1. Find the total area of the regions surrounded by the curves $y=x^{3}$ and $y=2 x^{2}+3 x$.

2. Find the volume of the donut that results from revolving the disk with center $(3,0)$ and radius 2 about the $y$-axis.
3. Consider the function $f$ for which $f(x)=e^{-x}+e^{-3 x}$.
(a) Show that $f$ is one-to-one, and determine the range of $f$.
(b) Since $f$ is one-to-one, it has an inverse function $g=f^{-1}$, whose domain is the range of $f$. Calculate $g^{\prime}(2)$.
4. The figure shows the graph of a function $f$.

(a) Explain how you know from this graph that $f$ has an inverse function.
(b) Draw a sketch of the graph of $f^{-1}$ on the figure.
5. $\log _{4} 64=$ $\qquad$ , $\log _{27} \frac{1}{9}=$ $\qquad$
6. Solve for $x: \ln |x-1|=\ln 4-\ln |x+2|$
7. If $G(x)=\int_{x^{2}}^{x^{3}} \frac{1}{t} d t$ then compute the first two derivatives of $G$.
8. Find (i) $\frac{d y}{d x}$ and (ii) $\int y d x$ if $y=$
(a) $x^{2} e^{3 x}$
(b) $5^{x}$
(c) $x^{2} \ln \left(x^{3}+2\right)$
9. In 1900, the population of Malthusville was 400,000 . By 1940 the population was $1,000,000$. Assume that the change was governed by the law of exponential growth.
(a) Find a formula for the population $P(t)$, if $t$ is the number of years since 1900 .
(b) From (a) predict the population of Malthusville in 2000.
(c) For what value of $t$ does the model of part (a) predict that the population will reach $5,000,000$ ?
10. Suppose that on January 1, 1998, you invested $\$ 1000$ in the Stodgy Bond Fund, in expectation that it would double every twelve years. On January 1, 1999, suppose that you invested $\$ 1000$ in a ten-year certificate of deposit that guaranteed to double your investment in ten years. Assuming continuous compounding in both accounts, at what time would they have the same value?
11. Write exact (not approximate!) values for:
(a) $\arcsin \left(\frac{1}{2}\right)$
(b) $\arcsin ^{\prime}\left(\frac{1}{2}\right)$
(c) $\arctan (\sqrt{3})$
(d) $\arctan ^{\prime}(\sqrt{3})$
12. Evaluate:
(a) $\int_{0}^{\pi / 2} \frac{\sin x \cos x}{\sqrt{4-\sin ^{4} x}} d x$
(b) $\int_{1}^{e^{3}} \frac{d x}{x\left(9+\ln ^{2} x\right)}$
(c) $\int \frac{d x}{x^{2}+x+1}$
13. Evaluate the limits:
(a) $\lim _{x \rightarrow \pi / 2} \cos x \cdot \tan x$
(b) $\lim _{x \rightarrow \pi / 2} \frac{\sin x-1}{\cos x}$
(c) $\lim _{x \rightarrow \infty} \frac{\ln \left(x^{8}+1\right)}{\ln \left(x^{6}+1\right)}$
(d) $\lim _{x \rightarrow \infty} x\left(\frac{\pi}{2}-\arctan x\right)$
(e) $\lim _{x \rightarrow \infty}(1+x)^{1 / x}$
(f) $\lim _{x \rightarrow \frac{\pi}{2}^{-}}(1+\tan x)^{\cot x}$
14. Evaluate the integrals:
(a) $\int_{0}^{\pi / 2} x^{2} \cos x d x$
(b) $\int x^{10} \ln x d x$
(c) $\int_{1}^{e} x^{2} \ln ^{2} x d x$
(d) $\int x^{3} e^{x} d x$
(e) $\int \frac{d x}{\sqrt{4-x^{2}}}$
(f) $\int \cos ^{2} x \sin ^{3} x d x$
(g) $\int \frac{d x}{x^{2}(x-2)(x+4)}$.
(h) $\int \frac{2 x+3}{x^{4}+x^{2}} d x$.
