Math 116 Final Examination Worksheet

- 1. (7.5 minutes) Find the area of the region in the first quadrant that lies above the x-axis and below both the graphs of the functions f and g, if $f(x) = x^2 + 1$ and g(x) = 3 x. Answer: $\frac{10}{3}$.
- 2. Evaluate:

3.

(a)
$$(5 \text{ minutes}) \lim_{h \to 0^+} \frac{e^{-1/h^2}}{h}$$
. *Hint:* Let $t = 1/h$.
(b) $(5 \text{ minutes}) \int \frac{(1 + \ln x)^2}{x} dx$
(c) $(5 \text{ minutes}) \int \frac{1 + e^x}{e^x} dx$
(d) $(5 \text{ minutes}) \int \frac{dx}{x^2 - 2x + 5}$
(e) $(2.5 \text{ minutes}) \sin(\arctan\left(\frac{x}{2}\right))$
(7.5 minutes) Evaluate $\lim_{x \to 0^+} (1 + 2x)^{1/x}$
Evaluate the following integrals

- 4. Evaluate the following integrals.
 - (a) (7.5 minutes) $\int x \ln x \, dx$ (b) (7.5 points) $\int \frac{x}{(x+1)(x+2)} \, dx$ **Answer:** $-\ln|x+1| + 2\ln|x+2| + C$
 - (b) (7.5 points) $\int \frac{x}{(x+1)(x+2)} dx$ Answer: $-\ln|x+1| + 2\ln|x+2| + C$ (c). (7.5 points) $\int \sin^3 x \, dx$ Answer: $-\cos x + \frac{\cos^3 x}{3} + C$
- 5. (10 minutes) Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^n n}{n^2 + 1}$ converges or diverges. If it converges, is the convergence absolute or conditional?

Answer: Conditionally convergent

6. (10 minutes) Find the interval of convergence of the power series ∑[∞]_{n=1} (x-3)ⁿ/n. Where is the convergence absolute? Answer: [2,4), with absolute convergence on (2,4)
7. (5 minutes) Use any valid method of your choice to give the Taylor series about x = 0 for the function cosh x = ½(e^x + e^{-x}). On what interval does that series converge to cosh x? Answer: 1 + x²/2! + x⁴/4! + ... + x²ⁿ/(2n)! + ... for all x ∈ R

- 8. (2.5 minutes per part)
 - (a) Find the projection of $\mathbf{v} = \mathbf{i} + 2\mathbf{j} + \mathbf{k}$ onto the vector $\mathbf{w} = -2\mathbf{i} + \mathbf{j} + \mathbf{k}$. Answer: $-\frac{1}{3}\mathbf{i} + \frac{1}{6}\mathbf{j} + \frac{1}{6}\mathbf{k}$
 - (b) What is the angle between **v** and **w**? Answer: $\arccos(1/3) \approx .1.23$ RAD

- (c) Find a unit vector in the direction of \mathbf{v} . Answer: $\frac{1}{\sqrt{6}}\mathbf{i} + \frac{2}{\sqrt{6}}\mathbf{j} + \frac{1}{\sqrt{6}}\mathbf{k}$ (d) Find a vector that is perpendicular to both $\mathbf{v} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ and $\mathbf{w} = 4\mathbf{i} + 5\mathbf{j} + 5\mathbf{k}$. Answer: $\mathbf{v} \times \mathbf{w} = -5\mathbf{i} + 7\mathbf{j} - 3\mathbf{k}$.
- 9. (5 minutes) If f is continuous over the interval [a, b], then show that $\int_0^a f(x) dx =$ **Answer:** In the right integral, change variable to u = a - x $\int_0^a f(a-x) \, dx.$
- 10. (5 minutes)
 - (a) Find the Maclaurin (Taylor series about x = 0) for h if $h(x) = x^2 e^x$. For which values of x does this series converge to h(x)? How do you know that?
 - (b) Obtain a power series for the function H if $H(x) = \int_0^x t^2 e^t dt$.
 - (c) What is the sum of the series

$$2 + \frac{1}{3} + \frac{1}{4} + \frac{1}{5 \cdot 2!} + \frac{1}{6 \cdot 3!} + \dots + \frac{1}{(n+3) \cdot n!} + \dots ?$$

Answers:

- (a) $x^2 + x^3 + \frac{x^4}{2!} + \frac{x^5}{5!} + \cdots + \frac{x^{n+2}}{n!} + \cdots$, which converges for all x since that is true of the series for e^x .
- (b) $\frac{x^3}{3} + \frac{x^4}{4} + \frac{x^5}{5 \cdot 2!} + \frac{x^6}{6 \cdot 3!} + \dots + \frac{x^{n+3}}{(n+3)n!} + \dots$, which also converges to H(x) for all real numbers x

(c)
$$e$$