Math 220 Group Worksheet 5

To be done in teams without books or notes.

Names:

\qquad
\qquad
\qquad
\qquad

1. (1997 Exam 1) Consider the function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ with formula $f(x, y)=\left(x^{2}+y^{2}\right) / 4$.
(a) (2.5 minutes) Find the equation of the tangent plane to the graph of f at the point $(1,-1,1 / 2)$.
(b) (2.5 minutes) What point on the tangent plane has $x=0.98$ and $y=-1.04$?
(c) (2.5 minutes) Is f differentiable at $(1,-1)$? Explain!
2. (1996, Exam 1) Consider the function $g: \mathbf{R}^{3} \rightarrow \mathbf{R}$ with formula $g(x, y, z)=x^{2}-y^{2}+z$.
(a) (5 minutes) Find the tangent plane to the level surface $g(x, y, z)=0$ in (a) at the point $(2,1,-3)$.
(b) (2.5 minutes) Find a unit normal vector to the graph of $g(x, y, z)=0$ in (a) at the point $(2,1,-3)$.
3. (5 minutes, 1995 Exam 1) Find formulas for $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ if $f(x, y)=x^{2} y^{3} \sin x y$.
4. (5 minutes, 1997 Exam 1) A space probe has mass $m=20 \mathrm{~kg}$, with maximum possible error of 0.03 kg . At a certain instant, the magnitude of its acceleration is reported (to a control facility full of staff confused by metric units) to be $10.0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ with maximum error $0.05 \mathrm{~m} / \mathrm{s}^{2}$. Estimate the maximum error in the computed magnitude $F=m a=20$ newtons of the force on the object at that time. (Do not convert anything to pounds, feet, foot-lbs, slugs, etc.!)
5. (5 minutes) Consider the function $h: \mathbf{R}^{2} \rightarrow R$ with formula

$$
h(x, y)=\left\{\begin{array}{ll}
\frac{x y}{x^{2}+y^{2}} & \text { for }(x, y) \neq(0,0) \\
\frac{1}{2} & \text { for }(x, y)=(0,0)
\end{array} .\right.
$$

Is h differentiable at $(0,0)$? Why or why not? (Hint: What can you say about the continuity of h at the origin?)

