Math 220 Worksheet 2

To be done in teams without books or notes.

uu	DOOKS OF	

- 1. (15 minutes, 1998 Exam 1) Consider the parametric curve $\mathbf{x} = \mathbf{f}(t) = \cos 3t \mathbf{i} + \sin 3t \mathbf{j} + 4t \mathbf{k}, t \in [0, 2\pi].$
 - (a) Find formulas for $\mathbf{v}(t)$, $\mathbf{a}(t)$ and $\mathbf{T}(t)$ for any value of t.

(b) What is the arc length of the curve? Give a formula for the arc-length function s = s(t) and then parametrize the curve by arc length. Verify that your arc-length parametrization is correct.

(c) Find the unit tangent vector **T** to the path at $t = \pi/4$. Resolve $\mathbf{a}(\pi/4)$ into its tangential and normal components $\mathbf{a_T}$ and $\mathbf{a_N}$. What is the unit normal vector **N** at $t = \pi/2$?

(d) Determine the curvature at the point where $t = \pi/4$.

2. (2.5 minutes, 1999 Exam 1) Consider the parametric curve $\mathbf{x} = \mathbf{f}(t) = t \mathbf{i} + \sin 2t \mathbf{j} + \cos 2t \mathbf{k}, t \in [0, 2\pi]$. Which of the following plots is the graph of the curve? Explain how you selected it.

3. (5 minutes, 1993 Exam 1) The velocity of a moving body in the plane at any time t is $\mathbf{v}(t) = (at+1)\mathbf{i} - 2b\mathbf{j}$, where a and b are constants. When t = 0 the body is at the origin. Determine the vector parametric equation of the body's path, and name the corresponding curve.