Math 116 Final Examination Worksheet

1. (7.5 minutes) Find the area of the region in the first quadrant that lies above the x-axis and below both the graphs of the functions f and g, if $f(x)=x^{2}+1$ and $g(x)=3-x$.

Answer: $\frac{10}{3}$.
2. Evaluate:
(a) (5 minutes) $\lim _{h \rightarrow 0^{+}} \frac{e^{-1 / h^{2}}}{h}$. Hint: Let $t=1 / h$.

Answer: 0.
(b) $\left(5\right.$ minutes) $\int \frac{(1+\ln x)^{2}}{x} d x$

Answer: $(1+\ln x)^{3} / 3+C$.
(c) (5 minutes) $\int \frac{1+e^{x}}{e^{x}} d x$

Answer: $-e^{-x}+x+C$.
(d) $\left(5\right.$ minutes) $\int \frac{d x}{x^{2}-2 x+5}$
(e) $\left(2.5\right.$ minutes) $\sin \left(\arctan \left(\frac{x}{2}\right)\right)$

Answer: $\frac{1}{2} \arctan \frac{x-1}{2}+C$
Answer: $\frac{x}{\sqrt{x^{2}+4}}$
3. $\left(7.5\right.$ minutes) Evaluate $\lim _{x \rightarrow 0^{+}}(1+2 x)^{1 / x}$

Answer: e^{2}
4. Evaluate the following integrals.
(a) (7.5 minutes) $\int x \ln x d x$
Answer: $\frac{x^{2}}{2} \ln x-\frac{1}{4} x^{2}+C$
(b) (7.5 points) $\int \frac{x}{(x+1)(x+2)} d x$
Answer: $-\ln |x+1|+2 \ln |x+2|+C$
(c). (7.5 points) $\int \sin ^{3} x d x$
Answer: $-\cos x+\frac{\cos ^{3} x}{3}+C$
5. (10 minutes) Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{n^{2}+1}$ converges or diverges. If it converges, is the convergence absolute or conditional?

Answer: Conditionally convergent
6. (10 minutes) Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n}$. Where is the convergence absolute? Answer: $[2,4)$, with absolute convergence on $(2,4)$
7. (5 minutes) Use any valid method of your choice to give the Taylor series about $x=0$ for the function $\cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right)$. On what interval does that series converge to $\cosh x$? Answer: $1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots+\frac{x^{2 n}}{(2 n)!}+\cdots$ for all $x \in \mathbf{R}$
8. (2.5 minutes per part)
(a) Find the projection of $\mathbf{v}=\mathbf{i}+2 \mathbf{j}+\mathbf{k}$ onto the vector $\mathbf{w}=-2 \mathbf{i}+\mathbf{j}+\mathbf{k}$. Answer: $-\frac{1}{3} \mathbf{i}+\frac{1}{6} \mathbf{j}+\frac{1}{6} \mathbf{k}$
(b) What is the angle between \mathbf{v} and \mathbf{w} ?

Answer: $\arccos (1 / 3) \approx .1 .23 \mathrm{RAD}$
(c) Find a unit vector in the direction of \mathbf{v}.

Answer: $\frac{1}{\sqrt{6}} \mathbf{i}+\frac{2}{\sqrt{6}} \mathbf{j}+\frac{1}{\sqrt{6}} \mathbf{k}$
(d) Find a vector that is perpendicular to both $\mathbf{v}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$ and $\mathbf{w}=4 \mathbf{i}+5 \mathbf{j}+5 \mathbf{k}$.

Answer: $\mathbf{v} \times \mathbf{w}=-5 \mathbf{i}+7 \mathbf{j}-3 \mathbf{k}$.
9. (5 minutes) If f is continuous over the interval $[a, b]$, then show that $\int_{0}^{a} f(x) d x=$ $\int_{0}^{a} f(a-x) d x$. Answer: In the right integral, change variable to $u=a-x$ 10. (5 minutes)
(a) Find the Maclaurin (Taylor series about $x=0$) for h if $h(x)=x^{2} e^{x}$. For which values of x does this series converge to $h(x)$? How do you know that?
(b) Obtain a power series for the function H if $H(x)=\int_{0}^{x} t^{2} e^{t} d t$.
(c) What is the sum of the series

$$
2+\frac{1}{3}+\frac{1}{4}+\frac{1}{5 \cdot 2!}+\frac{1}{6 \cdot 3!}+\cdots+\frac{1}{(n+3) \cdot n!}+\cdots ?
$$

Answers:

(a) $x^{2}+x^{3}+\frac{x^{4}}{2!}+\frac{x^{5}}{5!}+\cdots \frac{x^{n+2}}{n!}+\cdots$, which converges for all x since that is true of the series for e^{x}.
(b) $\frac{x^{3}}{3}+\frac{x^{4}}{4}+\frac{x^{5}}{5 \cdot 2!}+\frac{x^{6}}{6 \cdot 3!}+\cdots+\frac{x^{n+3}}{(n+3) n!}+\cdots$, which also converges to $H(x)$ for all real numbers x
(c) e

