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LOCAL AND GLOBAL INTERPOLATION INEQUALITIES ON
THE FOLLAND-STEIN SOBOLEV SPACES AND

POLYNOMIALS ON STRATIFIED GROUPS

Guozhen Lu

Abstract. We derive both local and global Sobolev interpolation inequalities of
any higher orders for the Folland-Stein Sobolev spaces on stratified nilpotent Lie
groups G and on domains satisfying a certain chain condition. Weighted versions
of such inequalities are also included for doubling weights satisfying a weighted
Poincaré inequality. This paper appears to be the first one to deal with gen-
eral Sobolev interpolation inequalities for vector fields on Lie groups; Despite the
extensive research for Poincaré type inequalities for vector fields over the years,
interpolation inequalities given here even in the nonweighted case appear to be
new. Such interpolation inequalities have important applications to subelliptic or
parabolic pde’s involving vector fields. The main tools to prove such inequalities
are approximating the functions by polynomials on G . Some very useful proper-
ties for projections of polynomials associated with the functions are given here
and they appear to have independent interests in their own rights. Main ideas of
the proofs of the theorems are explained here. Detailed proofs of the results pre-
sented here are given in the paper “Polynomials on stratified groups and Sobolev
interpolation inequalities on nonisotropic Folland-Stein spaces” by the author.

1. Introduction

(Weighted) Sobolev interpolation inequalities have been extensively studied
in the classic case, see Chua [C], Gutierrez-Wheeden [GW1], Caffarelli-Kohn-
Nirenberg [CKN1], Lin [Lin] and many references therein. These inequalities
have proved to be rather powerful in studying various aspects of partial differen-
tial equations, especially for pde’s of elliptic and parabolic type. In particular,
such inequalities are the main tool in proving Harnack’s inequality for solutions
of certain degenerate parabolic equations by adapting Moser’s argument [M]
(see Gutierrez-Wheeden [GW2-3]). Another application of weighted Sobolev in-
terpolation inequalities can be found in the work of Caffarelli-Kohn-Nirenberg
[CKN2], where they applied the results in [CKN1] to study the partial regularity
of weak solutions to Navier-Stokes equations. However, such inequalities, even
in the nonweighted case which is often of equal importance and general interests,
have not been established on stratified groups , or more generally for degenerate
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vector fields. In this paper, we will study both nonweighted and weighted, local
and global Sobolev interpolation inequalities. We shall state these different ver-
sions separately for the purpose of clarity. For a reader who is only interested in
the nonweighted results, we refer him to theorems (3.2), (3.3), (3.4) in Section
3 and theorems (4.1) and (4.2) in Section 4.

For weighted inequalities, we are concerned with weights w, v together with
1 ≤ p ≤ q < ∞ satisfying the following inequality:

‖f − fB‖
Lq

w(B)
≤ A(B)‖Xf‖

Lp
v(B)

(1.1)

where B ⊂ G is a metric ball, fB =
∫

B
fdx/|B|, |Xf | = (

∑m
i=1 |Xif |2)1/2 and

w(E) =
∫

E
w(x)dx . Let us note that some sufficient and necessary conditions

have been obtained for (1.1) for Grushin and Hormander vector fields; see [FGW]
and [FLW]. For instance, when v and w satisfy a certain balance condidtion
first introduced in Chanillo-Wheeden [CW] and v ∈ Ap, then (1.1) holds. In
particular, in this case A(B) can be taken as Cw(B)1/qv(B)−1/pρ(B).

To state our theorems, we need to introduce briefly some notions about
groups. Let G be a finite-dimensional, stratified, nilpotent Lie algebra. Assume

G = ⊕s
i=1Vi ,

and [Vi, Vj ] ⊂ Vi+j for i + j ≤ s, [Vi, Vj ] = 0 for i + j > s. Let X1, . . . , Xm

be a basis for V1 and suppose that X1, . . . , Xm generate G as a Lie algebra.
Thus we can choose a basis {Xij}, for 1 ≤ j ≤ s, 1 ≤ i ≤ mj for Vj consisting
of vectors of the form Xα for some multi-indices α of length j. In particular,
Xi1 = Xi, i = 1, . . . , m and m = m1.

Let G be the simply connected Lie group associated to G. Since the exponen-
tial mapping is a global diffeomorphism from G to G, for each g ∈ G, there is
x = (xij) ∈ R

N , 1 ≤ i ≤ mj , 1 ≤ j ≤ s, N =
∑s

j=1 mj , such that

g = exp(
∑

xijXij) .

Thus we define a homogeneous norm function | · | on G by

|g| = (
∑

|xij |2s!/j)1/2s! .

We also define Q =
∑s

j=1 jmj , which is called the homogeneous dimension of G,
which is usually greater than dim G = N .

Now let � : G × G → R
+ be defined by �(x, y) = |xy−1|, the homogeneous

norm of xy−1. We denote by B(x, r) = {y ∈ G : �(x, y) < r}, the ball centered
at x and with radius r. We note that (G, �) is a homogeneous metric space in
the sense of Coifman and Weiss ([CoW]). Thus, weighted theory in such spaces
can be developed as in [Ca].

We now define the so-called Boman chain domain in G.

Definition 1.1. An open set Ω in G is said to be a member of F(σ, N), σ ≥ 1,
N ≥ 1, if there exists a covering W of Ω consisting of balls such that :
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(i)
∑

B∈W

χ
σB

(x) ≤ Nχ
Ω

(x) ∀x ∈ G .

(ii) There is a ‘central ball’ B0 ∈ W that can be connected with every ball
B ∈ W by a finite chain of balls B0, B1, · · · , Bk(B) = B from W such
that B ⊂ NBj for j = 0, 1, · · · , k(B). Moreover, Bj ∩ Bj+1 contains a
ball Rj such that Bj ∪ Bj+1 ⊂ NRj.

We say that Ω satisfies the Boman chain condition [B] if Ω ∈ F(σ, N) for some
N, σ ≥ 1. There are many types of domains satisfy the Boman chain condition,
for examples, metric balls (see [FGW], [L2]), and John domains (see [BKL] and
[GN]).

In what follows, B is always a ball and ρ(B) will be its radius. If 1 < p < ∞,
p′ will denote p/(p−1). By a weight w, we mean a non-negative locally integrable
function on G. By abusing notation, we will also write w for the measure induced
by w. Sometimes we write dw to denote wdx. We say that w is doubling if
w(2B) ≤ Cw(B) for every ball B, where 2B denotes the ball with the same center
as B and twice its radius. By w ∈ Ap, we mean w satisfies the Muckenhoupt Ap

condition, i.e.,

1
|B|

(∫
B

wdx

)1/p (∫
B

w
−1

p−1 dx

)1/p′

≤ C when 1 < p < ∞, and

1
|B|

∫
B

w(x)dx ≤ C essinfx∈B w(x) when p = 1,

for all balls B in G. Note that w is doubling when it is in Ap.
Let Ω be an open set in G. If α is a multi-index, α = (α1, α2, . . . , αl) ∈ Z

l
+,

we will denote
∑l

j=1 αj by | α | and Xα = Xα1
i1

· · ·Xαl
il

, 1 ≤ ij ≤ m. We denote
by X the vector (X1, · · · , Xm) and by Xk the vector of all possible kth order
derivatives {Xα}|α|=k for k ∈ N. A locally integrable function f on Ω (we will
write f ∈ L1

loc(Ω) ) has a weak derivative of order α if there is a locally integrable
function (denoted by Xαf = Xα1

i1
· · · Xαl

il
f) such that∫

Ω

f(Xα1
i1

· · ·Xαl
il

ϕ)dx = (−1)|α|
∫

Ω

(Xαl
il

· · ·Xα1
i1

f)ϕdx

for all C∞ functions ϕ with compact support in Ω, i.e., ϕ ∈ C∞
0 (Ω).

For 1 ≤ p < ∞, k ∈ N, and any weight w, Lp
w,k(Ω) and Ep

w,k(Ω) are the
weighted Folland-Stein Sobolev spaces of functions having weak derivatives of all
orders α, | α |≤ k, and satisfying

‖ f ‖
Lp

w,k
(Ω)

=
∑

0≤|α|≤k

‖Xaf‖
Lp

w(Ω)
=

∑
0≤|α|≤k

(
∫

Ω

| Xαf |p dw)1/p < ∞,

and
‖ f ‖

Ep
w,k

(Ω)
=

∑
|α|=k

‖ Xαf ‖
Lp

w(Ω)
< ∞
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respectively. Moreover, in the case when w ≡ 1, we will denote Lp
w,k(Ω) and

Ep
w,k(Ω) by Lp

k(Ω) and Ep
k(Ω) respectively. Finally, let Λk(Ω) be the collection

of all functions f on Ω such that all its weak derivatives Xα of order |α| ≤ k
exist.

The organization of the paper is as follows: In section 2, we give several
important properties regarding polynomials on G, especially the comparison,
projection and approximation theorems. These remarkable properties of group
polynomials appear to be very useful in proving such interpolation inequalities.
Moreover, these properties are as well of independent interests in their own rights
and other applications will be found in the forthcoming works. In particular we
will show the projection polynomials πk(B)f associated to B and f satisfying

||XIπk(B)f ||
Lq

w(B)
≤ C||X lf ||Lq

w(B)

for 1 ≤ q ≤ ∞, 0 ≤ |I| = l < ∞ and w ∈ Aq when q �= ∞. Section 3
gives interpolation inequalities of zero and lower orders which are particularly
important to study pde’s of second order. Section 4 deals with inequalities of
any higher orders. We also give some Poincaré type estimates for derivatives of
higher orders in Section 5.

2. Polynomials on G and their important properties

We now define polynomials on G by following Folland-Stein (see [FS2]). Let
X1, · · ·, Xm be the generators of the Lie algebra G, and X1, · · ·, Xm, · · ·, XN be
a basis of G. We denote d(Xj) = dj as the length of Xj as a commutator, and
1 ≤ d1 ≤ · · · ≤ dN . Thus it is easy to see dj = 1 for j = 1, · · ·, m. Let ξ1, · · ·, ξN

be the dual basis for G∗, and let ηk = ξk · exp−1. Thus η1, · · ·, ηN are a system
of global coordinates on G. A function P on G is called a polynomial on G if
P · exp is a polynomial on G. By this definition, η1, · · ·, ηN are polynomials on
G and generate the algebra of polynomials on G. Thus every polynomial on G

can be written uniquely as

P =
∑

I

aIη
I , (ηI = ηi1

1 · · · ηiN

N , aI ∈ C),

where all but finitely many of coefficients aI vanish. Clearly ηI is homogeneous
of degree d(I), where d(I) =

∑N
j=1 ijd(ij). If P =

∑
I aIη

I , then we define its
homogeneous degree as max{d(I) : aI �= 0} and max{|I| : aI �= 0} as its isotropic
degree. If we consider I = (i1, · · ·, im), 1 ≤ ij ≤ m, then d(I) = |I|.

Polynomials on homogeneous groups bear some resemblence to those in the
Euclidean spaces. We refer the reader to Folland-Stein [FS2] for more details.

In what follows, C denotes various positive constants. They may differ even in
a same string of estimates. Moreover, sometimes, we will use C(α, β, · · · ) instead
of C to emphasize that the constant is depending on α, β, · · · . Throughout this
section and the rest of the paper, w is always denoted a doubling weight on G.
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When w = 1, all the theorems below still hold with the measures w(E) replaced
by the Lebesgue measure |E|.

We can obtain the following theorems:

Theorem 2.1 (Comparison). Let γ > 0 be a constant. Let F, B be balls in G

such that F ⊂ B and | F |> γ | B |. If w is a doubling weight, 1 ≤ q < ∞, and
P is a polynomial of degree k, then

‖ P ‖
Lq

w(E)
≤ C(γ, k, n, w)

(
w(E)
w(F )

)1/q

‖ P ‖
Lq

w(F )

for all measurable sets E ⊂ B.

Given k and a polynomial P of degree k,

‖ P ‖
L∞(B)

≤ C

w(B)
‖ P ‖

L1
w(B)

(2.1)

with C independent of B and P . This can be seen through the equivalence of
two norms on the finite dimensional space.

Lemma 2.2. Let B be a ball and let E be a measurable set in B with | E |> γ |
B |. If P is a polynomial of degree k, then

‖ P ‖
L∞(E)

≥ C(γ, k) ‖ P ‖
L∞(B)

.

We also can derive the Bernstein’s inequality:

Theorem 2.3. Let P be a polynomial of order less than k and 1 ≤ q ≤ ∞. Let
I be any multi-index and w be doubling, then

‖XIP‖
Lq

w(B)
≤ Cρ(B)−|I|‖P‖

Lq
w(B)

for all balls B in G

where C depends only on k, w, q.

Let Pk be the collection of all polynomials of degree < k on G. Then we
have the following theorem concerning the projection of function into polyno-
mials. This projection theorem is crucial to the proof of Sobolev interpolation
inequalities and many other purposes given elsewhere.

Theorem 2.4 (Projection). For each k ∈ N and balls B ⊂ Ω, there exists a
projection πk(B) : Λk(Ω) −→ Pk such that

esssupx∈B |πk(B)f(x)| ≤ Cρ(B)−Q‖f‖
L1(B)

with C independent of f and B. Moreover, πk(B) is linear and πk(B)P = P for
all P ∈ Pk, and for all 1 ≤ q ≤ ∞ and a doubling weight w,

‖πk(B)f‖
Lq

w(B)
≤ C‖f‖

Lq
w(B)

.
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What is even more interesting is the following property of the above projection
polynomials. The following theorem (2.6) given below states that not only can
the projection polynomial of a function, but also its subelliptic derivatives be
controlled by the subelliptic derivatives of the function in any Lq norms. This
theorem can not be proved by simply using change of variables, even we know
the corresponding inequalities are true in the Euclidean spaces. This is due to
the fact that there is no cannonical change of variables mapping the subelliptic
vector fields on the group G into the partial derivatives in R

N . However, we can
derive this by using the approximation polynomials, together with some simple
but delicate argument.

We first give a theorem which is, among many other applications, also very
useful for the proof of Sobolev interpolation inequalities by approximating func-
tions by polynomials on each metric ball.

Theorem 2.5 (Approximation). Let Ω ⊂ G be an open set. Then given any
positive integer k and f ∈ Λk(G), there exists a polynomial P = P (f,Ω) on G

of degree less than k such that∫
Ω

Xα(f − P ) = 0, for any 0 ≤ |α| < k,

where Xα = Xα1
i1

· · · Xαm
im

and 1 ≤ ij ≤ m.

The proof is given by examining closely the definition of polynomials on the
stratified groups. We first observe that for each multi-index I and J with the
same length d(I) = d(J) we have

XI(ηJ) = I!δIJ , where δIJ = 1 if I = J ; and = 0 if I �= J.(2.2)

This follows from the definition of the dual basis η1, ···, ηN on G∗, which indicates
the inner product defining the dual basis satisfies

< XJ , ξI ◦ exp−1 >= I!δIJ .

We also note that for any polynomial P of degree less than k we have XαP = 0
for any |α| > k.

Since any polynomial P on G of degree less than k can be uniquely written
as

P =
∑

I:d(I)<k

aIη
I , ηI = ηi1

j1
· · · ηiN

jN
,

we thus only need to determine the coefficient aI .
If XJ(P ) = aJJ ! were true, and

∫
Ω

XJf =
∫
Ω

XJP for each J satisfying
d(J) < k, thus one would be attempted to take

aJ =
1

J !|Ω|
∫

Ω

XJf.
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However, we note (2.2) is true only for d(I) = d(J) and not necessarily true for
d(I) �= d(J), especially for I ⊂ J (i.e., all the indices appeared in I appear in J
as well). Thus, XJ(P ) = aJJ ! is not necessarily true.

Fortunately, this can be overcome by an iteration procedure. Details are given
in [L3].

By using the same projection given in Theorem (2.4), we can get with the aid
of Theorem (2.5) the following important

Theorem 2.6. For each k ∈ N and balls B ⊂ Ω, there exists a projection
πk(B) : Λk(Ω) −→ Pk such that

esssupx∈B |πk(B)f(x)| ≤ Cρ(B)−Q‖f‖
L1(B)

and for any 1 ≤ q ≤ ∞, w ∈ Aq for q �= ∞ and any multiple index I with
|I| = l ≥ 0

‖XIπk(B)f‖
Lq

w(B)
≤ C‖X lf‖

Lq
w(B)

(2.3)

with C independent of f and B. Moreover, πk(B) is linear and πk(B)P = P for
all P ∈ Pk.

We remark here that the projection polynomials constructed in Theorems
(2.4) and (2.6) are in general not the same as those in Theorem (2.5). Each of
them has its own merit and different one is often taken for different purposes.

3. Interpolation inequalities of lower orders

We will state in this section Sobolev interpolation inequalities of zero and
first orders and results involved with Schrödinger operator −∑m

i=1 Xi(x)+V (x)
when V is a nonnegative polynomial on G. These inequalities are particularly
useful to study subelliptic or parabolic equations of second order, for instance,
subelliptic or parabolic Schrodinger operators ∂

∂t = −∑m
i=1 X2

i + V . We recall
that Q is the homogeneous dimension of G. We remark once for all that all the
local theorems (thus global ones) can be stated by replacing the L1 norms by
Lr norms for r > 1 in view of the Hölder’s inequality. But we will not do this
in all the cases.

Let 1 ≤ p ≤ q < ∞ satisfy

(
1
|B|

∫
B

|f − fB |q
) 1

q

≤ Cρ(B)
(

1
|B|

∫
B

|Xf |p
) 1

p

.(3.1)

Such an inequality is known to hold for suitable p, q, for example, 1
p − 1

q ≤ 1
Q

for 1 ≤ p < Q and p = Q, 1 ≤ q < ∞ (see for example for p > 1 in [L2], and for
p = 1 in [FLW]). Then we have the following nonweighted Sobolev interpolation
inequalities.
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Theorem 3.1 (Global). Let 1 ≤ p ≤ q < ∞ such that (3.1) holds for all
B ∈ G and f ∈ Λ1(G), then for any 1 ≤ r ≤ q we have

‖f‖
Lq(G)

≤ ‖f‖
1+Q( 1

q
− 1

p
)

1+Q( 1
r
− 1

p
)

Lr(G) · ‖Xf‖
Q( 1

r
− 1

q
)

1+Q( 1
r
− 1

p
)

Lp(G)

for all f ∈ Λ1(G) provided that ||Xf ||Lp(G) �= 0.

Theorem 3.2 (Local). Let 1 ≤ p ≤ q < ∞ satisfy (3.1) and f ∈ Λ1(B), then

‖Xf‖
Lq(B)

≤C|B|1/qρ(B)−Q
(
ρ(B)−1‖f‖

L1(B)
+ ρ(B)‖X2f‖

L1(B)

)
+ C|B| 1

Q− 1
q + 1

p ‖X2f‖
Lp(B)

for all f ∈ Λ2(B), where C is independent of f and B.

Theorem 3.3 (Global). Let 1 ≤ p ≤ q < ∞ satisfy (3.1) for all balls B ⊂ G,
1 ≤ r ≤ q and f ∈ Λ1(G), then

‖Xf‖
Lq(G)

≤ ‖f‖
Q
q

− Q
p

+1

2+ Q
r

− Q
p

Lr(G) · ‖X2f‖
1+ Q

r
− Q

q

2+ Q
r

− Q
p

Lp(G)

for all f ∈ Λ2(G) provided that ||X2f ||Lp(G) �= 0.

By combining Theorem (3.3) with the Lp estimates derived in [L4] and [L5]
we get the following theorem concerning the Schrödinger operators:

Theorem 3.4 (Global). Let 1 < p ≤ q < ∞ such that (3.1) holds for all
B ∈ G and f ∈ Λ1(G) and 1 ≤ r ≤ q, then for any nonnegative polynomial V
on G,

‖Xf‖
Lq(G)

≤ ‖f‖
Q
q

− Q
p

+1

2+ Q
r

− Q
p

Lr(G) · ‖
(
−

m∑
i=1

X2
i + V

)
f‖

1+ Q
r

− Q
q

2+ Q
r

− Q
p

Lp(G)

for all f ∈ Λ2(G).

Let 1 ≤ p ≤ q < ∞ and w, v be two weights satisfying

(
1

w(B)

∫
B

|f − fB |qw
) 1

q

≤ Cρ(B)
(

1
v(B)

∫
B

|Xf |pv
) 1

p

.(3.2)

Such an inequality is known to be true for suitable p, q and w, v satisfying a
certain balance condition and v ∈ Ap (see [FLW] for Hörmander vector fields
and [CW], [SW], [FGW] for other situations). Then for weights w, v satisfying
(3.2) we have the following
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Theorem 3.5 (local). Let 1 ≤ p ≤ q < ∞ and w, v satisfy (3.2) holds for all
B ∈ G and f ∈ Λ1(G), then we have

‖f‖
Lq

w(B)
≤ ‖f‖

Lq
w(B)

≤ Cw(B)
1
q v(B)−

1
p ρ(B)‖Xf‖

Lp
v(B)

+ Cw(B)
1
q |B|−1‖f‖

L1(B)

for all f ∈ Λ1(B).

Theorem 3.6 (Local). Let 1 ≤ p ≤ q < ∞. If v is a weight and w is a
doubling weight such that (3.2) holds for all B ∈ G and f ∈ Λ1(B), then

‖Xf‖
Lq

w(B)
≤ Cw(B)1/qρ(B)−Q

(
ρ(B)−1‖f‖

L1(B)
+ ρ(B)‖X2f‖

L1(B)

)
+Cw(B)1/qv(B)−1/pρ(B)‖X2f‖

Lp
v(B)

for all f ∈ Λ2(B), where C is independent of f and B.

Theorem 3.7 (Chain domain). Let Ω ∈ F(σ, N) and let W be a covering of
Ω satisfying the Boman chain condition. Let 1 ≤ p ≤ q < ∞. If v is a weight
and w is a doubling weight such that (3.2) holds for all B ∈ W and f ∈ Λ1(Ω),
then

‖Xf‖
Lq

w(Ω)
≤Cw(B0)1/qρ(B0)−Q

(
ρ(B0)−1‖f‖

L1(B0)
+ ρ(B0)‖X2f‖

L1(B0)

)
+ CA0‖X2f‖

Lp
v(Ω)

for all f ∈ Λ2(Ω) where A0 = supB∈W A(B), A(B) = ρ(B)w(B)
1
q v(B)

−1
p , B0 is

the ‘central’ ball in W , and C is independent of f .

4. Interpolation inequalities of higher orders

In this section we give some interpolation inequalities of higher orders. As
in the same pattern in the last subsection, we shall state the nonweighted case
first.

Theorem 4.1 (Local). Let 1 ≤ p ≤ q < ∞. Let i, k ∈ N, 1 ≤ i < k. Then

‖Xif‖
Lq(B)

≤ C|B|1/qρ(B)−i−Q‖f‖
L1(B)

+ C|B|1/q−1/pρ(B)k−i‖Xkf‖
Lp(B)

for all f ∈ Λk(B) for all balls B.

Theorem 4.2 (Global). Let 1 ≤ p ≤ q < ∞ such that (3.1) holds. Let i, k ∈
N, 1 ≤ i < k and 1 ≤ r ≤ q. Then

‖Xif‖
Lq(G)

≤ C‖f‖
Q
q

+k− Q
p

−i

k+ Q
r

− Q
p

Lr(G) · ‖Xkf‖
Q
r

+i− Q
q

k+ Q
r

− Q
p

Lp(G)

for all f ∈ Λk(G) provided that ||Xkf ||Lp(G) �= 0.

For weights w, v satisfying (3.2) we have
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Theorem 4.3. Let 1 ≤ p ≤ q < ∞ satisfy (3.2). Suppose that v is a weight and
w is a doubling weight such that

‖f − fB‖
Lq

w(B)
≤ C0w(B)1/qv′(B)1/p′

ρ(B)−Q+1‖Xf‖
Lp

v(B)
(4.1)

for all balls B and f ∈Λ1(G) where v′=v−1/(p−1) (v′(B)1/p′
= esssupx∈B v−1(x)

when p = 1). Then

‖Xkf‖
Lq

w(B)
≤Cw(B)1/qρ(B)−Q−k‖f‖

L1(B)

+ Cw(B)1/qv′(B)1/p′
ρ(B)−Q+1‖Xk+1f‖

Lp
v(B)

for all balls B and f ∈ Λk+1(G) where C is independent of f .

As corollaries, we have the following containment relation of function spaces:

Corollary 4.4. Let 1 ≤ p ≤ q < ∞ and let Ω, W , v and w be as in Theorem
3.7 such that

‖f − fB‖
Lq

w(B)
≤ A‖Xf‖

Lp
v(B)

for all B ∈ W and f ∈ Λ1(Ω). Then Ep
v,k+1(Ω) ⊂ Eq

w,k(Ω) for all k ∈ N.

Corollary 4.5. Let Ω and W be as in Theorem 3.7. Suppose 1 ≤ p ≤ q < ∞
and w a doubling weight such that

‖f − fB‖
Lp

w(B)
≤ A‖Xf‖

Lp
w(B)

for all B ∈ W and f ∈ Λ1(Ω). Then f ∈ Ep
w,k(Ω) if and only if f ∈ Lp

w,k(Ω).

Theorem 4.6 (Local). Let 1 ≤ p ≤ q < ∞, v ∈ Ap and w a doubling weight
such that (4.1) holds. Let i, k ∈ N, 1 ≤ i < k. Then

‖Xif‖
Lq

w(B)
≤Cw(B)1/qρ(B)−iv(B)−1/p‖f‖

Lp
v(B)

+ Cw(B)1/qv(B)−1/pρ(B)k−i‖Xkf‖
Lp

v(B)

for all f ∈ Λk(B).

Theorem 4.7 (Global). Let 1 ≤ p ≤ q < ∞, v ∈ Ap and w a doubling weight
such that (4.1) holds. Let i, k ∈ N, 1 ≤ i < k and −i < λ < k − i. Then

‖Xif‖
Lq

w(G)
≤ C‖f‖1−(λ+i)/(k)

Lp
v(G)

‖Xkf‖(λ+i)/(k)

Lp
v(G)

for all f ∈ Λk(G) and ‖Xkf‖
Lq

v(G)
�= 0 if and only if

ρ(B)λw(B)1/q ≤ Cv(B)1/p(4.2)

for all balls B.
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We remark that the global theorems (3.1), (3.3), (3.4), and (4.2), and the
sufficient part of theorem (4.7) follow from the local results, i.e., theorems (3.5),
(3.2), (4.1) and (4.6). In order to get the global results from the local ones,
we need to patch the local inequalities together by using a covering lemma
concerning balls of equal sizes and then optimize the radius of balls to minimize
some quantities obtained from the local inequalities. Details can be found in
[L3].

5. Poincaré inequalities with higher order derivatives

In this section we give some Poincaré type inequalities with higher order
derivatives on the right hand side of the inequalities. Poincaré inequalities of
first orders for general Hömander’s vector fields were first established by Jerison
for p = q and improved in [L1], and sharp nonweighted inequalities were first
proved in [L2] for p > 1. The case for p = 1 was established in [FLW] including
sharp weighted inequalities for all p ≥ 1. There have been extensive study and
numerous papers on how one weaker Poincaré inequality implies other strong
one. We shall not address this issue here.

The case discussed here is just a special case of general Hörmander vector
fields. We recall that Pk(f, B) is a ploynomial on G of degree ≤ k − 1 such that∫

B

Xi(f − Pk(f, B)) = 0, for all 0 ≤ i < k,

and πk(B)f is the projection polynomial with degree less than k of f onto B,
whose existence is guaranteed by the projection theorems (2.4) and (2.6). We
recall that

esssupx∈B |πk(B)f(x)| ≤ Cρ(B)−Q‖f‖
L1(B)

with C independent of f and B. Moreover, πk(B) is linear and πk(B)P = P for
all P ∈ Pk, the collection of polynomials on G of degree less than k. We recall
that Q is the homogeneous dimension of G.

Theorem 5.1. Suppose that B ⊂ G is any metric ball and f ∈ Λk(B). Then
we have for any 0 ≤ j < i ≤ k(

1
|B|

∫
B

|Xj (f(x) − Pk(f, B)(x)) |qij dx

) 1
qij

≤ Cρ(B)i−j

(
1
|B|

∫
B

|Xi (f(x) − Pk(f, B)(x)) |pdx

) 1
p

for all 1 ≤ p < Q
i−j and qij ≤ pQ

Q−(i−j)p , where C is independent of B and f .

As a simple corollary of this theorem we get the perhaps most commonly
used Poincaré inequality below. This follows from theorem (5.1) by noting that
XkPk(f, B) = 0 because Pk(f, B) is a polynomial of degree less than k.
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Corollary 5.2. Suppose that B ⊂ G is any metric ball and f ∈ Λk(B). Then
we have(

1
|B|

∫
B

|f(x) − Pk(f, B)(x)| Qp
Q−kp dx

)Q−kp
pQ

≤ Cρ(B)k

(
1
|B|

∫
B

|Xkf(x)|pdx

) 1
p

for all 1 ≤ p < Q
k , where C is independent of B and f .

The proof of theorem (5.1) follows from the repeated use of the standard
Poincaré inequality. In the proof we have used the property of the approximation
polynomial Pk(f, B), i.e., the vanishing integral properties (see theorem (2.5).

The above theorems hold as well when we replace the approximation polyno-
mial Pk(f, B) by the projection polynomial πk(B)f . We can actually get more
refined (somehow different) version for this polynomial by dropping the polyno-
mial on the right hand side. Thus we can state the above type theorems into
one.

Theorem 5.3. Suppose that B ⊂ G is any metric ball and f ∈ Λk(B). Then
we have for any 0 ≤ j < i ≤ k

(
1
|B|

∫
B

|Xj (f(x)−πk(B)f(x)) |qij dx

) 1
qij ≤Cρ(B)i−j

(
1
|B|

∫
B

|Xif(x)|pdx

) 1
p

for all 1 ≤ p < Q
i−j and qij ≤ pQ

Q−(i−j)p , where C is independent of B and f .

Since we do not necessarily have the vanishing integral property for the projec-
tion polynomial πk(B)f , the proof of theorem (5.3) does not follow immediatly.
Indeed, the proof relies on the approximation polynomilas in an elegant way.

Next we will give similar Poincaré inequalities on domains satisfying the so-
called chain condition as defined in (1.1).

Theorem 5.4. Let Ω ∈ F(σ, N) be a Boman chain domain in G and f ∈ Λk(Ω).
Then we have(∫

Ω

|f(x) − Pkf(x)| Qp
Q−kp dx

)Q−kp
pQ

≤ C

(∫
Ω

|Xkf(x)|pdx

) 1
p

for all 1 ≤ p < Q
k , where C is independent f and Ω, but only on the Boman

chain constants σ and N , and Pkf can be taken either as Pk(f, B0) or πk(B0)f
for the central ball B0.

The proof of theorem (5.4) follows from the Corollary (5.2) and Theorem
(5.3).

We remark here that more general forms of the above theorem can be given
for 1 ≤ j < i ≤ k as in Theorems (5.1). But we shall not give here.
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for Grushin type operators, Comm. Partial Diff. Eq. 19 (1994), 523–604.
[FLW] B. Franchi, G. Lu and R. L. Wheeden, Representation formulas and weighted Poincaré
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