The Number e as a Limit

This document derives two descriptions of the number e, the base of the natural logarithm function, as limits:

$$
\begin{equation*}
\lim _{x \rightarrow 0}(1+x)^{1 / x}=e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \tag{8,9}
\end{equation*}
$$

These equations appear with those numbers in Section 7.4 (p. 442) and in Section 7.4* (p. 467) of Stewart's text Calculus, 4th Ed., Brooks/Cole, 1999. Reversing the approach of the text, the following derivation first establishes (9) and then shows that (8) follows from that.

Suppose that $n>0$. (Very similar reasoning applies if $n<0$.) From the figure, the area under the graph of $y=1 / x$ between $x=1$ and $x=1+1 / n$ lies between the areas of the two rectangles above the interval $[1,1+1 / n]$. The larger rectangle has height 1 , while the height of the smaller is $\frac{n}{n+1}$. Since the base in each case is $1 / n$, the area relations translate into the inequalities

$$
\frac{1}{n} \cdot \frac{n}{n+1} \leq \int_{1}^{1+1 / n} \frac{1}{x} d x \leq \frac{1}{n} \cdot 1 \Longrightarrow \frac{1}{n+1} \leq \ln \left(1+\frac{1}{n}\right) \leq \frac{1}{n}
$$

Mutliplying the last set of inequalities through by the positive number n gives

$$
\frac{n}{n+1} \leq n \ln \left(1+\frac{1}{n}\right)=\ln \left(1+\frac{1}{n}\right)^{n} \leq 1
$$

Next, let $n \rightarrow+\infty$ and use the fact that taking limits preserves the relation \leq :

$$
1 \leq \lim _{n \rightarrow+\infty} \ln \left(1+\frac{1}{n}\right)^{n} \leq 1 \Longrightarrow \lim _{n \rightarrow+\infty} \ln \left(1+\frac{1}{n}\right)^{n}=1
$$

Since exp is continuous at $x=1$, for $u=\ln (1+1 / n)^{n}$ we have $e^{u} \rightarrow e^{1}=e$ as $\left.u \rightarrow 1\right)$. Hence,

$$
\begin{equation*}
\text { as } n \rightarrow+\infty, \quad e^{\ln (1+1 / n)^{n}}=\left(1+\frac{1}{n}\right)^{n} \rightarrow e \tag{9}
\end{equation*}
$$

Next, let $x=1 / n$, so that $n \rightarrow+\infty$ is equivalent to $x \rightarrow 0^{+}$. Thus (9) is equivalent to

$$
\lim _{x \rightarrow 0^{+}}(1+x)^{1 / x}=e
$$

What about the limit as $x \rightarrow 0^{-}$? The similar reasoning referred to above shows that $\lim _{n \rightarrow-\infty}(1+1 / n)^{n}=e$ also holds. So letting $x=1 / n$ leads to the left-hand limit also being e, which means that (8) holds.

