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Simultaneous Representation and Approximation
Formulas and High-Order Sobolev Embedding

Theorems on Stratified Groups

Guozhen Lu and Richard L. Wheeden

Abstract. We give various integral representation formulas simultaneously for a func-
tion and its derivatives in terms of vector field gradients of the function of appropriately
high order. When the function has compact support, simpler formulas can be derived.
Many of the results proved here appear to be new even in the special case of classical
Euclidean space. For instance, Theorem 2.2 below reduces to the following result in the
usual Euclidean case:

Let B be a ball in RN with radius r(B), let m be a positive integer, and let f ∈
W m,1(B). Then there is a polynomial P = πm(B, f ) of degree m− 1 such that for any
integers i, j with 0 ≤ j < i ≤ m and a.e. x ∈ B,

|∇ j ( f − P)(x)| ≤ C

∫
B

|∇ i f (y)|
|x − y|N−(i− j)

dy + Cr(B)i− j−N

∫
B

|∇ i f (y)| dy.

Moreover, if 0 < i − j ≤ N , then for a.e. x ∈ B we have the more refined formula

|∇ j ( f − P)(x)| ≤ C

∫
B

|∇ i f (y)|
|x − y|N−i+ j

dy.

1. Introduction

In recent papers [17] and [11] by the authors, a relationship between higher-order
Poincaré inequalities and representation formulas has been established in fairly gen-
eral spaces of homogeneous type. This extends the first-order result derived in [10]. In
particular, an appropriate notion of polynomials in metric spaces is introduced in [17]
and [11], and it is shown that the existence of polynomials satisfying L1 to L1 Poincaré
inequalities implies higher-order representation formulas (see [16] for a more refined
result which assumes only an L1 to L p Poincaré inequality for some 0 < p < 1). In the
case of stratified Lie groups (also known as Carnot groups), where polynomials do exist,
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higher-order representation formulas are derived in [17] for functions in the Sobolev
spaces defined by Folland and Stein in [8]. An example of such a formula (actually, an
inequality) is

| f (x)− P(x)| ≤ C
∫

B
|Xm f (y)| ρ(x, y)m

|B(x, ρ(x, y))| dy, x ∈ B,

where P denotes a “polynomial” depending on f and B of degree m−1, Xm denotes an
appropriate differential operator of order m associated naturally with the metric ρ(x, y),
B is a metric ball, and B(x, r) is the metric ball with center x and radius r . The constant
C here should be independent of f, x , and B.

In order to be more precise, we now review some preliminaries concerning stratified
Lie groups. We refer the reader to the books [8] and [26] for further details. Let G be a
finite-dimensional, stratified, nilpotent Lie algebra. Assume that

G =
s⊕

i=1

Vi ,

with [Vi , Vj ] ⊂ Vi+ j for i + j ≤ s and [Vi , Vj ] = 0 for i + j > s. Let X1, . . . , Xl

be a basis for V1 and suppose that X1, . . . , Xl generate G as a Lie algebra. Then for
2 ≤ j ≤ s, we can choose a basis {Xi j }, 1 ≤ i ≤ kj , for Vj consisting of commutators
of length j . We set k1 = l and Xi1 = Xi , i = 1, . . . , l, and we call Xi1 a commutator
of length 1.

If G is the simply connected Lie group associated withG, then the exponential mapping
is a global diffeomorphism from G to G. Thus, for each g ∈ G, there is x = (xi j ) ∈ RN ,
1 ≤ i ≤ kj , 1 ≤ j ≤ s, N =∑s

j=1 kj , such that

g = exp
(∑

xi j Xi j

)
.

A homogeneous norm function | · | on G is defined by

|g| =
(∑
|xi j |2s!/j

)1/2s!
,

and Q = ∑s
j=1 jkj is said to be the homogeneous dimension of G. The dilation δr ,

r > 0, on G is defined by

δr (g) = exp
(∑

r j xi j Xi j

)
if g = exp

(∑
xi j Xi j

)
.

We call a curve γ : [a, b]→ G a horizontal curve connecting two points x, y ∈ G if
γ (a) = x , γ (b) = y, and γ

′
(t) ∈ V1 for all t . Then the Carnot–Carathéodory distance

between x, y is defined as

ρcc(x, y) = inf
γ

∫ b

a
〈γ ′(t), γ ′(t)〉1/2 dt,

where the infimum is taken over all horizontal curves γ connecting x and y. It is known
that any two points x , y on G can be joined by a horizontal curve of finite length and



Simultaneous High-Order Representation Formulas 649

then ρcc is a left-invariant metric on G. Associated with this metric, we can define the
metric ball centered at x and with radius r associated with this metric by

Bcc(x, r) = {y : ρcc(x, y) < r}.
We note that the metric ρcc is equivalent to the metric d(x, y) = |x−1 y| defined by the
homogeneous norm | · | in the following sense:

C1d(x, y) ≤ ρcc(x, y) ≤ C2d(x, y),

where C1 and C2 are positive constants which are independent of x, y. We denote the
metric ball associated with d by D(x, r) = {y ∈ G : d(x, y) < r}. An important feature
of both of these distance functions is that they, and thus the associated metric balls, are
left-invariant, namely,

ρcc(zx, zy) = ρcc(x, y), Bcc(x, r) = x Bcc(0, r),

and

d(zx, zy) = d(x, y), D(x, r) = x D(0, r).

However, we will use the metric ρcc and the metric balls Bcc(x, r) in this paper, and we
will drop the subscript “cc” from both ρcc and Bcc(x, r), and write simply ρ(x, y) and
B(x, r). We use r(B) to denote the radius of a ball B. The Lebesgue measure of a ball
B is known to satisfy |B| = CQr(B)Q .

We now recall the definition of the class of polynomials on G given by Folland
and Stein [8]. Let X1, . . . , Xl in V1 be the generators of the Lie algebra G, and let
X1, . . . , Xl , . . . , X N be a basis of G. We define d(X j ) = dj to be the length of X j as
a commutator, and we arrange the order so that 1 ≤ d1 ≤ · · · ≤ dN . Then it is easy
to see that dj = 1 for j = 1, . . . , l. Let ξ1, . . . , ξN be the dual basis for G∗, and let
ηi = ξi ◦ exp−1. Each ηi is a real-valued function on G, and η1, . . . , ηN gives a system
of global coordinates on G. A function P on G is said to be a polynomial on G if P ◦exp
is a polynomial on G. Every polynomial on G can be written uniquely as

P(x) =
∑

I

aIη
I (x), ηI = ηi1

1 · · · ηiN
N , aI ∈ R,

where all but finitely many of the coefficients aI vanish. Clearly ηI is homogeneous of
degree d(I ) = ∑N

j=1 i j dj , i.e., ηI (δr x) = rd(I )ηi (x). If P = ∑
I aIη

I , then we define
the homogeneous degree (or order) of P to be max{d(I ) : aI �= 0}.

Throughout this paper, for each positive integer m, we use Pm to denote the class of
polynomials of homogeneous degree strictly less than m.

We adopt the following multi-index notation for higher-order derivatives. If I =
(i1, . . . , iN ) ∈ NN , we set

X I = Xi1
1 · Xi2

2 · · · XiN
N .

By the Poincaré–Birkhoff–Witt theorem (see Bourbaki [3, I.3.7]), the differential op-
erators X I form a basis for the algebra of left-invariant differential operators in G.
Furthermore, we set

|I | = i1 + i2 + · · · + iN , d(I ) = d1i1 + d2i2 + · · · + dN iN .
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Thus, |I | is the order of the differential operator X I , and d(I ) is its degree of homogeneity;
d(I ) is called the homogeneous degree of X I . We also denote

|Xm f | =
( ∑

I :d(I )=m

|X I f |2
)1/2

for any positive integer m.
Let m be a positive integer, 1 ≤ p <∞, and let � be an open set in G. The Folland–

Stein Sobolev space W m,p(�) associated with the vector fields X1, . . . , Xl is defined
to consist of all functions f ∈ L p(�) with distributional derivatives X I f ∈ L p(�) for
every X I defined above with d(I ) ≤ m. Here we say that the distributional derivative
X I f exists and equals a locally integrable function gI if, for every ϕ ∈ C∞0 (�),∫

�

f X Iϕ dx = (−1)d(I )
∫
�

gIϕ dx .

W m,p(�) is equipped with the norm

‖ f ‖W m,p(�) = ‖ f ‖L p(�) +
∑

1≤d(I )≤m

‖X I f ‖L p(�).(1.1)

When � = G, we sometimes use ‖ f ‖m,p to denote ‖ f ‖W m,p(G). We also sometimes use
‖ f ‖m,p;� to denote ‖ f ‖W m,p(�). If f ∈ W m,p(�) for some m and p, we will refer to f
as a Sobolev function.

We now recall some possible choices of polynomials associated with any given
Sobolev function f ∈ W m,p(�). These polynomials are useful in obtaining higher-order
Poincaré inequalities for f . The following result is Theorem 3.7 in [14]:

Theorem 1.2. Let � ⊂ G be an open set of finite Lebesgue measure. Then given any
positive integer m and f ∈ W m,1(�), there exists a unique polynomial P = Pm(�, f )
on G of degree less than m such that∫

�

X I ( f − P) = 0 for all I with 0 ≤ d(I ) < m.(1.3)

On the Heisenberg group, the existence of polynomials satisfying (1.3) was proved in
[20]. See also [21] for general Carnot groups.

In any case, let us show that

X JPm(B, f ) = Pm−d(J )(B, X J f )

for each J . In fact, Pm(B, f ) is the unique polynomial P with∫
B

X I ( f − P) = 0 for all I with d(I ) < m,

and, consequently,∫
B

X K (X J ( f − Pm(B, f ))) = 0 if d(K ) < m − d(J ),
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i.e., ∫
B

X K (X J f − X J Pm(B, f )) = 0 if d(K ) < m − d(J ),

and the formula follows from the uniqueness property.
In [14], a second class of polynomials associated with Sobolev functions is considered.

Polynomials in this class are called “projection polynomials” and are described in the
next definition.

Definition 1.4. For each m ∈ N and ball B ⊂ G, a projection of order m associated
with B is defined to be a linear map

πm(B, ·) : W m,1(B)→ Pm

such that the following two properties hold:

sup
x∈B
|πm(B, f )(x)| ≤ Cr(B)−Q‖ f ‖L1(B),(1.5)

with C independent of f and B and

πm(B, P) = P for all P ∈ Pm .(1.6)

We will refer to πm(B, f ) as a projection polynomial of order m − 1 associated with B
and f .

The polynomials constructed in Theorem 1.2 may not satisfy (1.5). The existence of
projection polynomials is proved in Theorem 3.6 in [14]. It is also shown there (see
Theorem 3.8) that the following result holds:

Theorem 1.7. Let m ∈ N and let B be a ball in �. Then for any projection πm(B, ·) :
W m,1(B)→ Pm , any q with 1 ≤ q ≤ ∞, and any multiple index I with d(I ) = i ≥ 0,

‖X Iπm(B, f )‖Lq (B) ≤ C‖Xi f ‖Lq (B),(1.8)

with C independent of f and B.

This shows that a subelliptic derivative of πm(B, f ) is controlled by the same order
subelliptic derivative of f .

We also recall the notions of a Boman chain domain and (see [17]) a “weak” Boman
chain domain.

Definition 1.9. A domain (i.e., an open connected set) � in G is said to satisfy the
Boman chain condition of type σ,M , or to be a member of F(σ,M), if there exist
constants σ > 1, M > 0, and a family F of metric balls B ⊂ � such that:

(i) � =⋃
B∈F B.

(ii)
∑

B∈F χσ B(x) ≤ M χ
�
(x) for all x ∈ S.
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(iii) There is a “central ball” B0 ∈ F such that for each ball B ∈ F , there is a positive
integer k = k(B) and a chain of balls {Bj }kj=0 for which Bk = B and each
Bj ∩ Bj+1 contains a ball Dj with Bj ∪ Bj+1 ⊂ M Dj .

(iv) B ⊂ M Bj for all j = 0, . . . , k(B) with B and Bj as in (iii).

If we replace the hypothesis that σ > 1 by σ = 1, we say that � satisfies the weak
Boman chain condition.

It follows from condition (iv) that such domains are bounded.
To motivate the results of this paper, we need to review some known facts about

high-order representation formulas on stratified groups. The following two theorems are
special cases of more general ones in [17].

Theorem 1.10. Let B be a ball in G, let m be a positive integer, and let f ∈ W m,1(B).
Then for either of the polynomials P = Pm(B, f ) or P = πm(B, f ) of order less than
m and a.e. x ∈ B,

| f (x)− P(x)| ≤ C
∫

B
|Xm f (y)| ρ(x, y)m

|B(x, ρ(x, y))| dy + C
r(B)m

|B|
∫

B
|Xm f (y)| dy.

Moreover, if m ≤ Q, then for a.e. x ∈ B,

| f (x)− P(x)| ≤ C
∫

B
|Xm f (y)| ρ(x, y)m

|B(x, ρ(x, y))| dy.

The constant C is independent of f, x , and B.

For a weak Boman chain domain, we have also proved the next result in [17].

Theorem 1.11. Let � be a weak Boman chain domain in G with a central ball B0,
and let f ∈ W m,1(�). If 1 ≤ m ≤ Q, then for a.e. x ∈ � and either of the polynomials
P = Pm(B0, f ) or P = πm(B0, f ) of order less than m,

| f (x)− P(x)| ≤ C
∫
�

|Xm f (y)| ρ(x, y)m

|B(x, ρ(x, y))| dy.

These two theorems essentially say that every Sobolev function can be approximated
pointwise by polynomials over metric balls or Boman chain domains, and the remainders
are controlled by the fractional integral of higher-order derivatives of the function.

We remark that, even in the special case of ordinary Euclidean space RN (i.e., RN

with the usual Euclidean metric), results of the above type were previously known only
for domains� which are star-shaped with respect to an open set D ⊂ � (see [22], [23],
[19], or [1, p. 217]). The choice of polynomial in [1] is the usual Taylor polynomial and
thus may not have the properties of the polynomials Pm(B, f ) or πm(B, f ) given in
Theorems 1.2 and 1.7. When the function has compact support in a domain� ⊂ RN , the
polynomial in Theorem 1.11 can be dropped (see [22], [23], [19], [1]). We also mention
that polynomials are used to measure the smoothness of functions by considering their
maximal functions in Euclidean space (see [6]).
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Motivated by Theorems 1.10 and 1.11 for Carnot groups and by the work in the special
case of Euclidean space, we ask the following natural questions for Sobolev functions
on Carnot groups:

Question 1. Can we approximate a Sobolev function f and its derivatives simultane-
ously? More precisely, can we approximate not only f by the associated polynomial
but also approximate the derivatives of f by the corresponding derivatives of the same
polynomial?

Question 2. When f has compact support, can we replace the polynomial by zero in
the representation inequality?

The main purpose of this paper is to answer these questions affirmatively and give some
applications. We remark that our results appear to be new even in the usual Euclidean case.
Concerning the second question above, we will show that a representation formula for
higher-order Sobolev functions with compact support (with the polynomials Pm(B, f )
and πm(B, f ) that we used in Theorems 1.2 and 1.7 then replaced by 0) follows by
a limit argument from the formula for functions without compact support. High-order
representation formulas for functions with compact support cannot presently be derived
by the process of integration by parts against the fundamental solutions of arbitrarily high-
order subelliptic operators because such fundamental solutions and their estimates are
not known to exist. However, by using a limit argument and the polynomials πm(B, f ),
we will be able to derive the pointwise representation formula without any polynomial on
the left side for functions with compact support. This is done by first deriving a formula
for global Sobolev functions (i.e., Sobolev functions in the whole space G), from which
the formula for functions with compact support follows easily (see Section 3). Such an
argument can also be used to derive higher-order Sobolev inequalities for functions with
compact support from higher-order Poincaré inequalities (see Section 4). For functions
without compact support, we need the simultaneous representation formulas to derive
the simultaneous Poincaré and exponential estimates in Section 6.

The organization of the paper is as follows. In Section 2 we state and prove the
simultaneous representation formulas. If we allow the derivatives on the right-hand
side of the formula to be of top order (i.e., |Xm f |), then we can choose either of the
polynomials Pm(B, f ) or πm(B, f ) on the left-hand side, i.e., we can approximate X J f
by either X J Pm(B, f ) or X Jπm(B, f ) for all J with d(J ) < m. This is Theorem
2.1. If we choose to use the polynomials πm(B, f ), then we can approximate X J f by
X Jπm(B, f ) for d(J ) < m by instead using on the right-hand side only |Xi f | for
any i with d(J ) < i ≤ m. This is Theorem 2.2. In Section 3 we answer Questions
2 and 3 above by proving representation formulas of Sobolev type, i.e., formulas for
compactly supported f and with no polynomial on the left-hand side. Theorem 3.1 is a
representation formula for globally defined functions with sufficiently small growth at
∞, and Theorem 3.2 treats the special case of functions with compact support. Section 4
deals with higher-order Sobolev norm inequalities as opposed to pointwise estimates. We
mention here that Sobolev norm inequalities of the same type have also been obtained
in [5] for functions vanishing on a set of positive Lebesgue measure or, more generally,
vanishing on a set of positive Bessel capacity, by using the Bessel potential estimates for
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stratified groups given in [15]. However, the derivation here is of independent interest and
simpler. In Sections 5 and 6 we give simultaneous weighted higher-order Poincaré and
Sobolev inequalities as well as exponential estimates and L∞ estimates. Their derivation
uses the simultaneous pointwise representation formulas in Sections 2 and 3.

2. Simultaneous Representation Formulas

The main results of this section are given in the next three theorems.

Theorem 2.1. Let B be a ball, let m be a positive integer, and let f ∈ W m,1(B). Then
for either of the polynomials P = Pm(B, f ) or P = πm(B, f ), any integer j with
0 ≤ j < m, and a.e. x ∈ B,

|X j ( f − P)(x)| ≤ C
∫

B
|Xm f (y)| ρ(x, y)m− j

|B(x, ρ(x, y))| dy + C
r(B)m− j

|B|
∫

B
|Xm f (y)| dy,

where as usual |X j f | = (∑d(I )= j |X I f |2)1/2.
Moreover, if Q is the homogeneous dimension of G and 0 < m − j ≤ Q, then for a.e

x ∈ B we have the more refined formula

|X j ( f − P)(x)| ≤ C
∫

B
|Xm f (y)| ρ(x, y)m− j

|B(x, ρ(x, y))| dy.

Theorem 2.2. Let B be a ball, let m be a positive integer, and let f ∈ W m,1(B). Let
i, j be integers with 0 ≤ j < i ≤ m. Then for the polynomial P = πm(B, f ) and a.e.
x ∈ B,

|X j ( f − P)(x)| ≤ C
∫

B
|Xi f (y)| ρ(x, y)i− j

|B(x, ρ(x, y))| dy + C
r(B)i− j

|B|
∫

B
|Xi f (y)| dy.

Moreover, if 0 < i − j ≤ Q, then for a.e. x ∈ B we have the more refined formula

|X j ( f − P)(x)| ≤ C
∫

B
|Xi f (y)| ρ(x, y)i− j

|B(x, ρ(x, y))| dy.

In the case i = m, Theorem 2.2 is included in Theorem 2.1 and, in that case, is the
same as the part of Theorem 2.1 for P = πm(B, f ). The case j = 0 of Theorem 2.1
is contained in Theorem A of [17]; see Theorem 2.6 below and the discussion which
precedes it.

We can also show that the second estimate in Theorem 2.2 remains valid when i− j ≤
Q if the ball B is replaced by a weak Boman chain domain in G. This is stated in the
next theorem.

Theorem 2.3. Let m be a positive integer, let � be a weak Boman chain domain in G
with a central ball B0, and let f ∈ W m,1(�). Let i, j be integers with 0 ≤ j < i ≤ m
and i − j ≤ Q. Then for the polynomial P = πm(B0, f ) and a.e. x ∈ �,

|X j ( f − P)(x)| ≤ C
∫
�

|Xi f (y)| ρ(x, y)i− j

|B(x, ρ(x, y))| dy.



Simultaneous High-Order Representation Formulas 655

To prove these theorems, we will use the next three results from [13], [14], and [17]
concerning higher-order Poincaré inequalities.

Theorem 2.4. Let m be a positive integer, p ≥ 1, let B be a ball, and let f ∈ W m,p(B).
Then for either of the polynomials P = Pm(B, f ) or P = πm(B, f ) and any integer j
with 0 ≤ j < m,

(
1

|B|
∫

B
|X j ( f − P)(x)|qmj dx

)1/qmj

≤ Cr(B)m− j

(
1

|B|
∫

B
|Xm f (x)|p dx

)1/p

for all 1 ≤ p < Q/(m − j) and qmj = pQ/[Q − (m − j)p], where C is independent
of B and f .

In fact, more general L p, Lq analogues of Theorem 2.4 are proved in [13], [14], and
they follow from repeated use of the Poincaré inequalities of first order proved, e.g., in
[18], [9], [12]. The proofs also use the vanishing integral property (1.3) of the polynomial
Pm(B, f ).

If we choose the projection polynomial πm(B, f ), then Theorem 2.4 can be improved
as follows (see [14, Theorem 6.3]):

Theorem 2.5. Let m be a positive integer, p ≥ 1, let B be a ball, and let f ∈ W m,p(B).
Then for any integers i, j with 0 ≤ j < i ≤ m,

(
1

|B|
∫

B
|X j ( f − πm(B, f ))(x)|qi j dx

)1/qi j

≤ Cr(B)i− j

(
1

|B|
∫

B
|Xi f (x)|p dx

)1/p

for all 1 ≤ p < Q/(i − j) and qi j = pQ/[Q − (i − j)p], where C is independent of
B and f .

In fact, we only need the special cases of Theorems 2.4 and 2.5 when p = 1 (and with
qmj , qi j replaced by 1) in order to prove Theorems 2.1–2.3, but the general cases will be
used in Section 4.

Since we may not have the vanishing integral property (1.3) for the projection poly-
nomial πm(B, f ), the proof of Theorem 2.5 does not follow immediately by iteration
from the Poincaré inequality of first order. The interesting feature of the theorem is that
even for i < m (thus the degree of πm(B, f ) is larger than i − 1), the left-hand side is
controlled by the i th-order derivatives of f alone. For the convenience of the reader, we
now reproduce a proof given in [14].

Proof of Theorem 2.5. We will use Theorem 2.4 in the proof. Given 0 ≤ j < i ≤ m,
let Pi (B, f ) be the polynomial of degree less than i guaranteed by Theorem 1.2. Then

(
1

|B|
∫

B
|X j ( f − πm(B, f ))(x)|qi j dx

)1/qi j

≤
(

1

|B|
∫

B
|X j ( f − Pi (B, f ))(x)|qi j dx

)1/qi j
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+
(

1

|B|
∫

B
|X j (Pi (B, f )− πm(B, f ))(x)|qi j dx

)1/qi j

= I1 + I2,

where I1 and I2 are defined by the last equality. The term I1 is bounded by the expression
on the right-hand side of the conclusion of the theorem by Theorem 2.4 with m replaced
by i there. Thus we only need to estimate I2. By Bernstein’s inequality (see, e.g., [14]),

I2 ≤ Cr(B)− j 1

|B|
∫

B
|Pi (B, f )(x)− πm(B, f )(x)| dx

= Cr(B)− j 1

|B|
∫

B
|πm(B, Pi (B, f )− f )(x)| dx

≤ Cr(B)− j sup
x∈B
|πm(B, Pi (B, f )− f )(x)|

≤ C
r(B)− j

|B|
∫

B
| f (x)− Pi (B, f )(x)| dx,

where in the equality we have used (1.6), and in the last inequality we have used (1.5).
We can estimate the last term by using the Poincaré inequality given in Theorem 2.4: in
fact, the last term is at most

Cr(B)i− j

(
1

|B|
∫

B
|Xi f (x)|p dx

)1/p

, 1 ≤ p <
Q

i
,

which finishes the proof of Theorem 2.5.

To prove Theorems 2.1, 2.2, and 2.3, we will also need some results from [17, The-
orems A, C], including a relationship between higher-order Poincaré inequalities and
representation formulas. However, we need these results only in the special case of strat-
ified groups; more general metric spaces are considered in [17]. For stratified groups,
the properties required of polynomials in [17, Theorems A, C] are true by [8]. The result
that we need is stated in the next theorem.

Theorem 2.6. Let B0 be a ball in G, let m be a positive integer, and let f, g be integrable
functions on B0. Suppose that for each ball B ⊂ B0, there is a polynomial p(B) =
p(B, f, g,m) of order less than m such that

∫
B
| f (x)− p(B)(x)| ≤ cr(B)m

∫
B
|g(x)| dx(2.7)

for an absolute constant c. Then for a.e. x ∈ B0,

| f (x)− p(B0)(x)| ≤ C
∫

B0

|g(y)| ρ(x, y)m

|B(x, ρ(x, y))| dy + C
r(B0)

m

|B0|
∫

B0

|g(y)| dy,



Simultaneous High-Order Representation Formulas 657

and if m ≤ Q, then for a.e. x ∈ B0,

| f (x)− p(B0)(x)| ≤ C
∫

B0

|g(y)| ρ(x, y)m

|B(x, ρ(x, y))| dy.

The constant C is independent of f, g, x , and B0.
Moreover, if � is a weak Boman chain domain in G with a central ball B0, and (2.7)

holds for each ball B ⊂ �, then for a.e. x ∈ �,

| f (x)− p(B0)(x)| ≤ C
∫
�

|g(y)| ρ(x, y)m

|B(x, ρ(x, y))| dy.

In particular, since (2.7) is true with g = |Xm f | for either of the polynomials Pm(B, f )
or πm(B, f ), we obtain Theorems 1.10 and 1.11 as immediate corollaries of Theorem
2.6.

We now turn to the proofs of the main theorems in this section. The proofs are simple
corollaries of Theorem 2.6.

Proof of Theorem 2.1. Fix m, B0 and a function f ∈ W m,1(B0). Given J with d(J ) =
j < m, let F = X J f and g = |Xm f |. By Theorem 2.4, for each ball B ⊂ B0, and either
of the polynomials p(m, F, B) = X JPm(B, f ) or p(m, F, B) = X Jπm(B, f ), we have∫

B
|F(x)− p(m, F, B)| dx ≤ Cr(B)m− j

∫
B

g(x) dx,

where C is independent of B, f , and F . Thus, by Theorem 2.6 with m replaced by m− j ,
it follows that, for a.e. x ∈ B0,

|F(x)− p(m, F, B0)(x)| ≤ C
∫

B0

g(y)
ρ(x, y)m− j

|B(x, ρ(x, y))| dy + C
r(B0)

m− j

|B0|
∫

B0

g(y) dy.

Similarly, if m − j ≤ Q, then for a.e. x ∈ B0,

|F(x)− p(m, F, B0)(x)| ≤ C
∫

B0

g(y)
ρ(x, y)m− j

|B(x, ρ(x, y))| dy.

The constants C are independent of f, F, x , and B0. This is equivalent to saying that for
P = Pm(B0, f ) or P = πm(B0, f ) and a.e. x ∈ B0,

|X J f (x)− X J P(x)|

≤ C
∫

B0

|Xm f (y)| ρ(x, y)m− j

|B(x, ρ(x, y))| dy + C
r(B0)

m− j

|B0|
∫

B0

|Xm f (y)| dy,

and if, in addition, m − j ≤ Q, then

|X J f (x)− X J P(x)| ≤ C
∫

B0

|Xm f (y)| ρ(x, y)m− j

|B(x, ρ(x, y))| dy

for the same constants C as above, and the result follows.
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It is possible to give an alternate proof of Theorem 2.1 based on the known case j = 0
and the identity X JPm(B0, f ) = Pm−d(J )(B0, X J f ), d(J ) < m, noted earlier. In fact,
in the case the polynomial P in Theorem 2.1 is chosen to be Pm(B0, f ), then the first
statement of Theorem 2.1 for 1 ≤ j < m follows immediately from this identity and
the case j = 0 of Theorem 2.1 applied to the functions X J f with d(J ) = j and with m
replaced by m− j = m−d(J ). If P is instead chosen to beπm(B0, f ), the corresponding
estimates in the first statement of Theorem 2.1 can then be deduced as follows. Since

|X j ( f − πm(B0, f ))| ≤ |X j ( f − Pm(B0, f ))| + |X j (Pm(B0, f )− πm(B0, f ))|,

it is enough to show that

|X j (Pm(B0, f )− πm(B0, f ))(x)| ≤ C
r(B0)

m− j

|B0|
∫

B0

|Xm f | dy, x ∈ B0.

In the case j = 0, for all x ∈ B0,

|Pm(B0, f )(x)− πm(B0, f )(x)| = |πm(B0, f − Pm(B0, f ))(x)| by (1.6)

≤ Cr(B0)
−Q‖ f − Pm(B0, f )‖L1(B0) by (1.5)

≤ C
r(B0)

m

|B0|
∫

B0

|Xm f | dy

by the L1, L1 Poincaré inequality in [17]. For any j and all x ∈ B0, by Bernstein’s
inequality,

|X j (Pm(B0, f )− πm(B0, f ))(x)| ≤ Cr(B0)
− j 1

|B0|
∫

B0

|Pm(B0, f )− πm(B0, f )| dy,

and the desired estimate then follows from the one just established for j = 0. A similar
proof can be given for the second statement in Theorem 2.1.

In passing, we note that the estimate

|Pm(B0, f )(x)− πm(B0, f )(x)| ≤ C
r(B0)

m

|B0|
∫

B0

|Xm f | dy, x ∈ B0,

shown above implies that the polynomials Pm(B0, f ) satisfy the property of the polyno-
mials πm(B0, f ) in (1.6). In fact, if we apply the estimate to any polynomial p of degree
at most m − 1, then since Xm p is identically 0, we obtain that Pm(B0, p) = πm(B0, p)
and, therefore, by (1.6) that Pm(B0, p) = p.

Proof of Theorem 2.2. Fix m, B0, a function f ∈ W m,1(B0), and integers i, j with
0 ≤ j < i ≤ m. Given J with d(J ) = j , let F = X J f and g = |Xi f |. By Theorem
2.5, for each ball B and the polynomial p = X Jπm(B, f ),∫

B
|F(x)− p(x)| dx ≤ cr(B)i− j

∫
B

g(x) dx
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with c independent of B, f , and F . Thus, by Theorem 2.6 with m there replaced by
i − j , we have for a.e. x ∈ B0 that

|F(x)− p(x)| ≤ C
∫

B0

g(y)
ρ(x, y)i− j

|B(x, ρ(x, y))| dy + C
r(B0)

i− j

|B0|
∫

B0

g(y) dy,

and if, in addition, i − j ≤ Q, then

|F(x)− p(x)| ≤ C
∫

B0

g(y)
ρ(x, y)i− j

|B(x, ρ(x, y))| dy.

The constants C are independent of f, F, x , and B0. This is equivalent to the conclusion
of the theorem. We do not know how to give a second proof of Theorem 2.2 analogous
to the second proof of Theorem 2.1.

The proof of Theorem 2.3 is similar and we omit it.

3. Representation Formulas of Sobolev Type

This section answers Question 2 and deals with higher-order representation formulas
of Sobolev type, i.e., formulas for functions with compact support. As we mentioned
in the Introduction, the results generalize known ones in the classical Euclidean case
([22], [23], [19], [1]). The main idea of our proofs is to choose the projection polynomial
πm(B, f ) in the simultaneous representation formulas. In this way, the proofs will follow
very easily from Theorems 2.1 and 2.2.

Theorem 3.1. Suppose that m is any positive integer and f ∈ W m,1
loc (G). Let j be an

integer with 0 ≤ j < m and m − j ≤ Q. Then for a.e. x ∈ G,

|X j f (x)| ≤ C
∫

G
|Xm f (y)| ρ(x, y)m− j

|B(x, ρ(x, y))| dy

provided
∫

B(0,r) | f (y)| dy = o(rm) as r →∞.

Remark. The term on the right-hand side is finite a.e. in G under appropriate assump-
tions. For instance, if f ∈ W m,p(G) (globally) for some p ≥ 1 and m − j < Q, the
right-hand side is a fractional integral of order m − j and thus maps L p(G) into Lq(G)
provided p > 1 and 1/q = 1/p − (m − j)/Q, and it maps L1(G) into weak Lq(G),
q = Q/[Q − (m − j)]. In either case, the right-hand side above is clearly finite a.e. in G.
When m− j = Q, it equals

∫
G |Xm f (y)| dy and is finite as long as f ∈ W m,1(G). More-

over, as is easy to see by Hölder’s inequality, the requirement that
∫

B(0,r) | f | = o(rm) as
r →∞ is met if f ∈ L p(G) for some p′ > Q/m, where 1/p + 1/p′ = 1.

Corollary 3.2. Let � be any domain in G, and let m, j be integers with 0 ≤ j < m
and m − j ≤ Q. If f ∈ W m,1

0 (�), then for a.e. x ∈ �,

|X j f (x)| ≤ C
∫
�

|Xm f (y)| ρ(x, y)m− j

|B(x, ρ(x, y))| dy.
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Proof of Theorem 3.1. Let Br = B(0, r). From Theorem 2.1, we have for a.e. x ∈ Br

and any J with d(J ) = j that

|X J f (x)− X Jπm(Br , f )(x)| ≤ C
∫

Br

|Xm f (y)| ρ(x, y)m− j

|B(x, ρ(x, y))| dy.

By Bernstein’s inequality and (1.5),

‖X jπm(Br ) f ‖L∞(Br ) ≤ Cr− j‖πm(Br , f )‖L∞(Br ) ≤ Cr− j 1

|Br |
∫

Br

| f (y)| dy.

Since r− j/|Br | ≈ r− j−Q and we have assumed that m ≤ j+Q and that
∫

Br
| f | = o(rm),

we obtain

lim
r→∞‖X

jπm(Br ) f ‖L∞(Br ) = 0,

and the result follows easily.

Proof of Corollary 3.2. Clearly, W m,1
0 (�) ⊂ W m,1(G), and if f ∈ W m,1

0 (�), then∫
Br
| f (y)| dy = o(rm) as r →∞. The result then follows from Theorem 3.1.

4. Higher-Order Sobolev Inequalities

In this section, we prove higher-order Sobolev inequalities for functions with compact
support. There are several possible ways to proceed. One way is to use the representation
formulas in Section 3 together with estimates about L p to Lq boundedness for fractional
integrals. A technical problem arises in this method in the case p = 1 since the corre-
sponding fractional integral result concerns only the space weak Lq , but this technicality
can be overcome by truncation arguments in the case of first order. In the case of higher
orders, it is not known if such an argument is valid. Another way to proceed is to iterate
known first-order Sobolev inequalities in order to derive higher-order results. However,
we present a different method here. It is similar to the one used in Section 3 to derive
representation formulas for functions with compact support from representation formu-
las for functions without compact support, namely, a passage to the limit. Thus we will
pass from Poincaré inequalities to Sobolev inequalities by a limiting argument which
works for all p ≥ 1. The first result below is not restricted to functions with compact
support.

Theorem 4.1. Let p ≥ 1 and let f ∈ W m,p(G). Then for any integers i, j with
0 ≤ j < i ≤ m,

(∫
G
|X j f (x)|qi j dx

)1/qi j

≤ C

(∫
G
|Xi f (x)|pdx

)1/p

,

provided 1 ≤ p < Q/(i − j) and qi j = pQ/[Q − (i − j)p]. The constant C is
independent of f .



Simultaneous High-Order Representation Formulas 661

Corollary 4.2. Let � be an open subset of G, p ≥ 1, and let f ∈ W m,p
0 (�). Then for

0 ≤ j < i ≤ m,(∫
�

|X j f (x)|qi j dx

)1/qi j

≤ C

(∫
�

|Xi f (x)|p dx

)1/p

,

provided 1 ≤ p < Q/(i − j) and qi j = pQ/[Q − (i − j)p]. The constant C is
independent of � and f .

Corollary 4.3. Let B ⊂ G be a metric ball, p ≥ 1, and let f ∈ W m,p
0 (B). Then for

0 ≤ j < i ≤ m,(
1

|B|
∫

B
|X j f (x)|q dx

)1/q

≤ Cr(B)i− j

(
1

|B|
∫

B
|Xi f (x)|p dx

)1/p

,

provided 1 ≤ p < Q/(i − j) and 1 ≤ q ≤ qi j = pQ/[Q − (i − j)p]. The constant C
is independent of B and f .

Proof of Theorem 4.1. Let Br = B(0, r). By Theorem 2.5, for 0 ≤ j < i ≤ m,(
1

|Br |
∫

Br

|X j ( f − πm(Br , f ))(x)|qi j dx

)1/qi j

≤ Cri− j

(
1

|Br |
∫

Br

|Xi f (x)|p dx

)1/p

for 1 ≤ p < Q/(i − j) and qi j = pQ/[Q − (i − j)p], where C is independent of r
and f . By definition of qi j , this estimate can be rewritten as(∫

Br

|X j ( f (x)− πm(Br , f )(x))|qi j dx

)1/qi j

≤ C

(∫
Br

|Xi f (x)|p dx

)1/p

.

Note that(∫
Br

|X jπm(Br , f )(x)|qi j dx

)1/qi j

≤ Cr Q/qi j‖X jπm(Br , f )‖L∞(Br )

≤ Cr Q/qi j− j−Q
∫

Br

| f (y)| dy

as in the proof of Theorem 3.1. Since Q/qi j − j − Q < 0, the last expression tends to
0 as r →+∞, and we obtain the desired estimate(∫

G
|X j f (x)|qi j dx

)1/qi j

≤ C

(∫
G
|Xi f (x)|p dx

)1/p

.

Proof of Corollary 4.2. This follows from Theorem 4.1 because W m,p
0 (�) ⊂

W m,p(G).

Proof of Corollary 4.3. Taking � = B in Theorem 4.2, we get(∫
B
|X j f (x)|qi j dx

)1/qi j

≤ C

(∫
B
|Xi f (x)|p dx

)1/p

.
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Thus, by Hölder’s inequality and the definition of qi j ,(
1

|B|
∫

B
|X j f (x)|q dx

)1/q

≤ Cr(B)i− j

(
1

|B|
∫

B
|Xi f (x)|p dx

)1/p

for all 1 ≤ p < Q/(i − j) and 1 ≤ q ≤ qi j (= pQ/[Q − (i − j)p]), with C indepen-
dent of B and f .

5. Simultaneous Embedding Theorems

5.1. Weighted Simultaneous Poincaré Inequalities

We begin by using the simultaneous representation formulas to derive weighted simul-
taneous Poincaré inequalities for high-order vector field gradients on a stratified group
G, assuming a balance condition similar to the one in [4]. We adapt weighted results for
integral operators of potential type derived in [24] and [25].

If w(x) ∈ L1
loc(G) and w(x) ≥ 0, we say that w is a weight and use the notation

w(E) = ∫
E w(x) dx for any measurable set E . If w is a weight, we say that w ∈ Ap,

1 < p <∞, if there is a constant C such that for all metric balls B,(
1

|B|
∫

B
w(x) dx

)1/p (
1

|B|
∫

B
w(x)−p′/pdx

)1/p′

≤ C,

where p′ = p/(p − 1). A Borel measure µ on G is said to be doubling of order N if
there is a constant C > 0 such that, for any balls B1 and B2 with B1 ⊂ B2,

µ(B2) ≤ C

(
r(B2)

r(B1)

)N

µ(B1).

Clearly, Lebesgue measure is doubling of order Q. In the case the measure dµ = w dx
is a doubling measure, we will say that w is doubling. It is not hard to see that w is
doubling if w ∈ Ap for some p.

Theorem 5.1. Let B0 be a ball in a stratified Lie group G, and let m, j be integers with
0 ≤ j < m. Suppose thatw1, w2 are weights satisfying the following balance conditions
for some p, qj with 1 < p < qj <∞:(

r(B)

r(B0)

)m− j (
w2(B)

w2(B0)

)1/qj

≤ C

(
w1(B)

w1(B0)

)1/p

(5.2)

for all metric balls B with B ⊂ cB0, where c is a suitably large geometric constant.
Suppose also that w1 ∈ Ap and w2 is doubling. If f ∈ W m,p(B0), then for either of the
polynomials P = Pm(B0, f ) or P = πm(B0, f ),(

1

w2(B0)

∫
B0

|X j ( f − P)|qjw2 dx

)1/qj

(5.3)

≤ Cr(B0)
m− j

(
1

w1(B0)

∫
B0

|Xm f |pw1 dx

)1/p

.
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The nonweighted case of (5.3) was already given in Theorem 2.4. The balance con-
dition (5.2) leads to the restrictions on the indices in Theorem 2.4. The case j = 0 of
Theorem 5.1 was proved in [17].

Proof of Theorem 5.1. There are several ways to proceed. First observe by Theo-
rem 2.1 that for either of the polynomials P = Pm(B0, f ) or P = πm(B0, f ) and a.e.
x ∈ B0,

(5.4)

|X j ( f − P)(x)|≤C
∫

B0

|Xm f (y)| ρ(x, y)m− j

|B(x, ρ(x, y))| dy + C
r(B0)

m− j

|B0|
∫

B0

|Xm f (y)| dy.

Using the integral operator Tj defined by

Tj g(x) =
∫

G
g(y)

ρ(x, y)m− j

|B(x, ρ(x, y))| dy,

we may rewrite (5.4) as

|X j ( f − P)(x)|χB0(x) ≤ CTj (|Xm f |χB0)(x)+ C
r(B0)

m− j

|B0|
∫

B0

|Xm f (y)| dy.

The second term on the right here is a constant, and by Hölder’s inequality, it is bounded
by the right side of (5.3) because w1 ∈ Ap. Consequently, (5.3) will follow by verifying
the norm estimate(∫

B0

|Tj (gχB0)(x)|qjw(x) dx

)1/qj

≤ C

(∫
B0

|g(x)|pv(x) dx

)1/p

(5.5)

with weights w, v chosen to be

w(x) = 1

w2(B0)
w2(x) and v(x) = r(B0)

(m− j)p

w1(B0)
w1(x).

The rest of the proof is now identical to that of Theorem 5.1 in [17].

Another way to proceed is to deduce the result from the known case j = 0 proved in
[17]. In fact, first choosing P = Pm(B0, f ), we can combine the fact that X J Pm(B0, f ) =
Pm− j (B0, X J f ) if d(J ) = j with the known case j = 0 to immediately deduce (5.3)
for P = Pm(B0, f ). Next, in order to deduce (5.3) for the choice P = πm(B0, f ), we
simply use the fact that (5.3) for any polynomial of degree less than m implies (5.3) for
the polynomial πm(B0, f ). This can be seen by the sort of reasoning used in the second
proof of Theorem 2.1 coupled with Hölder’s inequality in order to pass from Lebesgue
measure to w1-measure, since w1 ∈ Ap.

The first of these methods also leads to the next result.

Theorem 5.6. Let B0 be a ball in a stratified Lie group G, and let m, i , and j be
integers with 0 ≤ j < i ≤ m. Suppose that w1, w2 are weights satisfying the following
balance conditions for some p, qi j with 1 < p < qi j <∞:(

r(B)

r(B0)

)i− j (
w2(B)

w2(B0)

)1/qi j

≤ C

(
w1(B)

w1(B0)

)1/p
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for all metric balls B with B ⊂ cB0, where c is a suitably large geometric constant.
Suppose also that w1 ∈ Ap and w2 is doubling. If f ∈ W m,p(B0), then

(
1

w2(B0)

∫
B0

|X j ( f − πm(B0, f ))|qi jw2 dx

)1/qi j

(5.7)

≤ Cr(B0)
i− j

(
1

w1(B0)

∫
B0

|Xi f |pw1 dx

)1/p

.

The nonweighted case of Theorem 5.6 was already given in Theorem 2.5.
The proof of Theorem 5.6 is similar to the first proof of Theorem 5.1, but uses Theo-

rem 2.2 instead of Theorem 2.1.

5.2. Simultaneous Exponential Inequalities

We now fix k > 0, a ball B ⊂ G and a Borel measure µ, and then define

TB,k g(x) =
∫

B
g(y)

ρ(x, y)k

µ(B(x, ρ(x, y)))
dµ(y).

We will need the following special case of Theorem 5.8 in [17]:

Lemma 5.8. Letµ be a doubling measure of order N and let TB,k g be defined as above
for k > 0 and a fixed ball B ⊂ G. Suppose that pk = N and p > 1. Then there is a
constant C > 0 independent of B and g such that

1

µ(B)

∫
B

exp

{ (
r(B)k

Cµ(B)1/p

|TB,k g(x)|
‖g‖L p(B,dµ)

)p/(p−1) }
dµ(x) ≤ C.

Theorem 5.9. Let B be a metric ball in a stratified group G of homogeneous dimension
Q. Let m and j be integers with 0 ≤ j < m < Q, and let pj be defined by pj =
Q/(m − j). If f ∈ W m,Q(B), then for either of the polynomials P = Pm(B, f ) or
πm(B, f ),

1

|B|
∫

B
exp

{ ( |X j ( f − P)(x)|
C‖Xm f ‖L pj (B,dx)

)pj /(pj−1) }
dx ≤ C,

with C independent of f and B. Moreover, for the same pj , a similar result holds for
any weak Boman domain� in G: if B0 is a central ball for� and P is either Pm(B0, f )
or πm(B0, f ), then

1

|�|
∫
�

exp

{ ( |X j ( f − P)(x)|
C‖Xm f ‖L pj (�,dx)

)pj /(pj−1) }
dx ≤ C.

Proof. The first statement follows immediately from Lemma 5.8 and the simultaneous
representation formulas in Theorem 2.1. Recall that on a stratified group G, |B| =
CQr(B)Q . The second statement can be obtained from Theorem 2.3 by arguing as in the
proof of Corollary 5.9 in [17].
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Similarly, we can deduce the next theorem from the simultaneous representation for-
mula in Theorem 2.2.

Theorem 5.10. Let B be a metric ball in a stratified group G of homogeneous dimen-
sion Q. Let j, i,m be integers with 0 ≤ j < i ≤ m < Q, and let pi j be defined by
pi j = Q/(i − j). If f ∈ W m,Q(B), then

1

|B|
∫

B
exp

{ ( |X j ( f − πm(B, f ))(x)|
C‖Xi f ‖L pi j (B,dx)

)pi j /(pi j−1) }
dx ≤ C,

with C independent of f and B. Moreover, for the same pi j , a similar result holds for
any weak Boman domain � in G: if B0 is a central ball for �, then

1

|�|
∫
�

exp

{ ( |X j ( f − πm(B0, f ))(x)|
C‖Xi f ‖L pi j (�,dx)

)pi j /(pi j−1) }
dx ≤ C.

5.3. Simultaneous L∞ Estimates and the Hölder Continuity

We now prove some estimates on stratified groups in the case either p = 1 and m− j ≥ Q
or p > 1 and p(m − j) > Q; these complement the results in Subsection 5.2 where
p > 1 and p(m − j) = Q.

Theorem 5.11. Let B be a metric ball in a stratified group G of homogeneous dimen-
sion Q. Let 0 ≤ j < m, p ≥ 1, (m − j)p > Q if p > 1 and m − j ≥ Q if p = 1. If
f ∈ W m,p(B), then for either of the polynomials P = Pm(B, f ) or P = πm(B, f ),

‖X j ( f − P)‖L∞(B,dx) ≤ Cr(B)m− j−Q/p‖Xm f ‖L p(B,dx)(5.12)

with C independent of f and B. In particular,

‖X j f ‖L∞(B,dx) ≤ C

r(B) j+Q

∫
B
| f (y)| dy + Cr(B)m− j−Q/p‖Xm f ‖L p(B,dx).(5.13)

Moreover, if p > 1, m − j ≤ Q, and (m − j)p > Q, a similar result holds for any
weak Boman domain � in G: if B0 is a central ball, then for either P = Pm(B0, f ) or
P = πm(B0, f ),

‖X j ( f − P)‖L∞(�,dx) ≤ C |�|(m− j)/Q−1/p‖Xm f ‖L p(�,dx).(5.14)

In particular, for the central ball B0,

‖X j f ‖L∞(�,dx) ≤ C(�)

r(B0) j |B0|
∫

B0

| f (y)| dy + C |�|(m− j)/Q−1/p‖Xm f ‖L p(�,dx).(5.15)

Proof. If P = Pm(B, f ) or P = πm(B, f ), then by Theorem 2.1,

|X j ( f − P)(x)| ≤ C
∫

B
ρ(x, y)m− j−Q |Xm f (y)| dy + Cr(B)m− j−Q

∫
B
|Xm f (y)| dy
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for a.e. x ∈ B. If p = 1 and m − j ≥ Q, the right side is at most

Cr(B)m− j−Q
∫

B
|Xm f (y)| dy,

and (5.12) follows. If p > 1 and (m − j)p > Q, then by the Hölder inequality, both
terms on the right are easily seen to be bounded by Cr(B)m− j−(Q/p)‖Xm f ‖L p(B,dx),

which proves (5.12). If we choose P to be πm(B, f ), namely, to satisfy

‖πm(B, f )‖L∞(B,dx) ≤ C

|B|
∫

B
| f (y)| dy,(5.16)

then (5.13) follows from (5.12) by the triangle inequality.
If m − j ≤ Q and B0 is a central ball for �, by Theorem 2.1 and then the Hölder

inequality, we obtain that, for either P = Pm(B0, f ) or P = πm(B, f ) and a.e. x ∈ �,

|X j ( f − P)(x)| ≤ C

(∫
�

ρ(x, y)(m− j−Q)p′dy

)1/p′

‖Xm f ‖L p(�,dx).(5.17)

By selecting R with |B(x, R)| = |�| and using the fact that−Q < (m− j − Q)p′ ≤ 0,
we see that the first factor on the right in (5.17) is bounded by(∫

B(x,R)
ρ(x, y)(m− j−Q)p′dy +

∫
ρ(x,y)>R;�

R(m− j−Q)p′dy

)1/p′

≤ C |�|(m− j)/Q−1/p.

This completes the proof of (5.14). To prove (5.15), note that since πm(B0, f ) satisfies
(5.16) for B0, then (5.14) implies

‖X j f ‖L∞(�,dx) ≤ ‖X jπm(B0, f )‖L∞(�,dx) + C |�|(m− j)/Q−1/p‖Xm f ‖L p(�,dx).

Since � ⊂ M B0 by Definition 1.9(iv), the first term on the right is at most

‖X jπm(B0, f )‖L∞(M B0,dx) ≤ C(M)‖X jπm(B0, f )‖L∞(B0,dx)

≤ C(M)

r(B0) j |B0|
∫

B0

| f (y)| dy,

where the penultimate estimate follows from Bernstein’s inequality and (1.5). We em-
phasize that C(M) is independent of f and B0. This finishes the proof of (5.15).

6. Other Embedding Theorems of Sobolev Type

By using the representation formulas of Sobolev type proved in Section 3, we can obtain
the following weighted Sobolev inequalities by methods like those used in Section 5.

Theorem 6.1. Let G be a stratified Lie group, and let m be any positive integer less
than Q. Let 1 < p < q <∞, let B0 be a metric ball, and let w1, w2 be weights which
satisfy the balance condition (5.2) for j = 0 and all metric balls B ⊂ cB0. Suppose also
that w1 ∈ Ap and w2 is doubling. If f ∈ W m,p

0 (B0), then(
1

w2(B0)

∫
B0

| f |qw2 dx

)1/q

≤ Cr(B0)
m

(
1

w1(B0)

∫
B0

|Xm f |pw1 dx

)1/p

.
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Proof of Theorem 6.1. First observe that, by Theorem 3.2,

| f (x)| ≤ C
∫

B0

|Xm f (y)| ρ(x, y)m

|B(x, ρ(x, y))| dy, a.e. x ∈ B0.

The result then follows from (5.5) with j = 0, in the same way that Theorem 5.1 was
proved.

Similarly, using the representation formula in Theorem 3.2, we can derive the next
result.

Theorem 6.2. Let B be a metric ball in a stratified group G of homogeneous dimension
Q, and let p > 1 and m be a positive integer with pm = Q. If f ∈ W m,p

0 (B), then

1

|B|
∫

B
exp

{ ( | f (x)|
C‖Xm f ‖L p(B,dx)

)p/(p−1) }
dx ≤ C

with C independent of f and B. Moreover, for the same p and m, a similar result holds
for any domain � in G and f ∈ W m,p

0 (�):

1

|�|
∫
�

exp

{ ( | f (x)|
C‖Xm f ‖L p(�,dx)

)p/(p−1) }
dx ≤ C.
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12. G. LU (1994): The sharp Poincaré inequality for free vector fields: An endpoint result. Rev. Mat.
Iberoamericana, 10:453–466.

13. G. LU (1997): Local and global interpolation inequalities for the Folland–Stein Sobolev spaces and
polynomials on the stratified groups. Math. Res. Lett., 4:777–790.

14. G. LU (2000): Polynomials, higher-order Sobolev extension theorems and interpolation inequalities on
weighted Folland–Stein spaces on stratified groups. Acta Math. Sinica (English Series), 16:405–444.

15. G. LU (to appear): Potential analysis on Carnot groups: Estimates for Riesz and Bessel capacities and
their relationship.
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