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REPRESENTATIONS OF ARIKI-KOIKE ALGEBRAS
AND GROBNER-SHIRSHOV BASES

SEOK-JIN KANG, IN-SOK LEE, KYU-HWAN LEE
AND HYEKYUNG OH

Introduction

In the development of representation theory, the Hecke algebras have played a
significant role, providing combinatorial and geometric aspects of the theory. A
natural generalization of the finite Hecke algebra of type A or type B is the
Ariki—Koike algebra M, ;,, since it is a deformation of the group algebra of the
complex reflection group G(r, 1,n). We recover the finite Hecke algebra of type A
or B when r =1 or 2, respectively. (See §2 for the definitions.) The significance of
the Ariki-Koike algebra H,;, is growing even more rapidly after it was
discovered that there is a close connection between the representation ring of
H, 1., and the crystal bases of the quantum affine algebra U, (A( ) ) 1, 3, 10].

n [5], Graham and Lehrer showed that for any ring R and any multipartition A
of n, there exists a right H, ;,-module S}?, called the Specht module, and that
when R is a field, every irreducible H, ; ,-module appears as the simple quotient of
Sp for some . Actually7 the Ariki—Koike algebra H, ,, is semisimple if and only
if the Specht module Sy is irreducible for each multipartition A of n. Thus, the
study of Specht modules is the first step towards the understanding of the
representations of Ariki—Koike algebras.

The purpose of this paper is to investigate the structure of Specht modules over
Ariki—Koike algebras H, ;,. We construct the Specht module SA as a quotient of
H, 1., obtaining a presentation given by generators and relations. One of the main
ingredients of our approach is the Grobner—Shirshov basis theory for the
representations of associative algebras developed in [7, 8], where one can find
the motivation and applications as well as the exposition of the theory. This
approach naturally enables us to construct a linear basis of S consisting of
standard monomials. The other main ingredient of our approach is the
combinatorics of Young tableaux: all the relations that hold in S* are expressed
in terms of Young tableaux of shape A. Moreover, we show that the standard
monomials are in 1-1 correspondence with the cozy tableaux of shape A. The
results of this paper can be considered not only as a generalization but also as a
refinement of the results on the finite Hecke algebras of type A obtained in [9]. In
some of the proofs in this paper, we quote the results and notation of [9] without
presenting them thoroughly. The readers may refer to [9] for more details.
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In [4], Dipper, James and Mathas defined the cellular structure on the
Ariki—Koike algebra M, ; ,, and constructed a linear basis of S* whose elements are
parametrized by standard tableaux of shape A. Compared with their results, our
approach provides a different combinatorial method to yield an explicit monomial
basis that can be identified with the set of cozy tableaux of shape A.

The contents of this paper is organized as follows. In the first section, we briefly
explain the Grobner—Shirshov basis theory for the representations of associative
algebras developed in [7, 8]. In §2, we recall the definition of the Ariki—Koike
algebra H, ; ,, and determine its Grobner—Shirshov basis, which yields a monomial
basis of H,;,. In §3, we recollect some of the standard facts about Specht
modules over Ariki—Koike algebras. In the final section, we determine the
Grobner—Shirshov pair for the Specht module S* and obtain a presentation given
by generators and relations. Furthermore, we construct a linear basis of S*
consisting of standard monomials with respect to the Grobner—Shirshov pair.

1. Grobner—Shirshov pair

In this section, we briefly recall the Grobner—Shirshov basis theory for the
representations of associative algebras which was developed in [7, 8].

Let X be a set and let X* be the free monoid generated by X; that is, the set of
all associative monomials on X including the empty monomial 1. We denote by
I(u) the length (or degree) of a monomial u with the convention /(1) = 0. A well-
ordering < on X" is called a monomial order if x <y implies axb < ayb for all
a,be X"

ExampPLE 1.1. Let X = {x,x,...}. For

u=x;x x

(Tiy---x;, and v=ux

k J1

£3
REE xj[ S X s
we define u <gegiex v if k<1 or k=1 and 7, < j, for the first r such that i, # j,.
Then it is a monomial order on X* called the degree lexicographic order.

Fix a monomial order < on X* and let Ay be the free associative algebra
generated by X over a field F. Given a non-zero element p € Ay, we denote by p
the maximal monomial appearing in p under the ordering <. If the coefficient of p
is 1, p is said to be monic.

Let (S,T) be a pair of subsets of monic elements of Ay, let J be the two-sided
ideal of Ay generated by S, and let I be the right ideal of the algebra A = Ay /J
generated by (the image of) T. Then we say that the algebra A = Ag = Ayx/J is
defined by S and that the right A-module M = Mgy = A/I is defined by the pair
(S,T). The images of p € Ay in A and in M under the canonical quotient maps
will also be denoted by p.

In the rest of this section, we assume that (S,T") is a pair of subsets of monic
elements of Ay.

DEFINITION 1.2. A monomial u € X* is said to be (S,T)-standard if u # asb
and u # tc for any s € S, t €T and a,b,c € X*. Otherwise, the monomial u is
said to be (S,T)-reducible. If T = (), we will simply say that u is S-standard or
S-reducible.
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PropoOSITION 1.3 [7, 8]. The set of (S,T)-standard monomials spans the
right A-module M = A/I defined by the pair (S,T).

DEFINITION 1.4. Let M = A/I be the right A-module defined by the pair
(S, T). We say that (S,T) is a Grobner—Shirshov pair for the module M if the set
of (S, T)-standard monomials forms a linear basis of the right A-module M. If a
pair (S,0) is a Grobner—Shirshov pair, then we also say that S is a
Grobner—Shirshov basis for the algebra A = Ay /J defined by S.

Let p and ¢ be monic elements of Ay with leading terms p and g. We define the
composition of p and ¢ as follows.

DEFINITION 1.5. (a) If there exist a and b in X* such that pa = bg = w with
I(p) > I(b), then the composition of intersection is defined to be (p,q), = pa — bq.
Furthermore, if b =1, the composition (p,q), is called left-justified.

(b) If there exist a and b in X* such that b# 1 and p = agb = w, then the
composition of inclusion is defined to be (p,q), = p — agd.

REMARK. To see some examples of compositions, one may refer to I8,
Example 2.2].

For p,q € Ax and w € X", we define a congruence relation on Ay as follows:
p=gq mod (S,T;w) <= p—q= Z 0;0;8;b; + Z Bit;c;,

where «;,3; €F, a;,b;,¢;€ X*, s, €8, t;€T, a;5b; <w, and t;¢; < w. When

T =0, we simply write p = ¢ mod (S;w).

DEFINITION 1.6. A pair (S,T) of subsets of monic elements in Ay is said to
be closed under composition if
(i) (p,q)p =0 mod (S;w) for all p,ge S and w € X* whenever the compo-
sition (p, q),, is defined,
(ii) (py@)w =0 mod (S, T;w) for all p,ge T and w e X* whenever the left-
justified composition (p, q),, is defined,
(iii) (p,q)y =0 mod (S,T;w) for all peT, g€ S and w € X* whenever the
composition (p,q),, is defined.
If T =), we will simply say that S is closed under composition.

The main ingredient of Grébner—Shirshov basis theory is the following theorem.

THEOREM 1.7 [7, 8]. A pair (S,T) of subsets of monic elements of Ax is a
Grobner—Shirshov pair if and only if the pair (S,T) is closed under composition.

2. Ariki—Koike algebras

From now on, we take < = <es1ex as our monomial order. Let F be a field and
fix a non-zero scalar ¢ € F*. For each r>1 and n > 1, let G(r,1,n) be the wreath
product of the cyclic group C, ={1,sy,...,s5 '} and the symmetric group
S, =(s1,...,8,_1). Then the group G(r,1,n) is a complex reflection group



ARIKI-KOIKE ALGEBRAS AND GROBNER-SHIRSHOV BASES 57

generated by the elements sg, sq,...,s,_; with defining relations
sh=s =1 for1<i<n—1,
58] = §;5; for1<j+1<i<n—1,

$i118iSi41 = $iSip18; for 1<i<<n — 2,
51805150 = S0515051-

DEFINITION 2.1. Let q€ F* and Q,...,Q, € F. The Ariki—Koike algebra
H, 1, is an associative algebra over F generated by the elements T, T}, ..., T,
subject to the defining relations

(To — Q)(Th — @) ... (Th — Q,) =0,
T? = (q— DT, +q for 1<i<n—1,
Ryx:  TT; =TT, for1<j+1<i<n—1, (2.2)
T TiTi =TT T, for 1<i<n—2,
T T, I\ T, = T,T\TyT}.

We write T; j =TT, ... T; and T = T;T;, ... T; for i>j (hence T;; =T,

and 7% = T;) with the convention Tj;,; = 7" =1 (for i >0).

LEMMA 2.2.  The following relations hold in 'H, ;.

(a) For 1<j<i, we have

Ti+1,jTi+1 = TiTz‘+1,j-
(b) Fori>j+1>1 and 1<k<r—1, we have
T, Ty T T, = T, T, Ty T".
(¢) For 1<k<r—1, we have
LTy T Ty= Ty Ty Ty — (g — DTy IV T + (¢ — DTy T Ty,
(d) For i>j>2 and 1<k<r—1, we have
T, Ty Ty = Ty T Ty T

Proof. (a) Since the subalgebra of M, ;, generated by T3,T5,...,T, ; is
nothing but the Hecke algebra H,(q) of type A, our relations follow from 9,
Lemma 3.1].

(b) For 2<i<n — 1, the relation T,T, = TyT; yields T;Ty = T¥T, (for k>1).
It follows that

T.Ty T, = T, T, Ty =T, T, Ty -
Since T commutes with T, for 1< j<1i, we obtain
T Ty T T, = T TETTY = T Ty Ty T (1<k<r —1),

as desired.
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(¢) The relations Ty Ty Ty Ty = T\ TyTy Ty and Tyt = ¢ (T} — (¢ — 1)) imply
TTe T, Ty = TPT, T, Te T
=g+ (- V)L, T
= ¢TI + (- VLV, T Ty 17
=TT\ Ty (Ty — (g — 1) + (¢ — YTy T T
=TTy T — (- VLT Ty + (g — DTy Ty Ty,
(d) From (b), we have T}, Ty T = T; T, Ty, which implies
TATy Ty = Tiyn T Tn Ty = T T Ty
Hence we obtain
Ty Ty T Ty = Ty TE T 2 Ty 1T
=TTy TV T4 T,
= T Ty ;T
=T, T, Ty T". O

In the following proposition, we determine a Grobner—Shirshov basis for H, ; ,
with respect to the monomial order <.

PROPOSITION 2.3. The following relations form a Grobner—Shirshov basis
for the Ariki-Koike algebra 'H,;, with respect to the monomial order
=< (: <deg»lex):

T,T; — T;T; (t>7+1>1),
TP (- 1T~ ¢ (1<i<n-—1),
Tipa, T — TiTiy (i=j=>1),
R (Tb_Ql)<T0_Q2)"'(TO_Qr)7 (2.3)
MO T T, - T T T T (i>j+1211<k<r=1), 7
Ty LTy — TyL Ty Ty
+g - DILLTY — (- DI LT, (1<k<r-1),
E,1Tole’j7}>1 -T,.,1, Ty (12722,1<k<r—1).
The set of R ai-standard monomials is given by
Bag = {Ty) T T | 1<a<i+ 1, 0<k < — 1), (2.4)
where
7 _ T ; for k=0,
I T TygT ! for 1<k<r—1.

Proof. Observe that if i = 0, then ay = 1 and Té]:f) k“ for 0<ky,<r—1. By
the definition of H, ;, and Lemma 2.2, it is easy to see that all the relations in
Rax hold in H,;, and that Bagk is the set of Rpk-standard monomials. By
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Proposition 1.3, the set Byk spans the algebra H,,,. Note that the number
of elements in Byk is r"n!. Since dimH, ;, = r"n!, Byx must be a linear basis
of H,1,. Hence, by Definition 1.4, Rk is a Grobner—Shirshov basis for the
algebra Hyt- O

3. Specht modules

A composition A of n, denoted by AEn, is a sequence A = (\{,...,\;) of non-
negative integers such that |\ := .]7-“:1 A; =n. A partition A of n, denoted by
A n, is a composition such that Ay > X > ... >\,

The diagram of a composition A = (A, Ay, ...) is defined to be the set

AN ={GJ)]1<j<N and i >1}.

A tableau of shape A (or a A-tableau) is a map t: [\ — {1,2,...,n}. We also
denote by [t] the diagram [A] corresponding to the tableau ¢. A A-tableau ¢ is row
standard if the entries in ¢ are increasing from left to right in each row. A row
standard A-tableau is said to be standard if A is a partition and the entries in ¢ are
increasing from top to bottom in each column.

A multicomposition of n is an ordered r-tuple A = (A(l),...,A(T>) of compo-
sitions such that |A| :== |AV| + ...+ |A"| = n. We call A¥) the kth component of
A. A multicomposition X is called a multipartition if each A*) is a partition.

For a multicomposition A = (A, ... A")) of n, we define

k—
(k,i)y = Z |+Z,\ (i>0, 1<k<r). (3.1)

We introduce a partial ordering on the set of multicompositions as follows:
A po if and only if (K, 4), > (k,4), for all i >0, 1<k<r.
Let A= (A", ...,A")) be a multicomposition of n. The diagram of A is the set
N ={G 5k [1<i<AP i1 1<k<r)

A tableau of shape A (or a A-tableau) is a map t: [A\] — {1,2,...,n}. There is a
natural action of S, on the set of all bijective A-tableaux. We identify a diagram
[A] with an r-tuple of diagrams ([AV],... [A")]) in an obvious way. Similarly, we
identify a A-tableau t with an r-tuple of tableaux (t, ... ,t<")).

A tableau t is called row standard (respectively standard) if each t" is row
standard (respectively standard). We denote by RS(A) (respectively ST(X)) the
set of all row standard (respectively standard) tableaux of shape A.

For a row standard tableau t, we denote by t | m the tableau obtained from t by
deleting all the entries greater than m. Given two row standard tableaux, we define

s>t if and only if [s | m]>[t ]| m] for all 1<m<n.
Let A=\, . .,)\(”) be a multipartition of n. We define a A-tableau t* by
€40, 4. k) = (ki = 1)y +J. (3:2)

For each standard A-tableau t, we denote by d(t) the element of S, such that
t = t'd(t). We also denote by Wy = W,u x ... x Wy, the row stabilizer of t*,
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where W,w is regarded as a subgroup of the symmetric group on the set
{(k70)/\+157(k+170))\}

ExAmMPLE 3.1. If

then

=

<©

10 |’

|C7)nlkb—'
(%4

and we have
Wy = W(3,2,1) X W(2,2)

= (Sp2a % Susy x Siey) % (Sprsy % Spo0y)
%SgXSQ XSQ XSQ.

We would like to introduce a cellular structure on the Ariki—Koike algebra
H, 15 For i =1,...,n, we define

Li=q ™ Ti 1, T,T". (3.3)

Then the following lemma is well known.

LEMMA 3.2 [2, 4]. For 1<i<n—1 and 1<j<n, we have

LiLj - LjL’i,a
T,L;=L;T; fori#j—1,j,
TiLiLisy = L LT, 4

Ti(Li + Liy1) = (Li + Lia) T,
T,(Ly—a)...(Lj—a)=(Ly —a)...(L; —a)T; fori#jacT.

For a reduced expression w =17, ...7;, €5, (with 1<i;<n — 1), set
T,=T,...T, € H1,
and define an anti-automorphism * : H,, — H,,, by
T' =T, fori=0,1,...,n—1.

We also define
(k,0)x

Uy = H (L; = Q) (1<k<r),

i=1

Uy = umu,\g e u/\’,,, (3 5)
Ty = E Ty, my=u\Ty,
weWy

Mgy = Ty Ty,

where s and t are standard tableaux of shape .
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With this notation, we have the following result.

PROPOSITION 3.3 [4]. The Ariki—Koike algebra H,,, has a cellular basis

{ms|s and t are standard A-tableaux for some multipartition A of n}.

For a multipartition X of n, let N** (respectively NA) be the F-subspace of H,;,
spanned by all m,(, where 5 and t are taken over all standard p-tableaux for some
multipartition p of n with g > A (respectively pu>\). Let M* = myH, 1, and set
M =M NN

DEFINITION 3.4. The M, ,-module $* = M*/M" is called the Specht module
corresponding to the multipartition .

PROPOSITION 3.5 [4]. The Specht module S* has a basis consisting of the
vectors mgp, + M~, where s runs over all standard tableaux of shape .

Let = (a,b,¢) € [A] be a node in [A]. The residue of z is defined to be

res(z) = ¢" Q.. (3.6)
For i+ =1,2,...,n, we write

res(i) = res(z),

where z is the unique node in [A] such that t‘(z) = i. For example, if

-Pol

o

res(l) = @1, res(5) = qQy, res(8) = q'Qs.

then

2 617
O )

[eo] ~

and we have

LEMMA 3.6 [6, Proposition 3.7]. In S*, we have
myL; =res(i)my foralli=1,2,...,n.

In the next section, (some of) the relations in the above lemma will be included
in the set of defining relations of S*. (See (4.1) and the argument following it.) As
a result, we will obtain a monomial basis of S* consisting of Ty-free monomials;
that is, the monomials on T}, T5,...,T,_; only. Keeping this in our mind, we

introduce the notion of semi-cozy tableaux and the corresponding set of
monomials By as follows.

DEFINITION 3.7. A A-tableau t: [A\] — {1,2,...,n} is said to be semi-cozy if
1<, j, k) <E\(i, 4, k) for all (i, j, k) € [A]. (3.7)
The set of all semi-cozy A-tableaux will be denoted by SC(X). We define a set By



62 SEOK-JIN KANG, IN-SOK LEE, KYU-HWAN LEE AND HYEKYUNG OH

of monomials to be
BH = {T17a1T27u2 NN TIL—l,(Ln,l | 1 gakék—k l,k = 1727.. N = 1}
For a monomial Ty, Ty, ... T, 1, , € By, we associate the semi-cozy M-
tableau t: [A] — {1,2,...,n} defined by
(4, J, k) = agiz1),1j-1 (ag = 1). (3-8)

Conversely, if t is a semi-cozy tableau, we can read off the corresponding
monomial by defining

where (7, j, k) is the node of the (I + 1)th entry of t reading a (single) tableau from left
to right and from top to bottom and proceeding from left to right in the r-tuple of

tableaux. In this way, the set SC(\) of semi-cozy A-tableau is identified with the
set By. (Note that our identification of SC(A) is not with Bk but with By.)

EXAMPLE 3.8. Assume that

A= (_ |,D,Dj>.

Then

1{2
T o3 T34 T 5T56 =1« th = ( 3 I7 [4], )’

—

—

T1,2T2,1T3,4T4,3 T5,1 = T2,1T4.,3T5,1 — <

1 [@.6m).

T1,1 T2,1 T3,1 T4,1 T5,1 — <

= o=

4. om).

For each i>2, j>1 and 1 <k<r, we define the (i, j, k)-Garnir tableau tf\;k by

(kyi—2)\+j+b—1 ifc=k a=1i 1<b<},

3.10
t*(a, b, c) otherwise. (3.10)

tg\.,j.,k(aa ba C) = {

We also define E;\ . to be the sum of all A\-tableaux t (or the corresponding
monomials in By) in RS(A) NSC()) such that t* < t < t{\j,ké that is,

/LY

Shk= Yt (3.11)
teRS(M)NSC(N),

A A
RIS

For example, if

-Pom
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then we have

2 6|7
.o k).
2 67 2 6|7
. oms 5H) + (B O 5

112 6|7
(PR

[

Iw»—n Iw»—t

LEMMA 3.9. The following relations hold in S*.
(a) Fori=1,...,n—1 with i # (k1) (for 1<k<randl>1), we have

my(T; — q) = 0.
(b) For each i>2, j>1, 1<k<r, we have

A
m/\Em’k = 0.

Proof. (a) Since m, has a right factor T;+1 for ¢+ (k1), and
(T; + 1)(T; — q) = 0, we obtain the desired relation.

(b) Note that my = uyzyu ...z \n, where z,n = EweWw T,. Clearly, the z,u
commute with each other.

Assume that h € H,,, is contained in the subalgebra of H, ;, generated by

{Twop1 5 Tler1.0)5-13

where the indices (k,i)) are defined in (3.1). Then we can consider h as an
element of the Hecke algebra H,w (q) generated by {T{10),+1:---5 T(rt1.0),-1}
since the relations among T{;0), 11, -+ T(ry1,0),—1 are the same as the deﬁmng
relations of H,w (q) given in [9]. Also we get the Specht module S’\ over
Hyo(q) deﬁned in [9].

If 2,0k =0 in S)”, then by the definition of the Specht module S)" over
H, /\m‘(q), xywh is a linear combination of elements of the form z, ,, where  and s
are standard v-tableaux with entries {(k,0),+1,...,(k+1,0),} for some
partition v - |A®| with v A*. Tt follows from Lemma 3.2 that myh is a linear
combination of elements of the form m,, where s and t are standard p-tableaux
with some multipartition g > A. Hence, by the definition of the Specht module over
H, 1, we have myh =0 in S,

Now, note that the element E ;i 15 contained in the subalgebra of H,,,
generated by {0y, 415 Tles1,0)5— 1} Furthermore, using the notation in [9], we
see that Z ;i 1s exactly the same as

D (ki = 1)y + @), -

aECNA

Therefore, by [9, Lemma 3.4], we have xA<A=)Eij,k:0 in S,;\m, and hence
mAEéj’k =0 in S* g

REMARK. The above lemma is well known to the experts and the relations in
part (b) are called Garnir relations. One may deduce from the literature that
the relations in the lemma are necessary to define the Specht module. But it is a
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non-trivial problem to present a sufficient (or minimal) set of relations. Using
Grobner—Shirshov basis theory, we will obtain such a set of relations in the
next section.

4. Grobner—Shirshov pair for S*

In this section, we will introduce an H, ; ,-module S S* defined by generators and
relations and show that S* is isomorphic to the Specht module SA by determining
a Grobner—Shirshov pair for S S,

Let e be the smallest positive integer such that 1 4+ ¢+ ...+ ¢" ' = 0; set e = oo
if no such integer exists. And let A = (A(),...,A")) be a multipartition of n. We
define S* to be the H, 1 ,-module generated by Ty, Ty,...,T,_; with defining
relations given by the pair (RAK,RAK), where RAK is the set of relations:

T, —q (i # (k1) for 1<k<rand[>1),
Sk (i>2,1<k<r), »
ek (e <o00,i=>2,1>1,1<k<r), (4.1)
Tik,0),1 Ty F0s — kN, (1<k<r).

In Lemma 3.9, we have seen that the first three relations hold in S*. The last
relations follow from Lemma 3.6 and the simple observations

Tioya TT"F0 = "Ly and  res((k,0), + 1) = Q.
Hence there exists a surjective H, ; ,-module homomorphism
.S g given by 1—m;. (4.2)

We claim that the map W is actually an isomorphism. In other words, the
Specht module S* can be viewed as the H,. 1n-module defined by the pair
(RAK,RAK) The rest of this section will be devoted to proving this claim.

LEMMA 4.1.  The following relations hold in S,
(a) Foreacht e SC(\) witht(i, j, k) > t(i, j + 1, k) for some (i, j, k) € [A], we have
t=qt,
where
t(i, j+1,k) if (a,b,c) = (i, j, k),
C(ab.c) = { i G k) +1 if (a.b.c) = (i, j+ 1),
t(a,b,c) otherwise.
(b) For each i>2, j>1, 1<k<r, we have
(¢) For each row standard semi-cozy M-tableau te& SC(A\)NRS(\) with
t(i, . k) + 7> t(i + 1, j, k) for some (i, j, k) € [\], we have

t= Z ay.s for some s € SC()) and a;, € F.

5<t
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(d) Given 1<k<r, assume that t is a semi-cozy M-tableau such that
t0 = (MDY for all 1> k. Then for each 0<i < (k,0),, we have

t Tooy, 1 ToT" = ¢'Qut Ty, i1 + Z A}, 5

5=t Tij.0), i+1

for some s € SC(A\) and a;, € F.

Proof. In this proof, we will write t = (t<1), t@ . ,t(r)) =tW¢® . ") as each
t? is considered as a monomial. If ¢ corresponds to 1 for some [, we will suppress
it from the notation. Thus, t = tVt® . ¢(?) means t¥) =1 for all | > p

(a) Write t = W@ (") and ¢ = ¢W¢@ ¢ Note that t? = ¢ for | # k.
Since the general case can be obtained by multiplying both sides by the monomial
t*H D402 () we may assume that t = t0t@ . t#) and ¢ = W@ ¢® . Ag
the starting point of the induction, we let t*) = T(M )4 (for j>1) and ™ = 1. From

the defining relation T{; ;) 1 ; — ¢, we have t® = qt ). Since tVt® .. t* 1 commutes
with t*) = Tk,i),+j and o = 1, we obtain
t=tD@ W = (g )

= gt D = D@ gy
We may write t* (Hl 0<31> k0,) () (i1 1), using the mnotation in [9]. The
remaining induction argument and calculatlons are similar to those of Lemma 3.3

in |9].
([b}) Consider the subalgebra H /\(m(q) of H,;, generated by the set
{T(k,o)ﬁh LR T(k+1,0)vl}
as in the proof of Lemma 3.9, where the indices (k,4), are defined in (3.1). Let
R{I\m be the set of relations given in Definition 4.1 of [9] for the module :S'\qw) over
Hjyw)(g). (In Definition 4.1 of [9], (R,, Ry) should be read as (R,, Ry).)
Since Rw) C R//\xm the intersection of the right ideal of H, ;, generated by R/’\XK

and the algebra H,w(q) Contalns the right ideal of H),w (q) generated by RN.
Thus all the relations in S S also hold in S™. Using the notation in [9], one can
easily see that ¥ ik corresponds to

Z ((kyi = 1)x + @)y, -

HECI iak)

Now our assertion follows from [9, Lemma 3.4] and [9, Lemma 4.2].
(¢) Let ¢ =tWt?  t*D Then ¢ commutes with all the tableaux t” such
that t* < " < t)‘jk Thus we obtain

(27 7s k)t - t (27 2 Js k) 0.

The remaining part of the proof is similar to the proof of [9, Lemma 4.4], and we
omit it. R

(d) We use a downward induction on i. By the defining relations for S*,
we obtain

Tik0), 1 T, = ¢H0hq,.
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From the assumption we see that t consists of those monomials on the 7T; with
J<(k,0)y — 1 only. By Lemma 3.2, t commutes with L, ;. Hence we have

t Tip0), 0 TOTL(/%O)A — q(kvo)Ath’

and our assertion is valid for i = (k,0),.
Assume that

t T(kn,O)A,l T()Tl"i — q‘th T(k',O)A,H-l + Z ak.,ss.

=<t T(1.0) i+1
Multiplying the above equation by 7; from the right, we get

0= tT(10),1 TOTl’iTi - qukt Tiro),i — Z a5 T;

<t T1,0), i+1
= (¢ — Dt Ty, ToT" + qt Ty, LT
— q'Qut Ty, — Z arss T

5=t Tj.0), i+1
=(¢— 1)q'Qut Typo),i01 + Z (q—1)ayss
§=<tT{10), i+1
+qt Tiho),1 T,TV " — ¢ Qut Ty, i — Z ayq5 T

5=t T{p0)y 41
Note that t Ty, i11 < tT(r0),- Thus if s <t Tj;0) 41, then we have
s <t ﬂk-ﬂ)»i and 5112' <t T(k,()))\.i'
It follows that
0=qtTio),1 T, T —4'Qy tTlh0),, — Z 5.

s=<t T(l\xt)))\.z

Since ¢ is invertible, we obtain
tTopa T ™ = ¢ Qut T+ D 4 'ahes.

s=<t T1.0), i

Hence by (downward) induction, our assertion follows. O

Let Rk be the set of relations derived in Lemma 4.1:
t—qt for t € SC(\) with t(z, j,k) > t(i, j+ 1, k)
for some (4, j, k) € [\,
\ t—> aes for t € SC(A) NRS(N) with (7, j, k) +j > t(i + 1, j, k)
Rk : o for some (i, j, k) € [A],
E L1001 To — Qut Tro0),1 — Dos<t Ty, s
for 1<k<rand t € SC(\) with ¥ = (t)" for I > k.
(4.3)

DEFINITION 4.2. A semi-cozy A-tableau t € SC()\) is said to be cozy if it
satisfies:
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(i) t is row standard,
(ii) t(i, j, k) +7<t(i + 1, j, k) for all (i, 5, k) € [\

EXAMPLE 4.3. Let

A= ,

Some examples of cozy tableaux are:

11213] 5755 112[3] =75
41516} g |- 31516k 171381 )
7|8 6|7
112[3 112]3
256,2‘;, 246,12
3|8 3[6

We denote by CZ(A) the set of cozy A-tableaux.

PROPOSITION 4.4. Under the identification of By with SC(X), the set of
(Rak, RAk)-standard monomials with respect to = deg-lex 1S identified with the set
CZ(\) of cozy tableaux of shape A.

Proof. Let T=T, ... T, be an (Rak, RAk)-standard monomial. Since T is
Rax-standard, we have T € B,y.

If iy 20 for all b=1,...,a, then T belongs to By. Hence T can be identified
with a semi-cozy tableau t in SC()\). By the first two relations in R}k, we
conclude that t is a cozy tableau.

Suppose i;, = 0 for some b and let ¢ be the smallest index such that i, = 0. Then
by the above argument, the monomial T; ...T;  is (Rak, RAk)-standard and
corresponds to a cozy tableau.

If 7._1 > 1, then we have

LT =T, Ty =TT

Le1?
which lies in Rpi. Hence we must have i._; =1 and we may write

T,...T,  =T,...T,T;; for some b and j.

3
Note that, in a cozy tableau, the only boxes that can have the entry 1 are the
ones lying in the upper-left corner of each component. Hence j = (k,0), for some
1 <k<r and we have

/Ijil e 1—;(171 E{» - El e /112‘1) 1—}"1 TU - 1—;1 e Eb T(]C,O))\,ITU'

However, by the third relation in R}y, this monomial cannot be (Rax, RAk)-
standard, which is a contradiction to the assumption that T'="T; ... T; ... T; is
(Rak, RAk)-standard. Therefore, we must have i, # 0 for all b, and T corresponds
to a cozy tableau.

Conversely, given a cozy tableau t of shape A, let T' be the corresponding
monomial in By. Since T contains no 7j in itself, 7" is R zx-standard and the third
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relation in Rix does not have any effect on T. Moreover, since t is cozy, T is
reduced with respect to the first two relations in R}x. Hence the monomial T is
(Rak, RAk)-standard, which completes the proof. O

Recall that the symmetric group S, acts naturally on the set of bijective A-
tableaux. We define a map ¢ from the set CZ(A) of cozy A-tableaux to the set
ST(X) of standard A-tableaux by

A
<(t) :C(EIEZ"'ﬂI) :t TZIIT’L'Q"'TZ']J (44)

where T; T;, ... T}, is the monomial identified with the cozy tableau t and 7; is the
transposition (j,7+ 1) € S,,.

We can explain the map ¢ in a more combinatorial way. Assume that t is a cozy
tableau. For (i, 7, k)-entry of t, set p = (k,i — 1), + j. If we read off the entries of t
in the Western reading; that is, if we proceed from left to right and from top to
bottom, then p increases by 1 in each move. The pth box with the entry g
corresponds to the monomial 7, ; ,. Observe that the action of 7, ;...7, (with
p > q) on a tableau changes ¢,q+ 1,...,p—1 to g+ 1,¢+2,...,p, respectively,
and p to g. Actually, the image of ( is obtained by successive actions of such
elements 7, ;...7, corresponding to the ‘boxes’ T, ;, in the tableau. This
observation gives us the following combinatorics of tableaux.

To begin with, let t, be the cozy tableau corresponding to the longest
monomial. The last tableau in Example 4.3 is ty, for A = ((3,3,2),(2,2)). Now, for
a cozy tableau t € CZ()), ((t) can be obtained in the following process. At first,
let t; =t and t! = t*, the standard tableau defined in (3.2). We describe the pth

step of the process.

If the (4, j, k)-entry of t, is a and that of t” is b, then change b in t” into a,
and add 1 to each box of ¥ with entry ¢ satisfying a <c¢ < b. Denote the
resulting tableau by t"*!. Also, change the (i, j, k)-entry of t, into that of t,
and denote the resulting tableau by t, .

Apply the above process inductively, while t is read off in the Western reading.
The process ends with t, = t, and t" = ((t). It is straightforward to see that each
t; is cozy, while each t' is standard.

Conversely, let t € ST(\) be a standard tableau of shape A. Then, by letting
t, =t, and t" = t, we can reverse the above process to end with t; = ¢7'(t) and
t' =) In this reversing process, we also obtain a family of cozy tableaux
t,,t,_1,..., 4 and a family of standard tableaux t*, "', ... .

Therefore, we obtain the following.

PROPOSITION 4.5. The map (:CZ(\) — ST()\) defined by (4.4) is a
bijection. In particular, we have

dim S* = #(ST(N\)) = #(CZ(N)).

t:<123j’15|>7
2[4 3

ExXAMPLE 4.6. If
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then
1[2]3] [1]5 : 1{2[3][6]7
t=t1:t2:t3:<24 J,g l), t’\:tlzt2:t5:<45 |’8 )7
_([1]2]3] [1]5] +_ ([1]3]4] [6]7
«= () ‘=G o)
~(I1T2]3] [1]5] 5 ([1]3]5] [6]7]
t5_<24 7-—3_ )7 t*<24 7}_ )
~(I1]2]3] [1]5] 6 (|2]4]6] [1]7]
t6_<24 71 )7 t_<35 ’_8_‘ )
o — (1L2]8] [1]2] o (2l [a]s]
7T — 204 71 ) - 316 7\£ )
. (11]2]3] [1]2] 8 _ _(]2]5]8] [1]6]

We now return to the H,;,-module homomorphism W : S — g given by
U(1) = m,. Since ¥ is surjective, we have

dim §* > dim S
By Propositions 1.3, 3.5, 4.4 and 4.5, we have
dim 5* < #(CZ(N\)) = #(ST(A)) = dim S,

which implies that dim .S S* = dim $*. Hence we conclude that the H, 1,-module S S*is
1som0rphlc to the Specht module S*, and the pair (Rk, R AK) is a Grobner —Shirshov
pair for $*. Therefore, the set CZ(A ) can be viewed as a linear basis of the Specht
module S* consisting of the (Rax, R AK)—standard monomials.

To summarize, we have the following.

THEOREM 4.7. Let A = ()\ D@ A ) be a multipartition of n.

(a) The Specht module S* is isomorphic to the H, 1 ,-module S S* defined by the
pair (RAK,RAK) Hence we obtain a presentation of the Specht module S* by
generators and relations. N

(b) The pair (Rax, RAk) is @ Grobner—Shirshov pair for S* with respect to the
monomial order < (=<geg-jex)-

(¢) The set CZ(\) of cozy A-tableaux is a linear basis of S S*, and can be viewed
as a linear basis of the Specht module S* consisting of the (RAK,RAK)
standard monomials.

The isomorphism W : S S» — g gives a canonical bijection between our
monomial basis CZ()) for $* and the standard basis for S* constructed in [4].
Moreover, the map (: CZ(\) — ST()\) gives a bijection between the labelling
schemes of these bases. We would like to emphasize that the set CZ(\) is itself a
monomial basis for the Specht module S*, not just a labelling scheme.

We close this paper with an example.
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EXAMPLE 4.8. Let

A= (_ 1,[[]).

Then the set CZ(\) of cozy A-tableaux is given below:

). (P (o). (P
(o) (Pm) P (P
Pm) (Pm) Po) (o)
{Peo) (Po) (Pe) @P o)
Pm) Pm) Po) @)
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