Math 220 Final Exam Review Worksheet

- 1. (10 minutes) If $\mathbf{v} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ and $\mathbf{w} = -2\mathbf{i} + \mathbf{j} + 2\mathbf{k}$, then find
 - (a) $\mathbf{v} + \mathbf{w}$ (b) $\mathbf{v} \cdot \mathbf{w}$ (c) $||\mathbf{v}||$ and $||\mathbf{w}||$ (d) the angle between \mathbf{v} and \mathbf{w} (e) the coordinate of \mathbf{v} in the direction of \mathbf{w}
 - (f) the component of \mathbf{v} in the direction of \mathbf{w} (g) a vector perpendicular to both \mathbf{v} and \mathbf{w}
 - (h) a scalar equation of the plane through P(1, 2, 3), Q(2, 4, 5), and R(-1, 3, 5).
- 2. (20 minutes) A particle moves on the curve $\mathbf{x}(t) = (\ln t)\mathbf{i} + 2t\mathbf{j} + t^2\mathbf{k}$, where t > 0. Determine
 - (a) the velocity, speed, and acceleration (b) the arc length between t = 1 to t = 2
 - (c) the tangential and normal components of acceleration at t = 1.
 - (d) the unit tangent vector and unit normal vector at t = 1.
- 3. (10 minutes) Let $w = \ln(x^2 + y^2 + z^2)$, where $x = \sin st$, $y = \cos st$, and $z = s^2t^2$. Find $\partial w/\partial s$ and $\partial w/\partial t$ in terms of s and t.
- 4. (10 minutes) Find and classify the critical points of f if $f(x, y) = 12x + 27y x^3 y^3$.
- 5. (7.5 minutes) Find the volume of the region above the *xy*-plane, below the graph of $z = x^2 + y^2$, and between the graphs of $y = x^2$ and $x = y^2$.
- 6. (5 minutes) Evaluate $\iint_D e^{-x^2 y^2} dA$, where D is the region inside the unit circle $x^2 + y^2 = 1$.
- 7. (5 minutes) Evaluate $\iiint_D \frac{1}{x^2 + y^2 + z^2} dV$, where *D* is the region between the graphs of $x^2 + y^2 + z^2 = 1$, $x^2 + y^2 + z^2 = 9$, and $z^2 = 3x^2 + 3y^2$.
- 8. (7.5 minutes) Use double integration to find the area of the region D in the first quadrant between the y-axis and the graphs of y = x and $y = 2 x^2$.
- 9. (5 minutes) A force field **F** moves a particle from (0, -4) to (0, 4) in the counterclockwise direction along the ellipse $x^2/9 + y^2/16 = 1$. Calculate the work down by **F** if $\mathbf{F}(x, y) = x \mathbf{i} + y \mathbf{j}$.
- 10. (7.5 minutes) Evaluate $\oint_C \mathbf{F} \cdot d\mathbf{x}$, where $\mathbf{F}(x, y) = (x^3 + y^2 + y \cos x) \mathbf{i} + (2xy + \sin x) \mathbf{j}$ and *C* is *any* parametric smooth simple closed curve that is traversed counterclockwise as *t* increases. Explain your reasoning!
- 11. (10 minutes) If $\mathbf{F}(x, y) = x^2 y^2 \mathbf{i} + (xy^2 x^2 y^2) \mathbf{j}$, then is \mathbf{F} conservative on \mathbf{R}^2 ? Why or why not? $\iint_{S} \mathbf{F} \cdot d\mathbf{S}$.