Math 220 Final Exam Review Worksheet

1. (10 minutes) If $\mathbf{v}=\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$ and $\mathbf{w}=-2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}$, then find
(a) $\mathbf{v}+\mathbf{w}$
(b) $\mathbf{v} \cdot \mathbf{w}$
(c) $\|\mathbf{v}\|$ and $\|\mathbf{w}\|$
(d) the angle between \mathbf{v} and \mathbf{w}
(e) the coordinate of \mathbf{v} in the direction of \mathbf{w}
(f) the component of \mathbf{v} in the direction of \mathbf{w}
(g) a vector perpendicular to both \mathbf{v} and \mathbf{w}
(h) a scalar equation of the plane through $P(1,2,3), Q(2,4,5)$, and $R(-1,3,5)$.
2. (20 minutes) A particle moves on the curve $\mathbf{x}(t)=(\ln t) \mathbf{i}+2 t \mathbf{j}+t^{2} \mathbf{k}$, where $t>0$. Determine
(a) the velocity, speed, and acceleration
(b) the arc length between $t=1$ to $t=2$
(c) the tangential and normal components of acceleration at $t=1$.
(d) the unit tangent vector and unit normal vector at $t=1$.
3. (10 minutes) Let $w=\ln \left(x^{2}+y^{2}+z^{2}\right)$, where $x=\sin s t, y=\cos s t$, and $z=s^{2} t^{2}$. Find $\partial w / \partial s$ and $\partial w / \partial t$ in terms of s and t.
4. (10 minutes) Find and classify the critical points of f if $f(x, y)=12 x+27 y-x^{3}-y^{3}$.
5. (7.5 minutes) Find the volume of the region above the $x y$-plane, below the graph of $z=x^{2}+y^{2}$, and between the graphs of $y=x^{2}$ and $x=y^{2}$.
6. (5 minutes) Evaluate $\iint_{D} e^{-x^{2}-y^{2}} d A$, where D is the region inside the unit circle $x^{2}+y^{2}=1$.
7. (5 minutes) Evaluate $\iiint_{D} \frac{1}{x^{2}+y^{2}+z^{2}} d V$, where D is the region between the graphs of $x^{2}+y^{2}+z^{2}=$ $1, x^{2}+y^{2}+z^{2}=9$, and $z^{2}=3 x^{2}+3 y^{2}$.
8. (7.5 minutes) Use double integration to find the area of the region D in the first quadrant between the y-axis and the graphs of $y=x$ and $y=2-x^{2}$.
9. (5 minutes) A force field \mathbf{F} moves a particle from $(0,-4)$ to $(0,4)$ in the counterclockwise direction along the ellipse $x^{2} / 9+y^{2} / 16=1$. Calculate the work down by \mathbf{F} if $\mathbf{F}(x, y)=x \mathbf{i}+y \mathbf{j}$.
10. (7.5 minutes) Evaluate $\oint_{C} \mathbf{F} \cdot d \mathbf{x}$, where $\mathbf{F}(x, y)=\left(x^{3}+y^{2}+y \cos x\right) \mathbf{i}+(2 x y+\sin x) \mathbf{j}$ and C is any parametric smooth simple closed curve that is traversed counterclockwise as t increases. Explain your reasoning!
11. (10 minutes) If $\mathbf{F}(x, y)=x^{2} y^{2} \mathbf{i}+\left(x y^{2}-x^{2} y^{2}\right) \mathbf{j}$, then is \mathbf{F} conservative on \mathbf{R}^{2} ? Why or why not? $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$.
