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One of the fundamental characteristics of vectors is direction, so it is important to have
a means of measuring the angle between two vectors. As afirst step, consider the angle
o between the positive x-axis and the vector v = (a, b) = ai + bj. From the figure below,
its cosine is @/||v||. That
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IS the quotient of the x-coordinate of the endpoint of v by the length of v:

(1) CoS o = a — al+DboO
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The last expression emphasizes that cos a is the sum of the products of the correspond-
ing coordinates of v = (a, b) and i = (1, 0) divided by the product of the lengths of v and
i

Similarly, the cosine of the angle § between v and the positive y-axisis

b —_ a0+b1l
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where notice that once again the formula is the sum of the products of the respective
coordinates of the two vectors v and | divided by the product of their lengths.

(2 cosf =

Next, consider the more general situation of two nonzero vectors v = (a, b) and w = (c,
d) and the angle 6 between them. As the next figure shows, that angle is the difference
between the angles y and o that the two vectors make with the positive x-axis.

y

Thus,
C0SO = cos(y—a)=C0Sy coOSa + Siny sina
_ ca 4+ _db _ _ac+bd
IvITTwIE T wi IvITTwil

The last expression has the same form as those in (1) and (2): the numerator is the sum of
the products of the respective coordinates of the two vectors, this time v and w. The
denominator is the product of the lengths of those vectors. The numerator is avery impor-
tant quantity.

2.1. Definition. If v = (a, b) and w = (c, d) are two vectors in the plane, then their dot
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product is
(3 v-w=ac+ bd.

Similarly, if v=(a, b, c) and w = (p, q, ) are two vectors in 3-space, then their dot prod-
uct is the sum of the products of the corresponding coordinates:

(4) v-w=ap + bq + cr.

In general, if v = (v, Vo2,..., Vp) and w = (W1, Wo,..., W,) are n-dimensional vectors, then
their dot product is the sum of the products of the corresponding coordinates:

(5 V W=ViWi+ VoWo+ ...+ VaWy.

With this notation, the above formula for the cosine of the angle between two vectors in
the plane becomes

VW
(6) Cos 0 = tywr -

The dot product has many of the familiar algebraic properties of multiplication of real
numbers. The following theorem from Section 1.2 lists several. Here the vectors can be
of any dimension.
2.4 Theorem. For all vectors x, y, and z and any real number a,

@ x-y=y-x

(b)x-(y+2z)=x-y + x-zand x-(ay)=a(x-y)

(c)0-x=0foradl x,andif v-x=0for al x, thenv =0.

(d)x-x=0foral x,andx-x=0onlyifx=0

®x-x=[[x |
Proof. Parts (a) and (b) are an easy verification, which you can supply.

(c) 0-x =0 follows directly from the definition of dot product. Suppose next
that v - x = Ofor al x, wherev = ( vy, Vo,..., V). Then in particular for x = g, where g
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Is the ith standard basis vector, itistruethat v - = 0. But sinceg = (0,0, ..., 0, 1, O,
..., 0), where the 1 occurs in coordinate place i, it follows that for any value of i,

v-g =V, =0.
Thus, v =0.
(d), () Forany x =( Xq, X2,..., Xn), note first that
XX = ()2 + 0%+ ..+ (%)” = [IX|P = 0.

This establishes (e) and half of (d). Since the only way for a sum of squares to be O is
for each summand to be O, it follows that x - x = 0 only in case each x; = O, that is, X =
0. QED

The above properties have special names:. (a) is the symmetric property, (b) the bilinear
property, (c¢) and (d) the nondegeneracy property of the dot product. (These concepts
areimportant in linear algebra, but do not play a major role in vector caculus.)

Hand calculation of dot products involves only ssmple multiplication and addition. For
example, consider the dot product of the vectorsv = (-1, 2, 3) and w = (3, -1, 2) in 3-
gpace and the dot product of the plane vectors v = (1, 2) and w = (3, 1). Mathematica
has a built-in command Dot for calculating dot products, and you can use it to check
your arithmetic if you like — although accessing it may be more trouble than the bene-
fits justify. Here is a simple call to Dot , which you can execute as usua by moving
your cursor to the end of the last line, and hitting the Enter key.

{-1, 2, 3},
{3, -1, 23};

V
W
V. W

1

A more interesting use of Mathematica is to calculate the angle in radians between two
vectors v and w from (6). To do that, invoke Mathematica's built-in Ar c Cos command:

V. W

ArCCos[

vV (v.v) (w. w)

ArcOos[%}
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Since Mathematica sees nothing but integers in its input from the two vectors, and since
the expression on the right side of (6) turns out to be rational, it outputs the symbolic
expression for the inverse cosine of that rational number. To get a numerical approxima-
tion of the number of radians that output represents, invoke the numerical approximation
function N[ ] . Try it!

N[Ar cCos [ AR—

vV (v. V) (w. w)

1.49931

Mathematica can draw alabeled picture of the two vectors v and w and report the angle
between them. The following routine does so for two-dimensional vectors. Execute it to
see the result.

Needs ["Graphics Arrow "]
v:={1, 2};
w:={3, 1};
Show[G aphi cs [{{RGBCol or [1, 0, 0], Arrow[{0, 0}, v],
Text [Font Form["v", {"Tinmes-Bold", 12}], {.9v[l], .8 Vv[I2]}1},
{RGBCol or [1, 0, 1], Text [Font Form["e", {"Synbol", 12}],
{0.2v[ly, 0.1v[20}1, Arrow[{O, O}, wj],
Text [Font Form["w", {"Tines-Bold", 12}], {.9w[1l], .8 wW[2]}1}},
Axes - True, AxesLabel - {"x", "y"1}1]
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Mathematica's lack of a 3-dimensional Arrow command means that to produce a similar
3-dimensional picture is more challenging. The following long program handles a pair
of three-dimensional vectors. Execute it to view the picture.

{1, 2, 3};
{-1, 1, 1},
Vv.v;
Vw. w;

n=2;

- a s <
Il

X
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yext = 2;
zl en = 4;
coor daxes = Gr aphi cs3D|

{{RGBCol or [0, 1, O], Line[{{-xwin, O, 0}, {xwin, O, 0}}1,

Text ["x", {xwin+ X\Mn, 0, 0}]}.
{RGBCol or [0, 1, 0], Line[{{0, -yext, 0}, {0, yext, 0}}1,
yext

Text ["y", {0, yext + 5 0}]}.

{RGBCol or [0, 1, 0], Line[{{0, O, -zlen}, {0, O, zlen}}],

Text ["z", {0, O, zlen+ z|5en HH:

vpl ot = Graphi cs3D[{{RGBCol or [1, O, 0], Line[{{0, O, 0}, Vv}1I,

Pol ygon[{v, {.9v[[1]]—%, .9 V[2] + X\Mn, .9V[[3]]-£},
q

yext

XW n 1
{.9v[[1]]+ : -9V[[2]]-T’ -9V[[3]]+_}}]'
q
Text [Font Form["v", {"Tinmes-Bold", 12}],
{-5vI1], .5 Vv[21, .5v[[3]]+3}]},
q
{RGBCol or [1, O, 1], Line[{{0, O, 0}, w}],

1
, - 9w[3] - —},
r

yext XW n
Pol ygon[{w, {. 9 w[1] - — 9 W27 +

yext

{.9w[i] + : .9w[[2]]—$, -9W[[3]]+£}}]’
r

Text [Font Form["w"', {"Tines-Bold", 12}],
1
{-5wIl], .5w[2], .5wI3] + —}]},
r
Text [Font Form["e", {"Synbol", 12}],
{0.1v[iy, 0.1 v[2], O.2v[[3]]+i}]}];
q

Show[vpl ot, coordaxes, Axes - True, Lighting - Fal se]
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The dot product has a number of important properties, among the most useful of which
IS the next one.

2.6. Theorem. Cauchy-Schwar z I nequality. For any two vectorsx andy in R",

(7) -y I= 1Ay I

For a proof, refer to your text. Note that (7) illustrates the advantage of the notation ||v||
for the length of a vector v. It makes clear that the Cauchy-Schwarz inequality says that
the size (absolute value) of the real number x - y is no greater than the product of the
magnitudes (lengths) of the two vectors. A simple illustration of (7) comes from the
vectors above: v = (1, 2, 3) and w = (-1, 1, 1). Since

v-w=-1+2+3=4, ||v||[=V1+4+9, ad ||w|=Vv1+1+1,

the inequality indeed holds for these two vectors:
lv-w| =4 < V14 V3= V42

The importance of thisinequality is far greater than this calculation suggests. It permits
definition of the angle between vectors in n-dimensional space for n> 3. Let x and y be
nonzero vectors of any dimension, and rewrite (7) as follows.

—_ ° - X.y
XUyl = x-y s [Ix[[lyll = 1= y5qmmm =L
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The final inequality says that the quantity x -y /(]| x || || v ||) lies between the minimum
value —1 and the maximum value 1 of the cosine function. Since the range of the cosine
function is the entire interval [-1, 1], there is then a unique real number 6 between O
and  for whichcos6 = x-y/|[x||||y]|- Thisgeneraization of (6) leads to the follow-
ing definition.

2.7. Definition. If x and y are nonzero vectors in R", then the angle between themis

_ Xy
(8) 0 = ArcCos sy

The relation of the dot product to the magnitude of a vector makes the following exten-
sion of the triangle inequality for real numbers easy to derive.

2.10. Theorem. For any two vectorsx andy inR", || x+y || = || x|+ |l Y |-

Proof. Parts (b) and (e) of Theorem 2.4 give

X + Y I =(x+y)(x+y)=(x+y) - x+(x+y) -y
=X:X FYy X + X yt+ty-y
=X+X+2X+y+ y-y by Theorem 2.4(a).
< IxXIP+2/x-y[+1lylPs IxP+20xyll+

Iy 117
by the Cauchy-Schwarz inequality

= (I + 1y I,
Taking positive square roots of the first and last terms finishes the proof. QED
The Pythagorean theorem is an immediate consequence of Theorem 2.10.

2.11. Theorem. If x isperpendicular toy, then ||x + y || = x|]? +]| YII%.

Proof. Note that x perpendicular to y is equivalent to x - y = 0. Thus in the proof of
Theorem 2.10, thetermsy - x and x - y in the first line are both 0. That line then reduces
to the assertion that || x + y |2 = || x|?+ || y||°. QED

The concept of parallel vectors in the plane extends directly to nonzero vectors of any
dimension.
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3.7. Definition. Two nonzero vectors v and w are parallel if their direction vectors u,,
and uy, coincide or differ only in sign (that is, by afactor of —1).

There isasimple criterion for deciding whether two vectors are paralldl:
visparallel tow if and only if w = av for some nonzero scalar a.
Pr oj ection.Projecting a nonzero vector x onto a vector v is an important tool in physics,

mathematics and statistics. Suppose that, as in the figure, p is the perpendicular projec-
tion of x onto v.

0 V
> o

Then p and v have the same direction vector, namely,

— 1 — 1
U=V = Tpr P

From thefigureit isalso clear that

X+ V. _— XV
XV i

Ipll=1xIlcos6=]x| -
that is,
— — X-V
p=llpllu = X2u.
This leads to the following definition.

3.8. Definition. If x and v are nonzero vectors in R", then the coordinate of x in the
direction of v (or scalar projection of x onto v) isthe scalar

(9) Xy = 2V
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The (vector) projection of x onto vector v (or, the component of x in the direction of v)
IS

x
<

(10) proj, (x) = py(x) = X Loy

I
<

<
<

Example. Find the projection of x = 3i +j ontov = -2i +j.

Solution. The following Mathematica program prints the given vectors, computes and
prints the projection of x onto v, and also displays a figure showing the two vectors and
that projection. Execute it to view the coordinates of a picture of x, v and proj,, (X).

X = {3, 1}
v ={-2, 1}
X. VvV

p=
V.V

Max [x [2], vI21]
Max [V.V, X.X] '
Needs ["Graphics Arrow "]
Show[G aphi cs [{Arrow[{0, O}, v],
Text [Font Form["v", {"Times-Bold", 12}], {.8v[1l], .8 Vv[2] +yht}],
{Dashi ng[{0.03, 0.03}]1, Line[{X, p}1},
RGBCol or [1, 0, 1], Arrow[{0O, O}, x], Arrow[{0O, O}, p],
Text [Font Form["p", {"Times-Bold", 12}], {.8p[ll, .8 p[2] +yht }],
Text [Font Form[" x", {"Tinmes-Bold", 12}],
{.8x[1], .8 x[2] +yht }1}, AspectRati o » Aut onati c,
Axes - True, AxesLabel - {"x", "y"1}1]

yht =

{3, 1}
{_21 1}
{21 _1}
y
1
/
0.5 y
/ X
2 1 1 2 , 3
0.5 /
/
1

As usual, while Mathematica can do a 3-dimensional computation of projections just as
quickly as a 2-dimensional one, generating a 3-dimensional diagram requires a more
complicated set of commands.
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Example. Find the projection of x =—2i + 4j + 10k onto v = 12i + 9K.

Solution. From (10),

p:

(=212)+4.0+109) ., _ 66

= 22 (12,0,9)= (32,0, 92) = (352, 2.64).

a9 V= 251209

The following Mathematica program displays the vectors x and v, checks the above

computation, and plots the vectors x, v, and p.

NOTE: Some adjustment of these commands will help to display arrowheads and labels
more reasonably for vectors of lengths different from those in this example. In particu-
lar, note the absolute units in the labeling Text commands. These were added after an

initial plot that contained poor placement of the labels. Adjust them for other plots.

X ={-2, 4, 10}
V={ 12, , 9}
Y

p = Y

V.V

Max [X[31, VvI31]
s Max [Vv. Vv, X.X] ’
XW n = 6;
yext = 6;
zlen =5;

coor daxes = Gr aphi cs3D|

{{RGBCol or [0, 1, O], Line[{{-xwin, O, 0}, {xwin, O, 0}}1,

Text [x {xvvi n + Xwi n

. 0. 0}]},

{RGBCol or [0, 1, O], L| ne[{{0, -yext, 0}, {0, yext,

Text ["y", {0, yext + yext

0}]}

{RGBCol or [0, 1, 0], Line[{{0, O, -zlen}, {0, O, zlen}}1],

zl en

Text [z {O, 0, zlen +

HH

vpl ot = Graphi cs3D[{{RGBCol or [O, 0, 11,
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Line[{{0, O, O}, x}1,
Pol ygon[{x, {.9x[1] yext 9 x[21 Xwi n 9x[3]-3r}
Y9 CY 16 16 ’

yext XW
, - 9X[2] +

{-9x[iy + n, .9X[31-3r}}],
Text [Font Form["x", {"Tinmes-Bold", 12}], {.5x[1] +1,

.5 Xx[2], .5x[3] +r}], {Dashing[{0.03}], Line[{X, p}]}}
{RGBCol or [1, O, 1], Line[{{0, 0, 0}, V}I,

Polygon[{v,{.9vﬂln—-X§%L, .9V[2] + xmnn’ L9v[I3] -1},

yext

{.9v[[1]]+ , .9v[[2]]—%, -9V[[3]]‘r}}]'

Text [Font Form["v", {"Tinmes-Bold", 12}],
{.8v[1l, .8Vv[2], .8Vv[I3] +1}]},

{RGBCol or [1, O, 1], Line[{{0, 0, 0}, p}I,

XW N

ext
Pol ygon[{p, {. 7 pI11 - XEE_' .7 pI2] + , . 7pI3]-r},

yext

XW n
{-7p011 + : .7p[[2]]—T, .7pI31-r}}],
Text [Font Form["p", {"Ti mes-Bold", 12}],

{.-5p[ll, -5p02], -5p031 +1}1}}];
Show[vpl ot, coordaxes, Axes - True, Lighting - Fal se]




