AGENDA

I: Marriage Problems

II: Previous Results

I: New Results

II: Reverse Mathematics
I: Marriage Problems
Marriage Problems
Marriage Problems
Marriage Problems
Marriage Problems
Marriage Problems
Some Notation

A marriage problem M consists of three sets B, G and R.

B is the set of boys,

G is the set of girls, and

R is the relation between the boys and girls.

$R \subseteq B \times G$ where $(b, g) \in R$ means “b knows g”.

$G(b)$ is convenient shorthand for the set of girls b knows, i.e. $G(b) = \{g \in G \mid (b, g) \in R\}$.

$G(M(b))$ denotes the set of girls b knows relative to the relation in M.

Some Notation

A marriage problem M consists of three sets B, G and R.

B is the set of boys,

G is the set of girls, and

R is the relation between the boys and girls.

$R \subseteq B \times G$ where $(b, g) \in R$ means “b knows g”.

$G(b)$ is convenient shorthand for the set of girls b knows, i.e.

$$G(b) = \{g \in G \mid (b, g) \in R\}.$$

$G(b)$ is not a function.
Some Notation

A marriage problem M consists of three sets B, G and R.

B is the set of boys,
G is the set of girls, and
R is the relation between the boys and girls.

$R \subseteq B \times G$ where $(b, g) \in R$ means “b knows g”.

$G(b)$ is convenient shorthand for the set of girls b knows, i.e.

$$G(b) = \{ g \in G \mid (b, g) \in R \}.$$

$G(b)$ is not a function.

$G_M(b)$ denotes the set of girls b knows relative to the relation in M.
Some More Notation

A solution to $M = (B, G, R)$ is an injection

$$f : B \rightarrow G$$

such that $(b, f(b)) \in R$ for every $b \in B$.

M is a:
- finite marriage problem if $|B|$ is finite.
- infinite marriage problem if $|B|$ is not finite.
- bounded marriage problem if there is a function $h : B \rightarrow G$ so that for each $b \in B$, $G(b) \subseteq \{0, 1, \ldots, h(b)\}$.
Some More Notation

A solution to \(M = (B, G, R) \) is an injection

\[
f : B \rightarrow G
\]

such that \((b, f(b)) \in R\) for every \(b \in B\).

\(M\) is a:

- finite marriage problem if \(|B|\) is finite.
- infinite marriage problem if \(|B|\) is not finite.
- bounded marriage problem if there is a function \(h : B \rightarrow G\) so that for each \(b \in B\), \(G(b) \subseteq \{0, 1, \ldots, h(b)\}\).
Examples of Marriage Theorems

Theorem

If $M = (B, G, R)$ is a finite marriage problem such that $|G(B_0)| \geq |B_0|$ for every $B_0 \subset B$, then M has a solution. Due to Philip Hall.

Theorem

If $M = (B, G, R)$ is an infinite marriage problem such that $|G(B_0)| \geq |B_0|$ for every $B_0 \subset B$, then M has a solution. Due to Marshall Hall, Jr. (No relation.)
Examples of Marriage Theorems

Theorem

If \(M = (B, G, R) \) is a finite marriage problem such that
\[|G(B_0)| \geq |B_0| \]
for every \(B_0 \subset B \), then \(M \) has a solution.

Due to Philip Hall.

Theorem

If \(M = (B, G, R) \) is an infinite marriage problem such that
\[|G(B_0)| \geq |B_0| \]
for every \(B_0 \subset B \), then \(M \) has a solution.

Due to Marshall Hall, Jr. (No relation.)
Examples of Marriage Theorems

Theorem
If $M = (B, G, R)$ is a finite marriage problem such that $|G(B_0)| \geq |B_0|$ for every $B_0 \subset B$, then M has a solution.

Due to Philip Hall.

Theorem
If $M = (B, G, R)$ is an infinite marriage problem such that $|G(B_0)| \geq |B_0|$ for every $B_0 \subset B$, then M has a solution.

Due to Marshall Hall, Jr.
Examples of Marriage Theorems

Theorem

If $M = (B, G, R)$ *is a finite marriage problem such that* $|G(B_0)| \geq |B_0|$ *for every* $B_0 \subset B$, *then* M *has a solution.*

Due to Philip Hall.

Theorem

If $M = (B, G, R)$ *is an infinite marriage problem such that* $|G(B_0)| \geq |B_0|$ *for every* $B_0 \subset B$, *then* M *has a solution.*

Due to Marshall Hall, Jr. (No relation.)
A New Result: Unique Solutions

What are the necessary and sufficient conditions for a marriage problem to have a *unique* solution?
A New Result: Unique Solutions

What are the necessary and sufficient conditions for a marriage problem to have a unique solution?

In the finite case, we found the following necessary and sufficient condition.

Theorem
(RCA₀) If $M = (B, G, R)$ is a finite marriage problem with n boys and a unique solution f, then there is an enumeration of the boys $\langle b_i \rangle_{i \leq n}$ such that for every $1 \leq m \leq n$, $|G(\{b_1, b_2, \ldots, b_m\})| = m$.
A New Result: Unique Solutions

What are the necessary and sufficient conditions for a marriage problem to have a *unique* solution?

In the finite case, we found the following necessary and sufficient condition.

Theorem

(RCA \(_0\)) *If* \(M = (B, G, R) \) *is a finite marriage problem with* \(n \) *boys and a unique solution* \(f \), *then there is an enumeration of the boys* \(\langle b_i \rangle_{i \leq n} \) *such that for every* \(1 \leq m \leq n \), \(|G(\{b_1, b_2, \ldots, b_m\})| = m \).
A New Result: Unique Solutions

What are the necessary and sufficient conditions for a marriage problem to have a unique solution?

In the finite case, we found the following necessary and sufficient condition.

Theorem

(RCA$_0$) If $M = (B, G, R)$ is a finite marriage problem with n boys and a unique solution f, then there is an enumeration of the boys $\langle b_i \rangle_{i \leq n}$ such that for every $1 \leq m \leq n$, $|G(\{b_1, b_2, \ldots, b_m\})| = m$.

![Graph](image)
A New Result: Unique Solutions

What are the necessary and sufficient conditions for a marriage problem to have a *unique* solution?

In the finite case, we found the following necessary and sufficient condition.

Theorem

If $M = (B, G, R)$ *is a finite marriage problem with* n *boys and a unique solution* f, *then there is an enumeration of the boys* $\langle b_i \rangle_{i \leq n}$ *such that for every* $1 \leq m \leq n$, $|G(\{b_1, b_2, \ldots, b_m\})| = m$.
Sketch of the proof

Lemma

(RCA\(_0\)) If \(M = (B, G, R)\) is a finite marriage problem with a unique solution \(f\), then some boy knows exactly one girl.
Sketch of the proof

Proof: Suppose we have $M = (B, G, R)$ as stated above with some initial enumeration of B. Apply the lemma and let b_1 be the first boy such that $|G(b_1)| = 1$.
Sketch of the proof

Proof: Suppose we have $M = (B, G, R)$ as stated above with some initial enumeration of B. Apply the lemma and let b_1 be the first boy such that $|G(b_1)| = 1$.

Define $M_2 = (B - \{b_1\}, G - G(b_1), R_2)$. Because M has a unique solution, M_2 has a unique solution, namely the restriction of f to the sets of M_2. Apply the lemma once more and let b_2 be the first boy in $B - \{b_1\}$ such that $|G_{M_2}(b_2)| = 1$.
Sketch of the proof

Proof: Suppose we have \(M = (B, G, R) \) as stated above with some initial enumeration of \(B \). Apply the lemma and let \(b_1 \) be the first boy such that \(|G(b_1)| = 1 \).

Define \(M_2 = (B - \{b_1\}, G - G(b_1), R_2) \). Because \(M \) has a unique solution, \(M_2 \) has a unique solution, namely the restriction of \(f \) to the sets of \(M_2 \). Apply the lemma once more and let \(b_2 \) be the first boy in \(B - \{b_1\} \) such that \(|G_{M_2}(b_2)| = 1 \).

Continuing this process inductively yields the \(j^{th} \) boy in our desired enumeration from \(M_j = (B - \{b_1, b_2, \ldots, b_{j-1}\}, G - G(b_1, b_2, \ldots, b_{j-1}), R_j) \).
Sketch of the proof

Proof: Suppose we have $M = (B, G, R)$ as stated above with some initial enumeration of B. Apply the lemma and let b_1 be the first boy such that $|G(b_1)| = 1$.

Define $M_2 = (B - \{b_1\}, G - G(b_1), R_2)$. Because M has a unique solution, M_2 has a unique solution, namely the restriction of f to the sets of M_2. Apply the lemma once more and let b_2 be the first boy in $B - \{b_1\}$ such that $|G_{M_2}(b_2)| = 1$.

Continuing this process inductively yields the j^{th} boy in our desired enumeration from $M_j = (B - \{b_1, b_2, \ldots, b_{j-1}\}, G - G(b_1, b_2, \ldots, b_{j-1}), R_j)$.

After the n^{th} iteration we have (b_1, b_2, \ldots, b_n) where for every $1 \leq m \leq n, |G(\{b_1, b_2, \ldots, b_m\})| = m$. ■
Generalizing this result

The statement regarding finite marriage problems with unique solutions can be generalized to the infinite case. Paralleling the previous work we have:

Theorem

If $M = (B, G, R)$ *is an infinite marriage problem with a unique solution* f, *then there is an enumeration of the boys* $\langle b_i \rangle_{i \geq 1}$ *such that for every* $n \geq 1$, $|G(\{b_1, b_2, \ldots, b_n\})| = n$.

II: Reverse Mathematics
Reverse Mathematics

Reverse mathematics is the subfield of mathematical logic dedicated to classifying the logical strength of mathematical theorems.

This is done by proving theorems equivalent to a hierarchy of axioms over a weak base axiom system.

\[
\text{RCA}_0 \quad \text{WKL}_0 \quad \text{ACA}_0 \quad \text{ATR}_0 \quad \Pi^1_1 - \text{CA}_0
\]

\(\text{RCA}_0\) proves the *intermediate value theorem* and the *uncountability of \(\mathbb{R}\).*

\(\text{RCA}_0\) does *not* prove the *existence of Riemann integrals.*
Equivalences

Theorem
The following are provable in RCA₀.

(i) WKL₀ ⇔ For every continuous function f(x) on a closed and bounded interval a ≤ x ≤ b, the Riemann integral
\[\int_a^b f(x)dx \] exists and is finite. (Simpson)

(ii) ACA₀ ⇔ For all one-to-one functions f : \(\mathbb{N} \to \mathbb{N} \) there exists a set \(X \subseteq \mathbb{N} \) such that Ran(f) = X. (Simpson)

(iii) ATR₀ ⇔ Any two well orderings are comparable. (Friedman)

(iv) \(\Pi^1_1 - CA₀ \) ⇔ The Cantor/Bendixson theorem for \(\mathbb{N}^\mathbb{N} \):
Every closed set in \(\mathbb{N}^\mathbb{N} \) is the union of a perfect closed set and a countable set. (Simpson)
Jeff Hirst proved the following equivalence results:

Theorem

(RCA$_0$) If $M = (B, G, R)$ is a finite marriage problem such that $|G(B_0)| \geq |B_0|$ for every $B_0 \subseteq B$, then M has a solution.
Marriage Theorems and Reverse Mathematics

Jeff Hirst proved the following equivalence results:

Theorem

$$(\text{RCA}_0) \text{ If } M = (B, G, R) \text{ is a finite marriage problem such that } |G(B_0)| \geq |B_0| \text{ for every } B_0 \subset B, \text{ then } M \text{ has a solution.}$$

Theorem

$$(\text{RCA}_0) \text{ The following are equivalent:}$$

1. ACA$_0$

2. If $M = (B, G, R)$ is an infinite marriage problem such that $|G(B_0)| \geq |B_0|$ for every $B_0 \subset B$, then M has a solution.
Marriage Theorems and Reverse Mathematics

Jeff Hirst proved the following equivalence results:

Theorem
(RCA$_0$) *If* $M = (B, G, R)$ *is a finite marriage problem such that* $|G(B_0)| \geq |B_0|$ *for every* $B_0 \subset B$, *then* M *has a solution.*

Theorem
(RCA$_0$) *The following are equivalent:*
1. ACA$_0$
2. *If* $M = (B, G, R)$ *is an infinite marriage problem such that* $|G(B_0)| \geq |B_0|$ *for every* $B_0 \subset B$, *then* M *has a solution.*

Theorem
(RCA$_0$) *The following are equivalent:*
1. WKL$_0$
2. *If* $M = (B, G, R)$ *is a bounded marriage problem such that* $|G(B_0)| \geq |B_0|$ *for every* $B_0 \subset B$, *then* M *has a solution.*
Our new results echoed the previous work:

Theorem

(RCA$_0$) If $M = (B, G, R)$ is a finite marriage problem with n boys a unique solution f, then there is an enumeration of the boys $\langle b_i\rangle_{i \leq n}$ such that for every $1 \leq m \leq n$, $|G(\{b_1, b_2, \ldots, b_m\})| = m$.
Marriage Theorems and Reverse Mathematics

Our new results echoed the previous work:

Theorem
(RCA₀) If $M = (B, G, R)$ is a finite marriage problem with n boys a unique solution f, then there is an enumeration of the boys $\langle b_i \rangle_{i \leq n}$ such that for every $1 \leq m \leq n$, $|G(\{b_1, b_2, \ldots, b_m\})| = m$.

Theorem
(RCA₀) The following are equivalent:
1. ACA₀
2. If $M = (B, G, R)$ is an infinite marriage problem with a unique solution f, then there is an enumeration of the boys $\langle b_i \rangle_{i \geq 1}$ such that for every $n \geq 1$, $|G(\{b_1, b_2, \ldots, b_n\})| = n$.
Theorem
(RCA$_0$) The following are equivalent:

1. WKL$_0$

2. If $M = (B, G, R)$ is a bounded marriage problem with a unique solution f, then there is an enumeration of the boys $\langle b_i \rangle_{i \geq 1}$ such that for every $n \geq 1$, $|G(\{b_1, b_2, \ldots, b_n\})| = n$.
Future Work

- Marriage problems with any fixed finite number of solutions.

- “Entangled societies”
References

