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Overview

Fourier coefficients and nilpotent orbits

Whittaker coefficients and wavefront sets

Small representations

Kac–Moody case

K-types

Quantum cosmology

Beyond Eisenstein series and automorphic forms?
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Setting

Consider

G = G(R) a split real, reductive and f.d. algebraic group

Γ = G(Z) ⊂ G(R) arithmetic Chevalley subgroup

Global setting G→ G(A) (A = AQ)

An automorphic form ϕ ∈ π has Fourier expansion w.r.t. a
unipotent subgroup U ⊂ G (organised in derived series):

ϕ(g) =
∑

ψ

Fψ(ϕ, g) + ‘non-abelian terms’

unitary character ψ : U(Q)\U(A) → U(1)

Fψ(ϕ, g) =

∫

U(Q)\U(A)

ϕ(ug)ψ(u)du
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Connection to orbits

Seek a rearrangement of the Fourier expansion in terms of
an expansion in terms of orbits

ϕ(g) =
∑

O∈WF(π)

FO(ϕ, g)

WF(π): (global) wave-front set (⊂ {nilpotent orbits})

FO: (linear) combination of orbit Fourier coefficients FψO
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Connection to orbits

Seek a rearrangement of the Fourier expansion in terms of
an expansion in terms of orbits

ϕ(g) =
∑

O∈WF(π)

FO(ϕ, g)

WF(π): (global) wave-front set (⊂ {nilpotent orbits})

FO: (linear) combination of orbit Fourier coefficients FψO

Remark: Cf. in local case Harish-Chandra–Howe expansion

χπp
=

∑

O∈WF(πp)

cOµ̂O

and work by [Mœglin, Waldspurger; Matumoto; Ginzburg]. Global
results by [Jiang, Liu, Savin; Gan, Savin]
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Orbit Fourier coefficients

Let O be a nilpotent orbit through X ∈ g. Let (X,Y,H) be a
Jacobson–Morozov sl(2) triple and g = ⊕m

i=−mgi a

decomposition into H-eigenspaces. Define:

pO =

m
⊕

i=0

gi, lO = g0, uO =

m
⊕

i=1

gi, vO =

m
⊕

i=2

gi

Lie algebras of PO = LOUO, and VO ⊂ UO.
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Orbit Fourier coefficients

Let O be a nilpotent orbit through X ∈ g. Let (X,Y,H) be a
Jacobson–Morozov sl(2) triple and g = ⊕m

i=−mgi a

decomposition into H-eigenspaces. Define:

pO =

m
⊕

i=0

gi, lO = g0, uO =

m
⊕

i=1

gi, vO =

m
⊕

i=2

gi

Lie algebras of PO = LOUO, and VO ⊂ UO.

Let ψO be a unitary character on VO (same stabilizer type
as O). The orbit Fourier coefficient is

FψO
(ϕ, g) =

∫

VO(Q)\VO(A)

ϕ(vg)ψO(v)dv

If there is a ψO such that FψO
6= 0 then O ∈ WF(π).
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Wave-front set and orbit coefficients

Some questions:

How to determine WF(π)?

How to determine FψO
?

How to determine FO =
∑

FψO
?

How to determine Fψ for ψ on some unipotent U?

(In particular last question of interest for string theory.)
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Wave-front set and orbit coefficients

Some questions:

How to determine WF(π)?

How to determine FψO
?

How to determine FO =
∑

FψO
?

How to determine Fψ for ψ on some unipotent U?

(In particular last question of interest for string theory.)

We will tackle these questions for Eisenstein series and
using (degenerate) Whittaker vectors. (cf. [Mœglin,

Waldspurger; Matumoto; Gourevitch, Sahi])

Very explicit results for SL(3) and SL(4) in [GKP].
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(Degenerate) principal series

E(χ, g) =
∑

γ∈B(Q)\G(Q)

χ(γg)

Eisenstein series induced from Borel B = NA ⊂ G using a

generic quasi-character χ : B → C×, extended to G.

Spherical function in the principal series

GKdim π = dimN = 1
2 dimOreg, WF(π) = Oreg

Induced from a parabolic subgroup P = LU with

χP : P → C×. Generically degenerate principal series

GKdim π = dimU = 1
2 dimOP , WF(π) = OP

For non-generic characters can have reductions of WF(π)

and contributions to the residual spectrum.
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Rewriting the SL(3) Fourier expansion

Nilpotent orbits O for SL(3)

Bala–Carter partition dim VO

0 (13) 0





1

1

1





A1 (21) 4





1 ∗

1

1





A2 (3) 6





1 ∗ ∗

1 ∗

1





For trivial orbit define the orbit Fourier coefficient to be the
constant term (along N ):

Fψ0
(χ, g) =

∫

N(Q)\N(A)

E(χ, ng)dn = F0
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SL(3) regular orbit

Since VOreg
=

{(

1 ∗ ∗

1 ∗

1

)}

= N , orbit Fourier coefficients equal

non-degenerate Whittaker coefficients

FψA2
(χ, g) =

∫

N(Q)\N(A)

E(χ, ng)ψA2
(n)dn = W[m1,m2](χ, g)

where (m1m2 6= 0)

ψA2

((

1 x1 ∗

1 x2
1

))

= exp(2πi(m1x1 +m2x2))

(Could be calculated locally using Casselman–Shalika.)
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SL(3) minimal orbit

With VOreg
=

{(

1 ∗

1

1

)}

= [N,N ] = N (2), orbit Fourier

coefficients equal ‘non-abelian’ Whittaker coefficients

FψA1
(χ, g) =

∫

N (2)(Q)\N (2)(A)

E(χ, ng)ψA1
(n)dn

These do not as such cover all terms in the Fourier
expansion: Degenerate Whittaker vectors W[m,0] and W[0,m]

(on N ) are missing.
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SL(3) minimal orbit

With VOreg
=

{(

1 ∗

1

1

)}

= [N,N ] = N (2), orbit Fourier

coefficients equal ‘non-abelian’ Whittaker coefficients

FψA1
(χ, g) =

∫

N (2)(Q)\N (2)(A)

E(χ, ng)ψA1
(n)dn

These do not as such cover all terms in the Fourier
expansion: Degenerate Whittaker vectors W[m,0] and W[0,m]

(on N ) are missing.

Are also associated with the minimal orbit. E.g.

W[m,0](χ, g) =

∫

(Q\A)2
FψA1

(

χ,
(

−1

−1

−1

)(

1 u2
1 u3

1

)

g
)

du2du3
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SL(3) orbit Fourier expansion

Theorem[GKP] Any Eisenstein series E(χ, g) on SL(3) can be
written as

E(χ, g) = F0(χ, g) + FA1
(χ, g) + FA2

(χ, g)

with

F0(χ, g) = const. term =W[0,0](χ, g)

FA1
(χ, g) =

∑

m6=0

W[m,0](χ, g) +
∑

m6=0

W[0,m](χ, g) +
∑

m6=0

FψA1
(χ, g)

FA2
(χ, g) =

∑

m1m2 6=0

W[m1,m2](χ, g)
✻

‘non-abelian’

Whittaker

Proof: Follows from considerations above.
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Checks / Consequences

For SL(3) the principal series can be parametrised by two
complex numbers s1, s2

χs1,s2(a) = vs11 v
s2
2 , a =

(

v1
v
−1
1 v2

v
−1
2

)

Minimal series for s1 = 0 (or s2 = 0 or a Weyl image).
From explicit formulas for Whittakers [Bump] FA2

(χ, g) = 0
and only minimal orbit in Fourier expansion of minimal
series:

E(χA1
, g) = F0 + FA1

, WF(πA1
) = OA1

FA1
functions same ‘functional type’ (single K-Bessel).

For generic series all terms and WF(πA2
) = OA2

.
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SL(3) unipotent coefficients

Consider the (mirabolic) unipotent U =
{(

1 u1 u2
1

1

)}

.

Not the unipotent associated with any orbit. What is Fψ(χ, g)

for unitary character ψ = exp(2πi(m1u1 +m2u2)) on U?

Study the way Levi orbits on U intersect the nilpotent
G-orbits and then relate to orbit coefficients:

Fψ(χ, g) =

∫

Q\A

FA1

(

χ,
(

1 u1 0

1

1

)

lm1,m2g
)

du1

lm1,m2 belongs to Levi. In minrep translate of deg. Whittaker.
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SL(3) unipotent coefficients

Consider the (mirabolic) unipotent U =
{(

1 u1 u2
1

1

)}

.

Not the unipotent associated with any orbit. What is Fψ(χ, g)

for unitary character ψ = exp(2πi(m1u1 +m2u2)) on U?

Study the way Levi orbits on U intersect the nilpotent
G-orbits and then relate to orbit coefficients:

Fψ(χ, g) =

∫

Q\A

FA1

(

χ,
(

1 u1 0

1

1

)

lm1,m2g
)

du1

lm1,m2 belongs to Levi. In minrep translate of deg. Whittaker.

Simplicity for GL(n) [Piatetski-Shapiro; Shalika]. In general:
orbit structure much more intricate [Miller, Sahi].
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Generalization to SL(4)

Same logic works for SL(4)

Orbit of type 2A1 – next-to-minimal

Our methods show also that the next-to-minimal
representation is determined by degenerate Whittaker
coefficients of type 2A1
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Remarks on small representations

Let G be a simply-laced split group (ADE). Its nilpotent
orbits of A-type can be labelled by a choice of simple roots
determining an A-type subgroup G′ ⊂ G. ‘Small’ orbits are
of A-type.
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Remarks on small representations

Let G be a simply-laced split group (ADE). Its nilpotent
orbits of A-type can be labelled by a choice of simple roots
determining an A-type subgroup G′ ⊂ G. ‘Small’ orbits are
of A-type.

Conjecture: The A-type orbits of the wave-front set of π with

E(χ, g) as spherical vector can be determined by looking at
the degenerate Whittaker coefficients of E(χ, g). If π is a
small representation, WF(π) can be fully determined.
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Remarks on small representations

Let G be a simply-laced split group (ADE). Its nilpotent
orbits of A-type can be labelled by a choice of simple roots
determining an A-type subgroup G′ ⊂ G. ‘Small’ orbits are
of A-type.

Conjecture: The A-type orbits of the wave-front set of π with

E(χ, g) as spherical vector can be determined by looking at
the degenerate Whittaker coefficients of E(χ, g). If π is a
small representation, WF(π) can be fully determined.

Theorem:[FKP; Hashizume] Let ψ be a deg. character on N and
G′ ⊂ G the semi-simple subgroup on whose maximal

unipotent N ′ ⊂ N ψ is generic. Then for χ(nak) = aλ+ρ

WG
ψ (λ, a) =

∑

wcw′
0∈W/W ′

a(wcw
′
0)

−1λ+ρM(w−1
c , λ)WG′

ψ (w−1
c λ, 1).
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Remarks on small representations (II)

Theorem works for any type of subgroup G′ but for
application to wave-front set of small representations
A-type most useful.

For minimal representation only A1 type

For next-to-minimal only 2A1 type (definition...)

Other example: E
[

5
2

0 0 0 0 0 0

]

for E7(R). WF(π) = OA2+A1
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Remarks on small representations (II)

Theorem works for any type of subgroup G′ but for
application to wave-front set of small representations
A-type most useful.

For minimal representation only A1 type

For next-to-minimal only 2A1 type (definition...)

Other example: E
[

5
2

0 0 0 0 0 0

]

for E7(R). WF(π) = OA2+A1

Conjecture: Degenerate Whittaker function associated with

maximal orbit has an Euler product. (Lower ones certainly
not.)
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Remarks on small representations (II)

Theorem works for any type of subgroup G′ but for
application to wave-front set of small representations
A-type most useful.

For minimal representation only A1 type

For next-to-minimal only 2A1 type (definition...)

Other example: E
[

5
2

0 0 0 0 0 0

]

for E7(R). WF(π) = OA2+A1

Conjecture: Degenerate Whittaker function associated with

maximal orbit has an Euler product. (Lower ones certainly
not.)

Question: Does this simplify the calculation of arbitrary
Fourier coefficients? (Min. rep.: yes [Gan, Savin])
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Remarks on small representations (III)

Theorem (formally) applicable to Kac–Moody extension.
E.g. hyperbolic E10 (see talk by Philipp Fleig yesterday).
Inducing from constant on parabolic with semi-simple D9

s = 3
2 : only A1-type Whittaker functions ⇒ Eisenstein

series should be attached to minimal representation.
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Remarks on small representations (III)

Theorem (formally) applicable to Kac–Moody extension.
E.g. hyperbolic E10 (see talk by Philipp Fleig yesterday).
Inducing from constant on parabolic with semi-simple D9

s = 3
2 : only A1-type Whittaker functions ⇒ Eisenstein

series should be attached to minimal representation.

s = 5
2 : only 2A1-type Whittaker functions ⇒ Eisenstein

series should be attached to next-to-minimal
representation.
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Remarks on small representations (III)

Theorem (formally) applicable to Kac–Moody extension.
E.g. hyperbolic E10 (see talk by Philipp Fleig yesterday).
Inducing from constant on parabolic with semi-simple D9

s = 3
2 : only A1-type Whittaker functions ⇒ Eisenstein

series should be attached to minimal representation.

s = 5
2 : only 2A1-type Whittaker functions ⇒ Eisenstein

series should be attached to next-to-minimal
representation.

Question: Classification of Kac–Moody nilpotent orbits?
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More Kac–Moody questions

K-types

For discrete series often non-trivial K-types necessary.
Possibilities for Kac–Moody?
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More Kac–Moody questions

K-types

For discrete series often non-trivial K-types necessary.
Possibilities for Kac–Moody?

At the level of Lie algebras k ⊂ g over R.

(1) ∞-dim’l fixed point Lie algebra of (Chevalley) involution.
(2) k is not a Kac–Moody algebra.
(3) k is not a simple algebra. It has ∞-dim’l ideals.
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More Kac–Moody questions

K-types

For discrete series often non-trivial K-types necessary.
Possibilities for Kac–Moody?

At the level of Lie algebras k ⊂ g over R.

(1) ∞-dim’l fixed point Lie algebra of (Chevalley) involution.
(2) k is not a Kac–Moody algebra.
(3) k is not a simple algebra. It has ∞-dim’l ideals.

For k of hyperbolic g = e10 one has irreducible (spinor)
representations of dimensions [Damour, AK, Nicolai]

32, 320, 1728, 7040

with quotients
so(32), so(288, 32), ?, ?
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K-types

(Some of) these representations can be lifted to the Weyl
group W and (covers of) K [Ghatei, Horn, Köhl, Weiss].

Question: Can they arise as K-types of some G
representations?
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K-types

(Some of) these representations can be lifted to the Weyl
group W and (covers of) K [Ghatei, Horn, Köhl, Weiss].

Question: Can they arise as K-types of some G
representations?

For other Kac–Moody groups, e.g.









2 −2

−2 2 −1

−1 2









other

quotients possible, also with U(1) factors
⇒ holomorphic discrete series?

Question: Spherical vectors for Kac–Moody reps?
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Yet more Kac–Moody connections

Hyperbolic Weyl groups

(Real) upper half plane
z = x+ iy; x ∈ R, y > 0

Standard upper half plane can be seen
as projection of (open) Tits cone C ⊂ h

for the hyperbolic Kac–Moody algebra

with A =







2 −2

−2 2 −1

−1 2







Action of PSL(2,Z) on this space = Action of W+ ⊂ W
[Feingold, Frenkel]
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Generalization

Generalizes to other hyperbolic Kac–Moody algebras by
replacing x ∈ R by x ∈ K, another division algebra.

E.g. take K = O (octonions) and consider

z = x+ iy, x ∈ O, y > 0 ‘octonionic upper half plane’

Define transformations [Feingold, AK, Nicolai]

w−1(z) =
1

z̄
, w0(z) = −z̄ + 1, wj(z) = −εj z̄εj

Here: εj (j = 1, . . . , 8) are E8 simple roots in the root lattice

Q(E8) ∼= O (integer Cayley numbers) s.t. hst root = 1
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Generalization

Generalizes to other hyperbolic Kac–Moody algebras by
replacing x ∈ R by x ∈ K, another division algebra.

E.g. take K = O (octonions) and consider

z = x+ iy, x ∈ O, y > 0 ‘octonionic upper half plane’

Define transformations [Feingold, AK, Nicolai]

w−1(z) =
1

z̄
, w0(z) = −z̄ + 1, wj(z) = −εj z̄εj

Here: εj (j = 1, . . . , 8) are E8 simple roots in the root lattice

Q(E8) ∼= O (integer Cayley numbers) s.t. hst root = 1

These generate the Weyl group W = W (E10)!
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E10 Weyl group

Even part W+ is generated by ‘holomorphic’

s−1(z) = −
1

z
, s0(z) = z + 1, sj(z) = εjzεj

They correspond to modular group PSL(2, O) over integer
octonions. Finite volume fundamental domain.
Question: What about modular forms in this set-up?
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E10 Weyl group

Even part W+ is generated by ‘holomorphic’

s−1(z) = −
1

z
, s0(z) = z + 1, sj(z) = εjzεj

They correspond to modular group PSL(2, O) over integer
octonions. Finite volume fundamental domain.
Question: What about modular forms in this set-up?

Can define Poincaré series [AK, Nicolai, Palmkvist]

Ps(z) =
1

240

∑

(c,d)=1

ys

|cz + d|2s
(Re(s) > 4)

Fourier expansion similar to the SL(2) case; involves Ks−4.
Arithmetic properties not studied. Cusp forms?

Can also study other hyperbolic Kac–Moody algebras.
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Hyperbolic Weyl groups

K g Ring W (g) W+(g++)

R A1 Z 2 ≡ Z2 PSL2(Z)

C A2 Eisenstein E Z3 ⋊ 2 PSL2(E)

C B2 ≡ C2 Gaussian G Z4 ⋊ 2 PSL2(G)⋊ 2

C G2 Eisenstein E Z6 ⋊ 2 PSL2(E)⋊ 2

H A4 Icosians I S5 PSL
(0)
2 (I)

H B4 Octahedral R 24 ⋊S4 PSL
(0)
2 (H)⋊ 2

H C4 Octahedral R 24 ⋊S4 P̃SL
(0)

2 (H)⋊ 2

H D4 Hurwitz H 23 ⋊S4 PSL
(0)
2 (H)

H F4 Octahedral R 25 ⋊ (S3 ×S3) PSL2(H)⋊ 2

O E8 Octavians O 2 .O+
8 (2) . 2 PSL2(O)
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Connection to physics

Max. supergravity near a space-like singularity (e.g. big
bang) can be given effective description in terms of
cosmological billiard. [Belinski, Khalatnikov, Lifschitz; Damour,

Henneaux]

β

Billiard table

=E10 Weyl chamber

M

M

Classically: Free ball in hyperbolic

space bouncing off the walls of
Weyl chamber
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Connection to physics

Max. supergravity near a space-like singularity (e.g. big
bang) can be given effective description in terms of
cosmological billiard. [Belinski, Khalatnikov, Lifschitz; Damour,

Henneaux]

β

Billiard table

=E10 Weyl chamber

M

M

Classically: Free ball in hyperbolic

space bouncing off the walls of
Weyl chamber

Quantize: ‘Wave-function’ on this space.
Unfold to octonionic upper half plane
with odd boundary conditions

⇒ cups forms?

Could be related to ‘singularity resolution’ in quantum
cosmology [AK, Koehn, Nicolai]
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One more thing

In lectures: String theory seems to call for a more general
notion of automorphic form. Restrict to SL(2,R).

Eisenstein series E(s, z) etc.

∆E(s, z) = s(s− 1)E(s, z)

s = 3
2 and s = 5

2 appear for strings at ‘lowest orders in α′’
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One more thing

In lectures: String theory seems to call for a more general
notion of automorphic form. Restrict to SL(2,R).

Eisenstein series E(s, z) etc.

∆E(s, z) = s(s− 1)E(s, z)

s = 3
2 and s = 5

2 appear for strings at ‘lowest orders in α′’

‘Next order’ requires SL(2,Z)-invariant function f(z) with
[Green, Vanhove]

∆f(z) = 12f(z)− 4ζ(3)2E(3/2, z)2

Recently solved [Green, Miller, Vanhove]

f(z) =
∑

γ∈Γ∞\SL(2,Z)

Φ(γz)
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One more thing (II)

f(z) =
∑

γ∈Γ∞\SL(2,Z)

Φ(γz)

with (z = x+ iy)

Φ(z) = 2ζ(3)2y3 +
1

9
π2y +

∑

n 6=0

cn(y)e
2πinx

cn(y) = 8ζ(3)σ−2(n)y

[

(

1 +
10

π2n2y2

)

K0(2π|n|y)

+

(

6

π|n|y
+

10

π3|n|3y3

)

K1(2π|n|y)−
16

π(|n|y)1/2
K7/2(2π|n|y)

]

For higher rank dualities (in progress with Olof Ahlén).
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One more thing (II)

f(z) =
∑

γ∈Γ∞\SL(2,Z)

Φ(γz)

with (z = x+ iy)

Φ(z) = 2ζ(3)2y3 +
1

9
π2y +

∑

n 6=0

cn(y)e
2πinx

cn(y) = 8ζ(3)σ−2(n)y

[

(

1 +
10

π2n2y2

)

K0(2π|n|y)

+

(

6

π|n|y
+

10

π3|n|3y3

)

K1(2π|n|y)−
16

π(|n|y)1/2
K7/2(2π|n|y)

]

For higher rank dualities (in progress with Olof Ahlén).

Question: Rep. theory? Global version? Aut. distributions?
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One more thing (III)

•

•

•

•

•

•

•

• ••

•

•

0

A1

2A1

(3A1)
′′

(3A1)
′

A2

4A1

A2A1

A22A1

2A2 A23A1A3

(A3A1)
′′

2A2A1

(A3A1)
′

A32A1 D4(a1)

•

•

•

•

•

•

•

• ••

•

•

R
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