
The Process of Mathematical Proof

Introduction . Mathematical proofs use the rules of logical deduction that grew
out of the work of Aristotle around 350 BC. In Math 213 and other courses that
involve writing proofs, there may have been anunspokenassumption that you and
everyone else would instinctively follow those rules. Along the way you have
likely acquired an understanding of what is — and is not — acceptable mathe-
matical argument. To make sure that everyone starts this course from the same
logical point of view, this document discusses explicitly the ground rules of math-
ematical proof. You may find it a handy reference, especially at the start, to check
your reasoning.

A fundamental precept of deductive reasoning is thelaw of the excluded mid-
dle: every statement is either true or false, never both. Mathematics classifies
statements about mathematical ideas and sets as true or false. The most basic true
statements are theaxiomsof the particular branch of mathematics under study.
They are assumptions that specify the basic relations among the fundamentalun-
defined objectsof the theory. Math 216 deals with abstract algebraic structures,
and as an example the first axiom appears on p. 4 of the text:

Well-Ordering Principle: Every nonempty subset of the setZ+ of positive inte-
gers has a smallest element.

Another example you’ve already seen if you have taken Math 215 is theassocia-
tive law of additionin a vector spaceV over a fieldF :

for all vectorsu, v, w ∈ V, u+ (v + w) = (u+ v)+ w.

Among the true statements in a mathematical theory besides the axioms are
definitions, which introduce more objects in terms of the fundamental ones. For
instance, recall that the negative−v of a vector inV is by definition(−1)v. (If
you haven’t yet taken Math 215, think ofV as a real vector space such asR3.)

Mathematical systems consist of axioms, definitions, and further true state-
ments that are deducible from the basic axioms and definitions: lemmas, theo-
rems, propositions (little theorems) and corollaries (simple consequences of the-
orems and propositions). For example, the following proposition is a simple con-
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sequence of the axioms for a vector spaceV .

if αv = 0, then either the scalarα or the vectorv must be zero.(1)

Tautologies . The simplest true statements in any theory aretautologies, which
are true by virtue of their form or meaning. An example is the statement that
for every real numberx, x = 1

2(2x). In mathematical systems, such statements
are seldom very interesting. However, logical tautologies do provide thestandard
argument formsfor valid mathematical proofs. Those forms involve the basic
logical connectivesor, and, not, if...thenandif and only if. Recall thator has the
inclusivemeaning:

• P or Q (symbolically, P ∨ Q) is true precisely in case at least one of the
statementsP or Q holds true.

Such assignment of truth values applies to the other connectives as well:

• P and Q(symbolically,P & Q or P ∧ Q) is true precisely in caseboth P
andQ are true.

• not P(symbolically,¬P) is true precisely in caseP is false.

• If P then Q(equivalently,P implies Qor, symbolically,P ⇒ Q) is true in
all casesexceptwhenP is true butQ is false.

• P if and only if Q(symbolically,P ⇐⇒ Q) is true precisely in caseP and
Q have the same truth values — that is, both are true or both are false.

Direct Proof . Logical tautologies provide theargument formsfor proofs. The most
common of those ismodus ponens:[

(P⇒ Q) & P
]⇒ Q.

Most mathematical theorems areif...thenassertions:P ⇒ Q, where P is the
hypothesisandQ is theconclusion.Modus ponens allows you to conclude that a
statementQ holds if you know that a statementP is true and there is a theorem
that P⇒ Q.
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Since P ⇒ Q is true in all cases except forP true andQ false, the most
common way to prove a theoremP⇒ Q is tosupposethe truth of the hypothesis
P and to show that the truth of the conclusionQ must then follow. This usually
proceeds by means of repeated use of modus ponens on a sequence of intermediate
resultsP⇒ P1, P1⇒ P2, . . . , Pn−1⇒ Pn, andPn⇒ Q.

Another common method of proof uses the logical equivalence ofP⇒ Q and
¬Q ⇒ ¬P. (The statement¬Q ⇒ ¬P is thecontrapositiveof P ⇒ Q.) This
argument form rests on the fact that

(P H⇒ Q)⇐⇒ (¬Q H⇒ ¬P)

is a tautology. Use of this method to proveP ⇒ Q starts by assuming the denial
of the conclusionQ, and then reasoning to establish the denial of the hypothesis
P.

An example is the argument on p. 4 of the text to justify the method ofproof by
mathematical inductionof a statementS(n) about natural numbersn. In Theorem
0.2 that method takes the formP⇒ Q, where

• P is “(i) S(1) is true and (ii)S(m+ 1) is true wheneverS(m) is true for
m≥ 1,”

• Q is “S(n) is true for all natural numbersn.”

(Study the statement of Theorem 0.2 to check that it really is expressible in this
way!)

The proof of Theorem 0.2 begins by assuming¬Q, that is, thatS(n) fails
to hold for at least one positive integern. It then uses the abovewell-ordering
principle for the positive integers, on the setT = {n | n ∈ Z+ andS(n) is false}.
From the assumption thatS(n) is false for at least one positive integern, it follows
thatT is nonempty. The well-ordering principle then guarantees the existence of
a smallest elementn0 in T , that is, a smallest positive integern0 for which S(n) is
false. By hypothesis (i),n0 6= 1, son0− 1 is still a positive integer, and of course
is smallerthann0. ThenS(n0−1)must betrue, becausen0 is thesmallestpositive
integer for whichS is false. But in that case,P is false (that is,¬P holds), since
P is false for the positive integerm = n0 − 1. Why? Because (ii) is violated:
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S(n0− 1) is true, butS(n0− 1+ 1) = S(n0) is not. Theorem 0.2 then follows by
an appeal to the above argument form:¬Q implies¬P is equivalent toP⇒ Q.

Compare the last paragraph to the text’s remarks, which suggest that the argu-
ment amounts to a proof by contradiction. That isn’t quite right, as the following
discussion ofindirect proofaims to explain.

Indirect proof . This method rests on the tautology[
R & (¬(P H⇒ Q) H⇒ ¬R)

]
H⇒

[
P H⇒ Q

]
,(2)

which may not be immediately clear but is easy to establish by making its truth
table. More informally, the logic goes as follows. If

R holds (so that¬R is false),

and

¬(P H⇒ Q) implies¬R,

then

¬(P H⇒ Q) must be false: that is,(P H⇒ Q) must be true!

The falsity of¬(P H⇒ Q) comes from the fact that a true statement cannot imply
the false statement¬R.

A proof of a theoremP H⇒ Q by contradiction starts by assuming the truth
of both P and¬Q (the denial of the conclusionQ that you want to establish).
This amounts to assuming the denial ofP ⇒ Q, which is logically equivalent to
P & ¬Q. (Remember the fourth bullet on p. 2:P H⇒ Q is true inall other situa-
tions.) If from this start you can derive the denial of some known true statementR,
then you have established the hypothesis of (2), so also then have established its
conclusion — precisely what you want to prove! The following famous argument
(which reputedly cost Pythagoras his life!) illustrates these ideas.

Theorem . The real number
√

2 is irrational.

Proof . Here,P⇒ Q is the statement

If x = √2 thenx is not a rational number.

The proof starts by assuming to the contrary that
√

2 is a rational number, that is,
¬(P ⇒ Q). You also assume (as the statementR) that

√
2 = p/q, wherep and
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q are relatively prime (that is,have no common prime factors), so that the rational
number is in lowest terms. You then square the equation to obtain 2q2 = p2. This
says at once that2 is a factor ofp, so p = 2k for some integerk say. But then

2q2 = p2 = 4k2 H⇒ q2 = 2k2,

which implies that2 is also a factor ofq. Thus, the prime 2is a common factor
of p andq, that is,¬R holds. This reasoning thus establishes that¬(P ⇒ Q)
implies¬R. In view of (2), that is enough to complete the proof of the theorem
by contradiction:P⇒ Q holds.

Multiple Conclusions . To prove a theorem of the formP⇒ (Q∨R), you normally
start by supposing thatP holds and assuming the negation ofQ or R. You then
argue to establish thetruth of the other alternative. This method of proof rests on
the tautology [

(P & ¬Q) H⇒ R
] H⇒ [

P H⇒ (Q ∨ R)
]
,(3)

which may not be obvious, but can be seen as follows. The only way it could be
false would be for

(P & ¬Q) H⇒ R to be true(4)

but P H⇒ (Q ∨ R) to be false (second bullet on p. 2 again). That in turn would
require P to be true butQ ∨ R to be false. But by the first bullet on p. 2, the
only way for Q ∨ R to be false is forboth Q andR to be false. That would make
(P & ¬Q) H⇒ R false, becauseP&¬Q would be true, butR would be false.
That conflicts with (4), so it’s impossible for (3) to be false!

This is the approach to proving (1) above in linear algebra.

Counterexamples . Almost as important as being able to prove theorems is the
ability to construct counterexamples. If someone asserts that the square of every
prime is odd, for instance, nothing is quite as effective as asking the person to con-
sider the prime 2! Most mathematical theorems implicitly involve the universal
quantifierfor all, the symbol for which is∀. For instance, the elementary linear
algebra theorem (1) is really the formal statement that

for all α and allv, if α is a scalar andv is a vector andαv = 0, thenα = 0
or v = 0.

The logical role of counterexamples comes from thedenial of a statement that
begins with “for all.”
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• The negation offor all x P(x) is: there exists at least one x such that¬P(x),
that is,there exists at least one x for whichP(x) is false.

Thusto show the falsehood of a universally quantified conjectureof the form for
all x P(x), you need only produce a single x for whichP(x) is false. The fact that
the square of the single prime 2 is even thus suffices to disprove the conjecture
above that the square of every prime is odd. Note: if you became confused and
thought that to disprove the conjecture you had to establish thatfor all primesp
the square ofp is even, you would be stymied!

The law of double negation — that the negation of the negation ofP is tauto-
logically equivalent toP — gives the following rule for the denial of an existence
assertion.

• The negation ofthere exists at least one x such thatQ(x) is: for all x¬Q(x),
that is,for all x Q(x) is false.

The definition of limit . Both the above kinds of denial arise in working with func-
tions f : R→ R that have no limit at a pointx = c. Recall the definition of
lim
x→c

f (x) = L:

For everyε > 0, there is someδ > 0 such that for allx(5)

if 0 < |x − c| < δ, then| f (x)− L| < ε.

The following symbolic rendering of (5) underscores its complexity.

∃L ∀ε ∃δ ∀x [(0< |x − a| < δ) H⇒ | f (x)− L| < ε
]
.

To show that a certain function fails to have a limit at a pointa, you have to
negate (5). According to the negation rules above, that amounts to establishing
the following.

For every real numberL, there is someε > 0 such that for allδ > 0 there
is at least one real numberx for which

0< |x − a| < δ and yet| f (x)− L| > ε.
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Example . The function f with formula f (x) = 1/x has no limit atx = 0. To
show that from (5), consider any real numberL. Then you must show that for
some particular value ofε, for anyδ > 0 there is some real numberx for which
0 < |x − 0| < δ but |1/x − L| > ε. (As Math 273 explains, it is enough to use
ε = 1 and to pick somex 6= 0 in the interval(−1, 1).)

While thecontentof this example is unrelated to the subject matter of Math
216, in writing up proofs and counterexamples you may sometimes need to apply
theprocessof negating universally or existentially quantified statements.
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