The Number eas a Limit

This document derives two descriptions of the nun#¢he base of the natural logarithm function, as limits:
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These equations appear with those numbers in Section 7.4 (p. 442) and in Section 7.4* (p. 467) of Stewart’s text
Calculus, 4th Ed.Brooks/Cole, 1999. Reversing the approach of the text, the following derivation first establishes (9)
and then shows that (8) follows from that.
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Suppose thah > 0. (Very similar reasoning appliesiif < 0.) From the figure, the area under the graph of
y = 1/x betweernx = 1 andx = 1+ 1/n lies between the areas of the two rectangles above the intervdal{1/n].
The larger rectangle has height 1, while the height of the smallfrﬂiis Since the base in each case j#.1lthe area
relations translate into the inequalities
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Mutliplying the last set of inequalities through by the positive numbgives
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Next, leth — 400 and use the fact that taking limits preserves the relation
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Since exp is continuous at= 1, foru = In(1 + 1/n)" we haves" — e! = easu — 1). Hence,
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Next, letx = 1/n, so thain — +oo is equivalent to« — 0*. Thus (9) is equivalent to

lim 1+ x)Y* =e
X—0t

What about the limit ax — 0~? The similar reasoning referred to above shows thaflim,(1+ 1/n)" = e also
holds. So lettingk = 1/n leads to the left-hand limit also beimgwhich means that (8) holds.



