The Process of Mathematical Proof

Introduction . Mathematical proofs use the rules of logical deduction that grew
out of the work of Aristotle around 350 BC. In Math 213 and other courses that
involve writing proofs, there may have beenwarspokerassumption that you and
everyone else would instinctively follow those rules. Along the way you have
likely acquired an understanding of what is — and is not — acceptable mathe-
matical argument. To make sure that everyone starts this course from the same
logical point of view, this document discusses explicitly the ground rules of math-
ematical proof. You may find it a handy reference, especially at the start, to check
your reasoning.

A fundamental precept of deductive reasoning islétve of the excluded mid-
dle: every statement is either true or false, never both. Mathematics classifies
statements about mathematical ideas and sets as true or false. The most basic true
statements are thexiomsof the particular branch of mathematics under study.
They are assumptions that specify the basic relations among the fundaorental
defined objectsf the theory. Math 216 deals with abstract algebraic structures,
and as an example the first axiom appears on p. 4 of the text:

Well-Ordering Principle: Every nonempty subset of the $&t of positive inte-
gers has a smallest element.

Another example you've already seen if you have taken Math 215 iagbecia-
tive law of additionin a vector spac¥ over a fieldF:

for all vectorsu, v, w € V, u+ v+ w) = (U+v) + w.

Among the true statements in a mathematical theory besides the axioms are
definitions which introduce more objects in terms of the fundamental ones. For
instance, recall that the negativer of a vector inV is by definition(—1)v. (If
you haven't yet taken Math 215, think &f as a real vector space suchRi%)

Mathematical systems consist of axioms, definitions, and further true state-
ments that are deducible from the basic axioms and definitions: lemmas, theo-
rems, propositions (little theorems) and corollaries (simple consequences of the-
orems and propositions). For example, the following proposition is a simple con-



sequence of the axioms for a vector spsce

() if v = 0, then either the scalar or the vecton must be zero.

Tautologies . The simplest true statements in any theory targologies which

are true by virtue of their form or meaning. An example is the statement that
for every real numbex, x = %(Zx). In mathematical systems, such statements
are seldom very interesting. However, logical tautologies do providstémelard
argument formdor valid mathematical proofs. Those forms involve the basic
logical connectivesr, and, not, if...thenandif and only if. Recall thator has the
inclusivemeaning:

e P or Q (symbolically, P v Q) is true precisely in case at least one of the
statement$ or Q holds true.

Such assignment of truth values applies to the other connectives as well:

e P and Q(symbolically,P & Q or P A Q) is true precisely in caseoth P
andQ are true.

e not P(symbolically,—P) is true precisely in casPk is false.

e If P then Q(equivalently,P implies Qor, symbolically,P = Q) is true in
all caseexceptwhenP is true butQ is false.

e P if and only if Q(symbolically,P <= Q) is true precisely in casE and
Q have the same truth values — that is, both are true or both are false.

Direct Proof . Logical tautologies provide thergument formsor proofs. The most
common of those ismodus ponens

[(P=Q&P]=Q.

Most mathematical theorems aife.thenassertions:P = Q, whereP is the
hypothesiandQ is theconclusion.Modus ponens allows you to conclude that a
statemenQ holds if you know that a statemeft is true and there is a theorem
thatP = Q.



SinceP = Q is true in all cases except fd® true andQ false, the most
common way to prove a theorefh= Q is to supposehe truth of the hypothesis
P and to show that the truth of the conclusi@must then follow. This usually
proceeds by means of repeated use of modus ponens on a sequence of intermediate
resultsP = Py, Pr = P>, ..., Ph_1 = Py, andP, = Q.

Another common method of proof uses the logical equivalende ef Q and
—Q = —P. (The statementQ = —P is thecontrapositiveof P = Q.) This
argument form rests on the fact that

(P—=0Q) << (—mQ = —P)

is a tautology. Use of this method to proie= Q starts by assuming the denial
of the conclusiorQ, and then reasoning to establish the denial of the hypothesis
P.

An example is the argument on p. 4 of the text to justify the methquiadf by
mathematical inductioof a statemen$(n) about natural numbers In Theorem
0.2 that method takes the forBfv= Q, where

e Pis“(i) S(1) is true and (i))S(m + 1) is true wheneveS(m) is true for
m>17

e Qis“S(n) is true for all natural numbernrs”

(Study the statement of Theorem 0.2 to check that it really is expressible in this
way!)

The proof of Theorem 0.2 begins by assumin@, that is, thatS(n) fails
to hold for at least one positive integer It then uses the aboweell-ordering
principle for the positive integers, on the sBt= {n|n € Z* andS(n) is falsg.
From the assumption th&n) is false for at least one positive integerit follows
thatT is nonempty. The well-ordering principle then guarantees the existence of
a smallest elememiy in T, that is, a smallest positive integag for which S(n) is
false. By hypothesis (o # 1, song — 1 is still a positive integer, and of course
is smallerthanng. ThenS(ng— 1) must betrue, becaus@g is thesmallespositive
integer for whichSis false. But in that case is false (that is;~P holds), since
P is false for the positive integen = ng — 1. Why? Because (ii) is violated:



S(ng — 1) is true, butS(ng — 14+ 1) = S(ng) is not. Theorem 0.2 then follows by
an appeal to the above argument forAQ implies—P is equivalent toP = Q.

Compare the last paragraph to the text’'s remarks, which suggest that the argu-
ment amounts to a proof by contradiction. That isn’t quite right, as the following
discussion ofndirect proofaims to explain.

Indirect proof . This method rests on the tautology
(2) [R&(—-(P:>Q):>—|R)]:>[P:>Q],

which may not be immediately clear but is easy to establish by making its truth
table. More informally, the logic goes as follows. If

R holds (so that-Ris false),
and
—(P = Q) implies—R,
then
—(P = Q) must be false: that i§P = Q) must be true!

The falsity of-(P — Q) comes from the fact that a true statement cannot imply
the false statemeniR.

A proof of a theoremP — Q by contradiction starts by assuming the truth
of both P and—Q (the denial of the conclusio that you want to establish).
This amounts to assuming the denialt= Q, which is logically equivalent to
P & —Q. (Remember the fourth bullet on p. B:— Q is true inall other situa-
tions) If from this start you can derive the denial of some known true stateRent
then you have established the hypothesis of (2), so also then have established its
conclusion — precisely what you want to prove! The following famous argument
(which reputedly cost Pythagoras his life!) illustrates these ideas.

Theorem . The real numbex/2 is irrational.
Proof. Here,P = Q is the statement
If x = +/2 thenx is not a rational number.
The proof starts by assuming to the contrary #@tis a rational number, that is,
—(P = Q). You also assume (as the statemBhthat+/2 = p/q, wherep and
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g are relatively prime (that ifyave no common prime factdrso that the rational
number is in lowest terms. You then square the equation to obtgie=2p2. This
says at once th& is a factor ofp, so p = 2k for some integek say. But then

2q2 — p2 — 4k2 — q2 — 2k2,

which implies tha® is also a factor ofy. Thus, the prime 2s a common factor

of p andq, that is,—R holds. This reasoning thus establishes théP = Q)
implies—R. In view of (2), that is enough to complete the proof of the theorem
by contradiction:P = Q holds.

Multiple Conclusions . To prove a theorem of the forfd = (QV R), you normally
start by supposing th& holds and assuming the negation@for R. You then
argue to establish theuth of the other alternative. This method of proof rests on
the tautology

3) [(P&ﬁQ)=> R]=>[P=(Qv R)],

which may not be obvious, but can be seen as follows. The only way it could be
false would be for
(4) (P & =Q) = R'o be true

butP — (Q Vv R) to be false (second bullet on p. 2 again). That in turn would
require P to be true butQ v R to be false. But by the first bullet on p. 2, the
only way for Q v Rto be false is foboth Q andR to be false That would make
(P & =Q) =— R false, becaus®&—Q would be true, buR would be false.
That conflicts with (4), so it's impossible for (3) to be false!

This is the approach to proving (1) above in linear algebra.

Counterexamples . Almost as important as being able to prove theorems is the
ability to construct counterexamples. If someone asserts that the square of every
prime is odd, for instance, nothing is quite as effective as asking the person to con-
sider the prime 2! Most mathematical theorems implicitly involve the universal
quantifierfor all, the symbol for which i&/. For instance, the elementary linear
algebra theorem (1) is really the formal statement that

for all @ and allv, if « is a scalar and is a vector andvv = 0, thenoe = 0
orv =0.

The logical role of counterexamples comes from demial of a statement that
begins with “for all.”



e The negation ofor all x P(x)is: there exists at least one x such tha® (x),
that is,there exists at least one x for whi€h(x) is false.

Thusto show the falsehood of a universally quantified conjectditie form for

all x P(x), you need only produce a single x for whielix) is false The fact that

the square of the single prime 2 is even thus suffices to disprove the conjecture
above that the square of every prime is odd. Note: if you became confused and
thought that to disprove the conjecture you had to establisHahail primesp

the square op is even, you would be stymied!

The law of double negation — that the negation of the negatidd isftauto-
logically equivalent ta® — gives the following rule for the denial of an existence
assertion.

e The negation othere exists at least one x such tigatx) is: for all x =Q(x),
that is,for all x Q(x) is false.

The definition of limit . Both the above kinds of denial arise in working with func-
tions f : R — R that have no limit at a point = c. Recall the definition of
)I(imc f(x) =L:

(5) For everye > 0, there is somé > 0 such that for alk
ifO < |x—c| <§, then|f(X) — L| <e.
The following symbolic rendering of (5) underscores its complexity.
AL Ve VX [(0O< |x—al <§) = |f(x) — L| <¢]

To show that a certain function fails to have a limit at a pa@ntyou have to
negate (5). According to the negation rules above, that amounts to establishing
the following.

For every real numbekr, there is some > 0 such that for alb > O there
is at least one real numberfor which

O<|x—al<dandyet| f(x) — L| > e.



Example. The functionf with formula f (x) = 1/x has no limit atx = 0. To
show that from (5), consider any real numler Then you must show that for
some particular value of, for any$§ > 0 there is some real numberfor which
O0< |Xx—0] <§but|l/x — L| > e. (As Math 273 explains, it is enough to use
¢ = 1 and to pick some& = 0 in the interval(—1, 1).)

While the contentof this example is unrelated to the subject matter of Math
216, in writing up proofs and counterexamples you may sometimes need to apply
the procesf negating universally or existentially quantified statements.



