Section 03 Math 227 Practice Midterm Exam 2 December 5, 2001

Show all work clearly. For full credit, include all steps necessary for your answer to be a clear and logical consequence of the preceding work. To be eligible for partial credit, all row-reduction work must carry clear labels indicating which operations you perform.

Budget time by allotting no more than 7 minutes for each 10 points.

1. Let $B=\left[\begin{array}{rrr}1 & 2 & 2 \\ -6 & -11 & -12 \\ 1 & -4 & 3\end{array}\right]$.
(a) (10 points) Find the $L U$-decomposition of B.
(b) (5 points) Without further work, calculate det B and explain why B is invertible.
(c) (5 points) Calculate U^{-1}.
(d) (5 points) Use your work to write L as a product of elementary matrices.
(e) (5 points) Calculate L^{-1} from (d).
(f) (5 points) Calculate B^{-1} from (c) and (e). (This is the procedure MATLAB actually follows to invert matrices.)
(g) (5 points) Write B as a product of elementary matrices. (Do not check by multiplying out the product!)
2. (15 points) Consider the linear transformation T whose standard matrix is

$$
C=\left[\begin{array}{rrr}
1 & 2 & 2 \\
1 & -4 & 3 \\
-6 & -11 & -12
\end{array}\right] .
$$

(a) What is the value of det C ? (b) Is $\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$ in the range of T ? Why or why not?
(c) Describe the image under T of the unit cube determined by the vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$ in \mathbf{R}^{3}.
3. (10 points) Suppose that I, O, X, Y, A, B, C, and D have appropriate sizes so that

$$
\left[\begin{array}{cc}
I & X \\
O & Y
\end{array}\right]\left[\begin{array}{ll}
A & C \\
B & O
\end{array}\right]=\left[\begin{array}{cc}
D & C \\
I & O
\end{array}\right] .
$$

Express X and Y in terms of A, B, C, and D.
4. (15 points, 5 per part) Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$ be the bases of \mathbf{R}^{2} for which $\mathbf{b}_{1}=\left[\begin{array}{c}-1 \\ 3\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{c}1 \\ -2\end{array}\right], \mathbf{c}_{1}=\left[\begin{array}{c}1 \\ -4\end{array}\right]$, and $\mathbf{c}_{2}=\left[\begin{array}{c}-2 \\ 9\end{array}\right]$.
(a) Find the coordinate vector $[\mathbf{v}]_{\mathcal{B}}$ of $\mathbf{v}=\left[\begin{array}{c}-3 \\ 7\end{array}\right]$ relative to the basis \mathcal{B}.
(b) Find the change-of-basis matrix $P=P_{\mathcal{C} \leftarrow \mathcal{B}}$.
(b) Give the matrix-vector equation that connects $[\mathbf{v}]_{\mathcal{B}}$ and $[\mathbf{v}]_{\mathcal{C}}$. Use that to calculate $[\mathbf{v}]_{\mathcal{C}}$.
5. (20 points, 5 per part) Let $A=\left[\begin{array}{rrr}1 & 2 & 0 \\ 0 & -1 & -1 \\ -1 & 3 & 5\end{array}\right]$.
(a) Find the rank of A.
(b) What is the dimension of the column space $R(A)$ of A ? Give a basis for $R(A)$.
(c) What is the dimension of the null space $N(A)$ of A ? Give a basis for $N(A)$.
(d) What is the dimension of the column space of A^{T} ? What is the dimension of the null space of A^{T} ?
6. Bonus Question (10 points maximum) Attempt this only after having completed and checked the earlier problems.

Two square matrices A and B anticommute if $A B=-B A$.
(a) Show that if two 3-by-3 matrices anticommute, then at least one of them is not invertible.
(b) What if A and B are 2-by-2 matrices?

