Curves and Tangents in Mathematica

Copyright © 1997, 2001 by James F. Hurley, Department of Mathematics, University of Connecticut, Unit 3009, Storrs CT 06269-3009. All rights reserved.

Consider the parametric curve from Exercise 6, Section 2.1, of Multivariable Calculus by James Hurley: $\mathbf{x}=\mathbf{x}(t)=t \sin t \mathbf{i}+3 t \mathbf{j}+t \cos t \mathbf{k}$, for $t \geq 0$. To find the tangent line at the point corresponding to given value of t, such as $t=\pi / 2$, the first step is to differentiate the function \mathbf{x}. Mathematica can do that, but in this case the formula is certainly simple enough for hand differentiation:

$$
\mathbf{x}^{\prime}(t)=(\sin t+t \cos t) \mathbf{i}+3 \mathbf{j}+(\cos t-t \sin t) \mathbf{k} \Rightarrow \mathbf{x}^{\prime}\left(\frac{\pi}{2}\right)=\mathbf{i}+3 \mathbf{j}-\frac{\pi}{2} \mathbf{k}
$$

Since $\mathbf{x}(\pi / 2)=(\pi / 2,3 \pi / 2,0)$, the tangent line to the curve at the point $P(\pi / 2,3 \pi / 2,0)$ has vector equation

$$
\mathbf{x}=\mathbf{x}(t)=\left(\frac{\pi}{2}, \frac{3 \pi}{2}, 0\right)+t\left(1,3,-\frac{\pi}{2}\right) \Rightarrow x=\frac{\pi}{2}+t, y=\frac{3 \pi}{2}+3 t, z=-\frac{\pi}{2} t
$$

The following Mathematica routine plots the curve in blue and its tangent line at the point $(\pi / 2,3 \pi / 2,0)$ in red inside a coordinate box. (The term $(-1,2)$ in the Text command prints the label P one unit to the right and two units below its actual position, so as not to overwrite the dot that marks P.) As usual, to generate the plot, move the cursor to the end of the last blue line of code and press the Enter key, or press the Shift and Return keys together.

```
In[1]:= Curve = ParametricPlot3D [ { {t*Sin[t], 3*t, t* Cos[t],
                                    RGBColor[0, 0, 1]},
                                    {Pi/2 + t,
    3*Pi/2 + 3*t, - Pi*t/2,
                RGBColor [1, 0, 0] } }, {t, 0, Pi},
                    AxesLabel -> {x, y, z} ];
Basepoint = Graphics3D[{ RGBColor[1, 0, 1] ,
                            {PointSize[0.025],
    Point[{Pi / 2, 3*Pi / 2, 0}]} }]
Legend = Graphics3D [ {RGBColor[1, 0, 0],
                                    Text[ "P", {Pi/2, 3*Pi/2, 0}, {-1, 2}]}]
```

Show [Curve, Basepoint, Legend]

As a second example, consider the curve in Exercise 3, Section 2.1, of Multivariable Calculus:

$$
\mathbf{x}=\mathbf{x}(t)=(t-1) \mathbf{i}+\left(t^{2}+1\right) \mathbf{j}+\left(t^{3}-1\right) \mathbf{k} .
$$

The question asks for the tangent line at the point that corresponds to $t=2$, and also for the speed there. The formula gives $\mathbf{x}(2)=(1,5,7)$ as the point of tangency. Again, although Mathematica can easily differentiate the vector function \mathbf{x}, hand differentiation is likely quicker:

$$
\mathbf{x}^{\prime}(t)=\mathbf{i}+2 t \mathbf{j}+3 t^{2} \mathbf{k}=\mathbf{i}+4 \mathbf{j}+12 \mathbf{k} \text { at the point } P(1,5,7)
$$

From this, the speed is $\left\|\mathbf{x}^{\prime}(2)\right\|=\sqrt{1+16+144}=\sqrt{161}$. The tangent line to the curve at the point P has vector equation

$$
\mathbf{x}=x_{0}+t(1,4,12)=(1,5,7)+(t, 4 t, 12 t)=(1+t, 5+4 t, 7+12 t) .
$$

The following routine graphs the curve and the tangent line at P.

```
In[37]:= Curve = ParametricPlot3D[ {t - 1, t^2 + 1,t^3-1, RGBColor[0, 0, 1]},
    {t, 0, 2.25} ]
Tanln = ParametricPlot3D[{1 + t, 5 + 4*t, 7 + 12*t, RGBColor[1, 0, 0]},
        {t, -. 15, .15}]
Basepoint = Graphics3D[{ RGBColor [1, 0, 1],
    {PointSize[0.05], Point[{1, 5, 7}]} }]
Legend = Graphics3D[ {RGBColor[1, 0, 0],
    Text[ "P", {1, 5, 7}, {-2, 0}]}]
Show[Curve, Tanln, Basepoint, Legend, AxesLabel -> {x, y, z}]
```


