a quotient of the
Hecke algebraHn(q).

Proposition 6.3[5]. There is a surjective algebra homomorphism

Φ :Hn(q)→ TLn(η) defined by Φ(Ti)= (q + 1)li − 1.

If n� 3, thena= kerΦ is the two-sided ideal ofHn(q) generated by

(T1+ 1)(T2,1+ T2+ 1).

Moreover, the ideala contains the elements

(Ti + 1)(Ti+1,i + Ti+1+ 1)

for 1 � i � n− 2.

In the rest of this section, we fix a partitionλ= (2k,1n−2k) (k � 0) of n whose
diagram has at most two columns.

Lemma 6.4.Let a be the kernel of the surjective homomorphismΦ :Hn(q)→
TLn(η). Then the ideala acts trivially on the Specht moduleSλq .

Proof. The monomial basisG(λ) of Sλq consists of the monomials of the form{
T2,a1T4,a2 · · ·T2k−2,ak−1 if n= 2k,
T2,a1T4,a2 · · ·T2k,akT2k+1,ak+1T2k+2,ak+2 · · ·Tn−1,an−k−1 otherwise,

where

ai < ai+1 for 1 � i � n− k − 2,

i + 1� ai � 2i + 1 for 1� i � k,
i + 1� ai � k + i + 1 for k + 1 � i � n− k − 1.

Let x1= (T1+1)(T2,1+T2+1). It suffices to show thatux1= 0 for all u ∈G(λ).
SinceTi with i � 4 commutes withx1, we have only to show that

x1= 0, T2x1= 0, T2T3x1= 0, T2T4,3x1= 0.

All of these can be checked easily by straightforward calculation.✷
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Therefore, by Lemma 6.4, the Specht moduleSλq is given aTLn(η)-module
structure via the surjective homomorphismΦ.

LetZλη be theTLn(η)-module defined by the pair(Lη,Lλη), where

Lλη:


l2i−1− 1 for 1� i � k,
l2i,2i−1− η for 1 � i � k,
lj for 2k+ 1 � j � n− 1.

Lemma 6.5.As a TLn(η)-module, the Specht moduleSλq is isomorphic to the

TLn(η)-moduleZλη .

Proof. Recall that the Specht moduleSλq is defined by the pair(Rλ,Rλq ), and note
that the setRλq is mapped ontoLλη underΦ. Thus the mapΦ induces a surjective

TL(η)-module homomorphismΦ from Sλq ontoZλη as is shown in the following
commutative diagram:

Hn(q) Φ TLn(η)

Sλq
Φ Zλη .

By Lemma 6.4, we conclude thatΦ is an isomorphism. ✷
The TLn(η)-moduleZλη will also be called theSpecht moduleover TLn(η)

corresponding toλ.
Let a = (a1, a2, . . . , aj ) be a sequence of positive integers satisfying 1� ai �

N + i (i = 1,2, . . . , j ) for some positive integerN . We define

l〈a〉N = lN,a1lN+1,a2 · · · lN+j−1,aj .

Theorem 6.6.(a)LetLλη be the set of the following relations:

(i) l〈a1, a2, . . . , a2p−1〉1(l2p+1− 1) for 1 � p � k − 1,
(ii) l〈a1, a2, . . . , a2p−3〉1(l2p,2p−1− η) for 1 � p � k,
(iii) l〈a1, a2, . . . , a2k+p−2〉1l2k+p for 1� p � n− 2k − 1,
(iv) l〈a1, a2, . . . , a2p−2〉1(l2p,bl2p+1− ηl2p−1,b) for 1 � p � k − 1, 1 � b � 2p,

where1 � ai � i + 1 for eachi.
Then the pair(Lη,Lλη) is a Gröbner–Shirshov pair for the moduleZλη with

respect to the monomial order≺deg-lex.
(b) LetGTL(λ) be the set of monomials consisting of the monomials of the form{

l2,a1l4,a2 · · · l2k−2,ak−1 if n= 2k,
l2,a1l4,a2 · · · l2k,ak l2k+1,ak+1l2k+2,ak+2 · · · ln−1,an−k−1 otherwise,
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where

ai < ai+1 for 1� i � n− k − 2,

i + 1� ai � 2i + 1 for 1� i � k,
i + 1� ai � k + i + 1 for k + 1 � i � n− k − 1.

Then the setGTL(λ) forms a linear basis ofZλη consisting of(Lη,Lλη)-standard
monomials.

Proof. The relations in (i)–(iii) are trivially derived fromLλη. Note that the
relation

T2pT2p+1+ T2p + 1 (1 � p � k)

is in Rλq , and that the image of the relation under the mapΦ is

l2pl2p+1− η (1 � p � k)

(up to nonzero scalar). If we multiply it byl〈a1, a2, . . . , a2p−2〉1l2p−1,b from the
right, then we have the relations in (iv). Thus all the relations ofLλη hold inZλη .
We can immediately check that the setGTL(λ) is the set of(Lη,Lλη)-standard
monomials. If we replaceli with Ti , then the setGTL(λ) yields the setG(λ) (see
the proof of Lemma 6.4). In particular,

#
(
GTL(λ)

)= dimSλq = dimZλη =
n− 2k+ 1

n− k + 1

(
n

k

)
.

By Proposition 1.6, we conclude that(Lη,Lλη) is a Gröbner–Shirshov pair for the
moduleZλη . ✷

Define a bilinear map

TLn(η)× TLn(η)→ Zλη by (u, v) �→ uv∗l1l3 · · · l2k−1.

As in the case of Hecke algebras, the map induces a symmetric bilinear form
onZλη

BTL
λ :Zλη ×Zλη→ F⊂Zλη

satisfying

BTL
λ (u, vx)= BTL

λ (ux
∗, v) for all u,v ∈Zλη, x ∈ TLn(η).

Actually, sinceSλq is isomorphic toZλη viaΦ andΦ(Ti)= (q + 1)li − 1, we see
that

BTL
λ (u, v)= (q + 1)−kBλ(u′, v′) for u,v ∈ Zλη, u′, v′ ∈ Sλq ,
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where u′ and v′ are the inverse images ofu and v, respectively, under the
isomorphismSλq

∼→ Zλη . In particular, the symmetric bilinear formBTL
λ is well-

defined. The matrixΓ TL
λ of the symmetric bilinear formBTL

λ with respect to the
monomial basisGTL(λ) is called theGram matrixof Zλη .

As for the irreducible representation and the rank of the Gram matrix, we have
the following proposition similar to Proposition 5.2.

Proposition 6.7 [6]. For any partition λ = (2k,1n−2k) (k � 0) of n whose
diagram has at most two columns, the quotientEλη = Zλη/ rad(BTL

λ ) of the

Specht module by the radical ofBTL
λ is an irreducible module over TLn(η).

Furthermore, they form a complete set of inequivalent irreducible TLn(η)-
modules. In particular, the rank of the Gram matrixΓ TL

λ of Zλη is equal to the

dimension of the irreducible moduleEλη .

Remark. From Proposition 6.3 and the cellular algebra structure of Hecke algebra
described in the remark of Proposition 5.2, we see that the Temperley–Lieb
algebraTLn(η) is also a cellular algebra, and that the Specht moduleZλη over
TLn(η) is the cell representation corresponding toλ (see [6]).

In the following proposition, we work out the first step of our algorithm of
computing the Gram matrix. The remaining steps can be carried out by direct
calculation.

Proposition 6.8.If la = l2,a1l4,a2 · · · ln−1,an−k−1 is inGTL(λ), then we have

BTL
λ (la,1)=

{
0 if ak+j � 2k + j for somej (1� j � n− 2k− 1),
ηα otherwise

where

α =
∑
ai�2k

[
2i − ai + 2

2

]
.

Proof. Since a1 < a2 < · · · < an−k−1, we can write the monomialla as
lb1,1lb2,2 · · · lbn,n after inserting li,i+1 in appropriate places. Then using the
relations inLλη , we obtain

BTL
λ (la,1) = lb1,1lb2,2 · · · lbn,nl1l3 · · · l2k−1

=
(
k∏
i=1

lb2i−1,2i−1lb2i ,2i−1

)
n−2k∏
j=1

lb2k+j ,2k+j

=
{

0 if bi � 2k+ 1 andbi � i for somei (1 � i � n),
ηα otherwise
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=
{

0 if ak+j � 2k + j for somej (1� j � n− 2k − 1),
ηη otherwise,

where

α =
2k∑
i=1

[
bi − i + 1

2

]
=

∑
ai�2k

[
2i − ai + 2

2

]
. ✷
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