Exam 2 Answers

- 1. Since $l(x, y, z) = \sqrt{x^2 + y^2 + z^2}$, note that $\nabla l = \frac{1}{\sqrt{x^2 + y^2 + z^2}} (x, y, z)$.
 - (a) At $(a, b, c) \neq 0$, the function *l* thus increase most rapidly in the direction of the gradient: $\frac{1}{\sqrt{a^2+b^2+c^2}}(a, b, c)$. The maximum rate of increase of *l* at (a, b, c) is $\|\nabla l(a, b, c)\| = 1$.
 - (b) The function *l* decreases most rapidly at (a, b, c) in the direction of $-\nabla(a, b, c)$; the maximum rate of decrease is -1.

2. For
$$w = x^2 - 2y^2$$
, with $x = r \cos \theta$, $y = r \sin \theta$,

$$\frac{\partial w}{\partial \theta} = (2x, -4y) \cdot (-r\sin\theta, r\cos\theta) = -6r^2\sin\theta\cos\theta.$$

- **3.** (a) $F(x, y, z) = x^2 + y^2 + z^2 9$ does define z as a differentiable function of x and y near (-1, 2, 2), because $F_z(-1, 2, 2) = 4 \neq 0$ and F_x, F_y, F_z are all continuous.
 - (b) Implicit differentiation gives $\partial z/\partial x = -2x/2z = 1/2$ at (-1, 2, 2)and $\partial z/\partial y = -2y/2z = -1$ there. So the tangent plane is: $z - 2 = \frac{1}{2}(x + 1) - (y - 2)$. At (-1.02, 2.01), that gives approximate value $z \approx 1.98$.
- 4. (a) Since $f(x, y) = x^2 xy y^2 + 5y 1$, $f_x = 2x y$ and $f_y = -x 2y + 5$. Setting those to zero and solving gives the sole critical point (1, 2). Since $f_{xx} = 2 > 0$, $f_{xy} = f_{yx} = -1$, $f_{yy} = -2$, we find that $D = \det H_f = -5 < 0$, so (1, 2) is a saddle point.
 - (b) The problem asks you to optimize $f(x, y, z) = x^2 + y^2 + z^2$ subject to the two constraints $g_1(x, y, z) = \sqrt{x^2 + y^2} - z = 0$ and $g_2(x, y, z) = x^2 + y^2 - 2 - z = 0$. Solution by Lagrange multipliers requires solution of the system of five equations in the variables x, y, z, λ, μ that results from $\nabla f(x, y, z) = \lambda \nabla g_1(x, y, z) + \mu \nabla g_2(x, y, z)$ and the two constraints:

$$2x = \frac{\lambda x}{\sqrt{x^2 + y^2}} + 2\mu x, \quad 2y = \frac{\lambda y}{\sqrt{x^2 + y^2}} + 2\mu y, \quad 2z = -\lambda - \mu,$$
$$\sqrt{x^2 + y^2} - z = 0, \quad x^2 + y^2 - 2 - z = 0.$$

- 5. (a) The region is bounded by the y-axis, the horizontal line y = e on its top, and by the graph of $x = \ln y \iff y = e^x$.
 - **(b)** So $\iint_{S} f(x, y) dA = \int_{1}^{e} dy \int_{0}^{\ln y} f(x, y) dx = \int_{0}^{1} \int_{e^{x}}^{e} f(x, y) dy dx.$

6. (a) The graphs of $z = \sqrt{x^2 + y^2}$ and $z = 2 - x^2 - y^2$ intersect when $2 - x^2 - y^2 = \sqrt{x^2 + y^2}$, that is when $2 - r^2 = r$. That gives $r^2 + r - 2 = (r+2)(r-1) = 0$, which means r = 1 since $r \ge 0$. The intersection thus occurs on the plane z = 1, which is almost clear from the plot. So $V = \int_0^{2\pi} \int_0^1 (2 - r^2 - r) r dr d\theta = \frac{5}{6}\pi$.

(b) This time the surfaces intersect when $z = \sqrt{1 - x^2 - y^2} = 1 - \sqrt{x^2 + y^2}$, that is, when $\sqrt{1 - r^2} = 1 - r$. Squaring gives

$$1 - r^2 = 1 - 2r + r^2 \Rightarrow 2r^2 - 2r = 0 \Rightarrow r = 0, 1.$$

The first solution is not helpful: just the point (0, 0, 1). The second gives the actual curve of intersection in the *xy*-plane, since $z = 1 - r = \sqrt{1 - r^2} = 0$ when r = 1. Again, this is almost clear from the plot. So

7. Solve the two equations $2 = \frac{3}{5}f_x + \frac{4}{5}f_y$ and $-1 = -\frac{4}{5}f_x + \frac{3}{5}f_y$ for $f_x = 2, f_y = 1$ to find that $\nabla f(a, b) = 2\mathbf{i} + \mathbf{j}$.