1. Since $l(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$, note that $\nabla l=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}(x, y, z)$.
(a) At $(a, b, c) \neq \mathbf{0}$, the function l thus increase most rapidly in the direction of the gradient: $\frac{1}{\sqrt{a^{2}+b^{2}+c^{2}}}(a, b, c)$. The maximum rate of increase of l at (a, b, c) is $\|\nabla l(a, b, c)\|=1$.
(b) The function l decreases most rapidly at (a, b, c) in the direction of $-\boldsymbol{\nabla}(a, b, c)$; the maximum rate of decrease is -1 .
2. For $w=x^{2}-2 y^{2}$, with $x=r \cos \theta, y=r \sin \theta$,

$$
\frac{\partial w}{\partial \theta}=(2 x,-4 y) \cdot(-r \sin \theta, r \cos \theta)=-6 r^{2} \sin \theta \cos \theta .
$$

3. (a) $F(x, y, z)=x^{2}+y^{2}+z^{2}-9$ does define z as a differentiable function of x and y near $(-1,2,2)$, because $F_{z}(-1,2,2)=4 \neq 0$ and F_{x}, F_{y}, F_{z} are all continuous.
(b) Implicit differentiation gives $\partial z / \partial x=-2 x / 2 z=1 / 2$ at $(-1,2,2)$ and $\partial z / \partial y=-2 y / 2 z=-1$ there. So the tangent plane is: $z-2=$ $\frac{1}{2}(x+1)-(y-2)$. At ($-1.02,2.01$), that gives approximate value $z \approx 1.98$.
4. (a) Since $f(x, y)=x^{2}-x y-y^{2}+5 y-1, f_{x}=2 x-y$ and $f_{y}=-x-2 y+5$. Setting those to zero and solving gives the sole critical point $(1,2)$. Since $f_{x x}=2>0, f_{x y}=f_{y x}=-1, f_{y y}=-2$, we find that $D=$ $\operatorname{det} H_{f}=-5<0$, so $(1,2)$ is a saddle point.
(b) The problem asks you to optimize $f(x, y, z)=x^{2}+y^{2}+z^{2}$ subject to the two constraints $g_{1}(x, y, z)=\sqrt{x^{2}+y^{2}}-z=0$ and $g_{2}(x, y, z)=$ $x^{2}+y^{2}-2-z=0$. Solution by Lagrange multipliers requires solution of the system of five equations in the variables x, y, z, λ, μ that results from $\nabla f(x, y, z)=\lambda \nabla g_{1}(x, y, z)+\mu \nabla g_{2}(x, y, z)$ and the two constraints:

$$
\begin{gathered}
2 x=\frac{\lambda x}{\sqrt{x^{2}+y^{2}}}+2 \mu x, \quad 2 y=\frac{\lambda y}{\sqrt{x^{2}+y^{2}}}+2 \mu y, \quad 2 z=-\lambda-\mu, \\
\sqrt{x^{2}+y^{2}}-z=0, \quad x^{2}+y^{2}-2-z=0 .
\end{gathered}
$$

5. (a) The region is bounded by the y-axis, the horizontal line $y=e$ on its top, and by the graph of $x=\ln y \Longleftrightarrow y=e^{x}$.
(b) So $\iint_{S} f(x, y) d A=\int_{1}^{e} d y \int_{0}^{\ln y} f(x, y) d x=\int_{0}^{1} \int_{e^{x}}^{e} f(x, y) d y d x$.
6. (a) The graphs of $z=\sqrt{x^{2}+y^{2}}$ and $z=2-x^{2}-y^{2}$ intersect when $2-x^{2}-y^{2}=\sqrt{x^{2}+y^{2}}$, that is when $2-r^{2}=r$. That gives $r^{2}+r-2=$ $(r+2)(r-1)=0$, which means $r=1$ since $r \geq 0$. The intersection thus occurs on the plane $z=1$, which is almost clear from the plot. So $V=\int_{0}^{2 \pi} \int_{0}^{1}\left(2-r^{2}-r\right) r d r d \theta=\frac{5}{6} \pi$.

(b) This time the surfaces intersect when $z=\sqrt{1-x^{2}-y^{2}}=1-$ $\sqrt{x^{2}+y^{2}}$, that is, when $\sqrt{1-r^{2}}=1-r$. Squaring gives

$$
1-r^{2}=1-2 r+r^{2} \Rightarrow 2 r^{2}-2 r=0 \Rightarrow r=0,1 .
$$

The first solution is not helpful: just the point $(0,0,1)$. The second gives the actual curve of intersection in the $x y$-plane, since $z=1-r=\sqrt{1-r^{2}}=0$ when $r=1$. Again, this is almost clear from the plot. So

$$
\iiint_{E} x y z d V=\int_{0}^{\pi / 2} \int_{0}^{1} \int_{z=1-r}^{z=\sqrt{1-r^{2}}} r \cos \theta r \sin \theta z d z r d r d \theta=\frac{1}{60} .
$$

7. Solve the two equations $2=\frac{3}{5} f_{x}+\frac{4}{5} f_{y}$ and $-1=-\frac{4}{5} f_{x}+\frac{3}{5} f_{y}$ for $f_{x}=2, f_{y}=1$ to find that $\nabla f(a, b)=2 \mathbf{i}+\mathbf{j}$.

