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ABSTRACT.The main part of this note is to show a general covering lemma in 
Rn, n 2 2 ,  with the aim to obtain the estimate for BMO norm and the volume 
of a nodal set of eigenfunctions on Riemannian manifolds. 

This article is a continuation of our previous work [L]. In [L] we proved a 
covering lemma in R2 and applied it to the BMO norm estimates for eigen- 
functions on Riemannian surfaces. The principal part of this article is to prove 
a general covering lemma in Rn for n 2 2 .  As applications, we can obtain the 
BMO estimate for eigenfunctions and the volume estimate for the nodal set. 

Let M n  be a smooth, compact, and connected Riemannian manifold with 
no boundary. Let A denote the Laplacian on M n  . Let -Au = ilu, u an 
eigenfunction with eigenvalue il , il > 1 . 

Our main results can be stated as follows 

Theorem A (BMO estimate for log lul) . For u ,  il as above and n 2 3 ,  

where C is independent of il and u and is only dependent on n and M n  

Theorem B (geometry of nodal domains). Let n 2 3 and u ,  il as above. Let 
B c M n  be any ball, and let R c B be any of the connected components of 
{x E B :u(x) # 0) .  If R intersects the middle halfof B ,  then 

where C is independent of il and u 

Donnelly and Fefferman [DFl, DF2] and Chanillo and Muckenhoupt [CM] 
proved Theorem A with (10gil)~ replaced by iln(n+2)/4 and iln log2 , re-
spectively, and Theorem B with A-2n2-n14 replaced by il-(n+n2(n+2))/2 

and il-2n2-n/2 (log il)-2n , respectively. 
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In the case n = 2 ,  the following has been proved in [L]: 

where E > 0 and C = C(E) is independent of 3, and u .  
The proof of Theorems A and B is based on the following covering lemma, 

which is of its own right and is really the main result of this paper. 

Lemma C (covering lemma in Rn ). Let 6 > 0 be small enough. Let {B,),,z be 
any finite collection of balls in Rn ( n  2 2) . Then one can select a subcollection 
B1, BZ , . . . , BN such that 

(1)  U, Ba c ~:1(1 + 6)Bi, 
(2) xE1xBi(x)5 C(1og $)6-n+1/4 for all x E Rn, 

where C depends only on n but is independent of 6 and the given balls. 

From the proof of Lemma C (see 53), we can see that we also have covering 
lemmas for any finite collection of balls with some restrictions on the lower and 
upper bounds for the radii of the given balls. We state here these results for the 
interested reader. 

Lemma D (for balls with almost equal radii). Let 6 be small enough. Let 
{B,),,I be any Jinite collection of balls in Rn ( n  2 2) with r 5 p(Ba) < 
r + 2k6 for some 2k < r < 2k+1,where k is an integer. Then one can select a 
subcollection of balls B1, . . . , BN such that 

N

UB, c U ( 1  +S)Bi, 
a i= l 

C
N 

xB,(x) 5 ~ 6 - ( " - ~ / ~ )for all x E Rn, 
i= 1 

where C only depends on the dimension n but is independent of k , 6 ,  and the 
given balls. 

The proof of Lemma D will be based on Lemma 3.1 in 33. The method of 
proof is similar to the one of Lemma 3.7. 

Lemma E (for balls with radii of lower and upper bounds). Let 6 be small 
enough and k be any integer. Let {Ba)uEz be any finite collection of balls in 
R n ,  n > 2 ,  with 2k < p(Ba) 5 2k+1. Then one can select a subcollection 
B1, . . . , BN such that 

N 

IJB, c U(1+J)Bi, 
0 i= 1 

C
N 

XP, (x)5 ~ d - ( ~ - ~ / ~ )for all x E Rn, 
i= 1 

where C depends only on the dimension n but is independent of k , 6 ,  and the 
given balls. 

Lemma E is just a restatement of Lemma 3.7 in 33 by replacing (1 + Cn)6 
by (1 + 6 ) .  
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This covering Lemma C is an improvement of the one in [CM], which was 
6-" on the right-hand side of (2). This type of covering lemma may be useful 
since the Vitali covering lemma is not good enough in many cases and the 
Besicovitch covering lemma does not apply sometimes (see [SW]). The proof 
of the corresponding covering lemma in [CM] is very elegant, but the covering 
lemma in [CM] does not have the implications of Lemmas D and E. Obviously, 
from the proof of Lemma C, we can see that this covering lemma is not the 
best possible. 

Once we have Lemma C, we can just modify the proof given in [CM], and 
thus the proof of Theorems A and B will be omitted here. The interested reader 
should refer to [CM]. Instead, we will concentrate on the proof of the covering 
lemmas, which will be given in the next two sections. 

Notation. Throughout this paper, we will denote by c or C the generic con- 
stants not exactly equal at each occurrence and which depend on the dimension 
only. We will also use p(B) to denote the radius of the ball B .  If B is 
an (n + 1)-dimensional ball in Rn+' , then we denote by B* the projection 
of B onto the n-dimensional hyperplane {xn+1 = 0) .  Obviously, B* is an 
n-dimensional ball with p(B) = p(B*). 

2. A BASIC COVERING LEMMA IN Rn 

The main goal of this section is to prove a basic covering lemma in Rn for 
balls whose radii are close to one another and centered in an n-dimensional cube 
with sidelength a.As mentioned in 3 1, we will denote by B* the projected 
ball of the (n + 1)-dim ball B c Rn+' to the hyperplane {xn+1 = 0 ) .  

Since the proof of Lemma C adapts the method of induction on the dimen- 
sion n on each cube with sidelength and is based on a basic covering 
lemma in R2 proved in [L, Lemma 4.11, we recall this essential lemma first. 

Lemma 2.1. Let 6 > 0 be given small enough. Given any cube d in R2 with 
sidelength 4 and given any finite collection of balls {B,),,I in R2 with r 5 
p(B,) 5 r +6 ,  for some 1 5 r 5 2 ,  and centered in this cube d,one can select 
a subcollection of balls B1 , . . . , BN such that 

where c is an absolute constant independent of 6 and the given balls. 

We also need the following. 

Lemma 2.4. Let 6 > 0 be given small enough. Let B1 and B2 be two (m + 1)-
dimensional balls in Rm+' with radius r 5 p(Bi) 5 r + 6 for some 1 5 r 5 2 
( i  = 1, 2 ) .  Assume that B1 is centered at the origin in Rm+' and B2 is cen- 

tered a t  02 = (s,,s2, ... ,s,, s,,,+') such that dm 5 Jmand 
Is,+ll 5 6 .  If the point, lying on the boundary of B1 , A = (0 ,  ... , 0 ,  p(B1), 0) 
E (1 + C,B)B;, then all those points inside the ball B1 of the form 
(0 ,  ... ,0 ,  t, , t,+l) with t, 2 0 (we call the set of these points P) are in 



974 GUOZHEN LU 

the ball ( 1 + Cm+16)B2 , where C, and C,+I are two constants only depending 
on m .  

Proof. Since A E ( 1  + C,B)B; , the distance between A and the center of B,* , 

i.e., (sl,s2, . .. , s,, 0) , is no more than ( 1  + Cm6)p(B2) .This implies that 


By the hypothesis, we have s: +.. .+s;+, I (m+1)6 ,  Ism+l 1 5 6 . We also have 

that t i  + t i+ ,  5 p ( ~ , ) ~  in P .
and t ,  2 0 for the points (0,  . . . ,0 ,  t ,  , t,+l) 
We now claim that s, > -C6 for some C = C ( m ). In fact, from (2.5),noting 
Is, -p(B1)II ( 1  + C,G)p(B2), it follows that s, L - ( I  + C,)Gp(B2) +p(B1) 2 
-C6 by the hypothesis that r 5 p(Bi)5 r + 6 for some 1 5 r < 2 ( i  = 1 , 2 ) .  

Thus the distance between 9 and the points in P are not more than 

Thus P C ( 1  + CmflB)B2. Q.E.D. 

Remark. The above set P is actually the intersection points between the ball 
BI and the hyperplane { x l  = 0 ,  . . . ,x,-1 = 0) -
Lemma 2.6. Let 6 > 0 be given small enough. Let d = { ( X I  , . .. ,x,  ,x,,~) : 
0 < X i  5 fi,for 1 5 i I n ,  0 I x,+l < 6 )  be the parallelopiped in Rn+' . 
Assume as given any Jinite collection of ( n  + 1)-dimensional balls {B, ),,I in 
R"+' with r 5 p(B,) 5 r+6, for some 1 I r 5 2 ,  centered in this parallelopiped 
d . Assume that there exists a subcollection of balls Bl , .. . ,BN such that the 
projected balls { ~ r } : ,  onto the hyperplane {x,+l = 0) satisfy 

Then we have 
N 

where C,+l only depends on the dimension n and is independent of 6 and the 
given balls. 
Proof. Fix B, and let x E B, . Let 0, = ( t l, . . . , t,+l) be the center of B, 
and 0; and x* be the projections of 0, and x onto the hyperplane X,+I = 0 
respectively. Let I, be the ray originating from 0, and passing through x * ,  
and let A, be the intersection point between 1, and the boundary dB; of 
Bi . On account of (2.7), we have A, E ( 1  + C,6)B,* for some i ,  and we 
assume the coordinate of the center of Bi is Oi= ( $ 1  , . . . , s,+l). Then we 
claim x E ( 1  + Cn+16)Bifor the same i . To show the claim, we adapt the new 
Cartesian coordinates (x i  , . . . ,xk , x;+,) such that 

( 1 )  (x i  , ... ,xk ,x;+,) is derived from ( x l, . . . ,x ,  ,x,+ 1 )  by an orthogo- 
nal transformation and a translation. 
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(2) The origin of the new coordinate is at 0, and the coordinate of A, is of 
the form (0,  .. . , 0 ,  p(B,) , 0) . Then by the rigid invariance of the distances, 
all the (n + 1)-dimensional balls B, are still balls with the same radii under 
the new coordinates (xi , ... , xl, ,x;,, ) . 

(3) Since the distance between 0, and Oi is no more than z / m  
and Isn+' 

4-

- tn+l1 5 6 ,  the new coordinate of 0,, 0, = (si , . . . , s;+,j, satisfies 

5 JW and is;+, 5 6 .  

Thus, by Lemma 2.4, there exists a constant independent of 6 
and the given balls, only dependent on the dimension n ,  such that x E 
( 1+ Cn+16)Bi . Since x E B, is arbitrary and B, is an arbitrary ball in {B,) , 
we are done. Q.E.D. 

By using Lemma 2.6, we can show the following basic covering lemma in 
R n ,  n > 2 .  

Lemma 2.8. Let 6 > 0 be given small enough. Given any cube &Tn in Rn 
with sidelength fi and any Jinite collection of balls {B,),,I in Rn with r 5 
p(B,) 5 r +6 ,  for some 1 5 r 5 2,  and centered in this cube &Tn , one can select 
a subcollection of balls B1, .. . ,BN such that 

where Cn only depends on the dimension n and is independent of 6 and the 
given balls and c is a jixed constant which is equal to the constant c in (2.3) 
of Lemma 2.1. 
Proof. We have proved this lemma for the case n = 2 .  Assume that (2.9) 
and (2.10) are true when n = m .  We wish to prove the result for the case 
n = m + l .  

Given a cube Q,,' = {0 5 xi 5 fi: 1 5 i 5 m + 1) c Rm+', we subdivide 
into equal parallelopipeds 

for k = 0 ,  1 ,  ... ,1. Then 1 cz 6-'I2. 
Let Jk= {a E I : 0, E Q:,,), where 0, is the center of B, . We claim that 

given any finite collection of (m + 1)-dimensional balls {B,) with centers 0, 
in Q&+, ,we can select a subcollection of balls {B~~):, such that 

Without loss of generality, we only need to prove our claim for Q:,, . We 
project the balls B, to the m-dimensional hyperplane x,+' = 0 .  Then we 
obtain the corresponding m-dimensional balls B: with centers 0: contained 
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in the cube Qm = { 0  5 xi 5 &, xm+l = 0 ) .  The induction hypothesis in the 
case n = m lets us select BT , . . . , Bg0 such that 

Then by Lemmas 2.6, 2.13, and 2.14, we have proved (2.11 )  and (2 .12) and 
then the claim for Q;+, . Since we can do the same selection in each Q&+, as 
we did in Q i + l , we can select { B k J )such that 

By (2 .15)and (2 .16)we can select {Bk , )  such that 

and 

which proves Lemma 2.8 by induction. Q.E.D. 

3. SKETCHOF THE PROOF OF LEMMAC 

Once we have Lemma 2.8, we can do exactly the same proof as in the case 
n = 2 (see [L]), and then we have the following lemmas. 

Lemma 3.1. Let 8 be given small enough. Let any cube &? in Rn, n 2 2 ,  with 
sidelength 2k& be given, and let {B,)a,I  be any finite collection of balls with 
r 5 p(B,) 5 r + 2k8 for some 2k 5 r 5 2k+1and centered in d,where k is an 
integer. Then one can select a subcollection of balls B1, . . . , BN such that 

where C,, only depends on the dimension n and c is a fixed constant (as in 
Lemma 2 . 1 ) .  

The proof of Lemma 3.1 is straightforward if we use Lemma 2.8 and the 
scaling property. Actually, Lemma 3.1 can be reduced to Lemma 2.8 by dilating 
Rn by 2 - k .  
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Lemma 3.4. Let A be given small enough. Let any cube c9 in Rn , n 2 2 ,  with 
sidelength 2k 4 be given, and let {B,),,I be any jinite collection of balls with 
2k 5 p(B,) 5 2k+1. Then one can select a subcollection B1 , . .. , BN such that 

where Cn depends only on the dimension n and c is a fixed constant (as in 
Lemma 2.1). 

The proof of Lemma 3.4 follows the routine of the proof of Lemma 5.2 in 
[Ll. 

Lemma 3.7. Let 6 be given small enough and {B,),,I be a jinite collection of 
balls in Rn, n 2 2 ,  with 2k 5 p(B,) 5 2k+1, where k are integers. Then one 
can select balls B1 , ... ,BN such that 

for all x E Rn, where Cn only depends on the dimension n and c is somefixed 
constant (as in Lemma 2.1). 

The proof follows the proof of Lemma 5.3 in [L]. We subdivide Rn into a 
dyadic grid of {Q,),"=, whose sidelengths are 2k&. The only difference here 
is that the cardinality of those special j is 6-"I2 (which was 6-I in Lemma 
5.3 in [L]). 

Finally, we can prove Lemma C by methods similar to the proof of Lemma 
1 in [L]. Since the method of proof has nothing to do with the dimension, 
everything is the same, except we change R2 to Rn . 

The author wishes to thank Professor S. Chanillo for his constant encour- 
agement and many useful suggestions and conversations. He is also grateful to 
Professor B. Muckenhoupt for the helpful discussions with him and to Professor 
Tom Wolff for his interest in this work. 
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